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PROPAGATION OF LONG WAVES OF
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[Received : July 11, 1970]

ABSTRACT

We consider the radiation problem for long waves of small amplitude,
caused By an instantaneous disturbance of unit heiéht at the origin. The
equations governing this phenomenon were derived by Long (1964). The
asymptotic expressions for the wave front and for large times are obtained.
The initia! value problem for the non-linear system of equations is also solved,
using @ perturbation scheme based on the small parameter «, the non-dimensional
amplitude of the disturbance. The solution holds only for t < <1/« as a result
of the appearance of a secular term in the first order selution.

1. INTRODUCTION

Long (1964) derived a set of equations governing the development of
arbitrary, small but finite amplitude long waves. These waves are, therefore,
characterised by the inequalities .

@h < <1, ) >>1 : L
where 4 is the uniform depth of the water, a is a length representative of the

amplitude and A is a length representative of the wavelength of the disturbance.
In contrast to the theory of Ajry' which imposes the additional restriction that

alhy () > > 1 [1.2
and of Jeifereys and Jeffereys (1946) which requires
(alhy (Rh) < <1 [1.3]

Boussinesq® derived an equation which governs the propagation of long
waves when

(afhy (Nfi) ~ 1. ] [L4]
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The initialvalue problems for the Boussinesq equution which wep
discussed by Korteweg and de Vries?, for example, were for waves for
which the wabve heights travel only in one di.rection with not an arbitrary
speed but onme mearly equal to (gh)*.  Lorg (1964), following Raye gt
expanded the complex potential for the unsteady motion and derived a set of
equations which govern arbitrary long waves of small but finite amplitudg
without any resiriciion on their speed to (gh)"? or the direction of their
propagation. With these restrictions these equations properly reduce 1o
Boussinesq equations, Long has shown that these equations also yield the
solitary wave which is a long wave that propagates without chunge of form,
He has also considered numerical sotutions of his equations for some
symmetric initial values of elevation and zero initial velocily. After some
tifne, the wave profile in either of the two directions is very nearly that
corresponding to a solitary wave. :

The purpose of this paper is to study the mnon-linear hyperbolic system
of equations derived by Long (1964). These equations govern the develop-
ment of an arbitrary, small (bul finite) amplitude long wave disturbances and
also yield the solitary wave when they are suitably approx‘mated. Our
treatment follows the well-known approach of Lighthill and Whith.n®
and Whitham!?, particularly the latter, to the system which is obtained
by linearising the non-linear system. Whitham showed that the highest
order derivative in a partial and d.fferential equation governing wave
propagation, yield the phenomenon m the earlier stages of propagation,
coupled with a damping caused by fower order terms, while it is the lowest
order terms which finally govern the phencmencn, these being accompanied
by a diffusion due to the higher order terms. The characteristics of differ-
enti.] equations that we cons'der have constant slopes £v/3, 0, 0, which,
however, do not introduce any simplicity in the analysis of the equations.
First we consider the radiation problem for the linearised form of these
equations and derive the form of the wave sor small and large times
respectively.  The solution for the initial boundary conditions =0,
N=T¢=Tg="Tm=0. x>0 and 7=5(2) at x=0, is expressed in termsof
Bessel function of firsi order for small time, that is, when the high frequency
waves dominate or in the region where the discontinuities in the wave form
appear. The solution is expressed in terms of Airy function when we
consider the wave form after a large time. We also consider an initial value
problem for the non-linear system in a power series in the small parameter a,
charzcterising the non-d mensional amplitude of the disturbonce. The first
order term in the soluticn contains a secular term, that is, one containing the
independent variable z, so that the soluton is valid only for x t < < 1.

2. DIFFERENTIAL EQUATIONS AND THEIR CHARACIERISTIC FORM

The differential equations describing the two dimensional long gravity
waves and satisfying the kinematio and dynamic conditions on the surface of
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water were written by Long in terms of the non-dimensional height 5 =(y'/#)
of the disturbance above the undisturbed level and a non-dimensional velocity

e Fy= = [Fly (X, ')V (gh)]. Here the primed quantities denote the dimen-
sional variables so that y'= 0 is the x" —axis along the bottom of the channel
and y'=h is the vertical undisturbed height as shown in the fiigure. ¢ is time.
The function F” is a function of x’ and ¢ in terms of which the real part of
the complex velocity potential ¢’ is expanded about y' =0, that is,

¢ (Y, )= F (2, 1) = (2 Flag (8, 13+ ... [2.1}

The dimensionless quantities are expressed as

x=x(h), y=('1h), t=t'[V(¢/h),

AP 10 S _Fx,
¢ (x, » 1) vy ', Fix, 0 e [2.2]

U, in fact, is the velocity at the bottom of the channel. Long made
certain assumptions as to the order of different terms, which correspond to
those employed in the derivation of the solitary wave. Thus, he assumed
that if the non-dimensional amplitude of the disturbance is of the order a,
a small quantity, that is, if

p~a, [2.3
then

(3/ax)~ al2 2.4}
This, in fact, expresses [1.4]. Besides, he assumed that ,

U=~F, ~ a, (3far) ~ (3/ax). [2.5)

1

g Y= nirh

£

(Sl 777777 S x

fie. 1
Long-wave Propagation
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s

By substituting the fon-dimensional velocity potential in the nop.
dimensional ferm of surfuce condition, Long obtained the following equations
for 4 and U with an error of 0(a?) in p,

Tt Unat U= +1 82,=0; 126
TatU=Un,+4 8,0, 2]
7y —w=0, 28
w,— 2=0. [2.9]

The equations [2 8] and [29] are alreedy in characteristic form. The
former two equaticns, [2.6] aud [2.7], can be suitably combined to give te
characteristic form :

3y +VIU+LD)/3: 43U (37/32)
=twlV3g+2U-Q2V] 26y

A~ +V3U~L Doz +v/3 U (37/82)
=LlwlV3j-2U-(2/¥/3)] 2.7y

where the independent variables are the characteristics z=x+v37, z=x~3e.
Thus, we have a hyperbolic system of equations with explicit characteristics,
heving coustant slopes £v3, 0, O.

3. SOLUTION ©Of THE LINEARISED EQUATIONS

If we put U=Up+U, p=yy+7, where Uyand 54 (in particular 75=0)
are the solutions of equations [2 6]' and [2.7]" giving uniform flow and U and y
are of order 0(a?), and linearise (thus omitting terms of 0 (a?), w: obtain,
after elimination of U, a linear equation in 7.

3t [ a? 3t a? ?? a?
O3 2 V6 (g 412U % -6 -2y 0. [
[aez(at* ) AU v R v v e ]7’ b1

Thus the second order operator gives the lower order waves with speeds
otV (U2 +1-3g)/1--ng] and the fourth order operator gives the higher
order waves with speeds 0,0, £ V/(3). Unlike the differential operators
considered by Whitham (1959), here the order of the adjacent differential
operators d.ffers by two. If we substitute

1 exp (kx - at) (3.2
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in equation {3.1] where k is real and consider long waves so that k < < 1, we
easily verify thst all roots a of the dispersion relation are pure imaginary.
This shows that we have a stable sitnation, with progressive waves as
solutions.  Similarly, if we consider a periodic wave maintained at x=0 so
that

7 & exp.(Bx~iwt) {3.3]

with @ (real) < < 1, we again get all four roots corresponding to f pure
imaginary, leading to the same result as noted above.” Thus, for large times,
we again have a stable situation. However, to be able to study the general
wave motion, we consider the following signalling problem for the differential
equation [3.1], an unsteady wave phenomenon on a running stream.

Initial conditions : N=Ng=Tg= TNy =0 at =0, x>0

Boundary conditions: 5 =f(1) at x=0 [3.4]

In the above we consider waves propagating in the x > 0 direction due to the
signal at x=0, but we could also consider the waves in the opposite direction.
We find the Laplace transform of the equation [3.1] with the initial condi-
tions (3.4]. We have

G0 +6) 1, =12 Uy p 7, = [6 (1 -70) PP +2*] 7 =0. 3.5]
The solution of this equation is
7=4, (2) exp.[7, (p) X1+ 4, (P} exp.[Vy(P)A] [3.6}

where 4y and A4, are some functions of p and

6Uypk p{36 U2+ (3 p* + 6} p*+6 (1 9]} 12
. 63,7
3(FP+2)

‘yl-:=

This expression is rather complicated and therefore we approximate this for
the following two situations (g) when p is very large i.e,, ¢ is small, this
2pproximation is valid when the high frequency waves dominate or mear
discontinuities in the wave form. (b) when p is very small so that we
consider the solution for large times.

() When p is large. In this case,

a (3.8
. o V 3) 39[6%&‘/(3)(2 3191 (3.8]
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For the forward moving wave we take negative sign, with 4, (p)=0, 229

invertirg ejuation [3.6], P
ytie

1 k
7= 5;;[ AZ(@.eXP.{p(t-\/ﬁ )+ [6U,—V(3)(2 - 3'70)]—}1(@ [3.9)

PSPy

T

where 7 =Rep is such that all singularities of the integrand are to the left of
Rep=7. It is obvious that

A (p)= J exp.(—pt) £(2) di. 13.10]
7
If we take £ (1) = 5 (¢), the Dirac delta function, so that A, (py=1, the above

integral is easily evaluated, Roberts and Kaufmann®?, the solution /7\, is

P D=0 O<t< V3 o1
.=s(,_,>f_)_( )”’ [v(s)cz ~370-60,]"
v/ \3 YO
1

x J {2 (——)"1 1—— — [‘\/(3) 2-3 -6 Ug)H?
! 3 .‘/(3) 7]0) 0] J‘
= [x/\/(3)

For any other f(r), we can use the faltung theorem to obtain

7= j 7 G5 w) £ G- du- By
o

If we were to consider wave propagation in the negative direction, we would
have

1)=8(t+-v—zé-

) —(~x)¥? [V(3) (2-350) + 612 y
V3[ t+x/3%

( x)uz [V(3 (2 3 6U, m( 2 u2 .
) (2= 359) + 6 (14 V(3) }

] t = ~[x/V(3)]
=0. . t< =[] [3.03

a7
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Thc above solution represents higher order progressive waves with
speeds +4/3) and —V3) respect.ively. The wave height near the front
initially decrcases from 1 as x increases. We also note that if 760,
Uoﬁ[l/\/_;], p(x, 0 =8{r—x/V(3)] in equation [3.11] which gives n(x,t)=1
on 1=[x,V3)] and =0 elsewhere. Of course these results are based on
linear theory, the mon-linear effects will alter the situation considerably.
Unlike the exponential damping of dynamic waves by the kinematic waves,
in the flood wave problem of Lighth'll and Whitham, we have near the wave
front a diminishing of the amplitude from urity and an oscillatory character,
given by Bessel function of order one.

(%) In this case p is small, we approximate Y to
439, i

- S U (UJH—;,D)W}

—p[U3 UG+ 1— g P T8
V.= U (UG + 1 =19 ] 5 p iIZ(U,,2+1—7]0) 3

=B, 20+ Gy, 2 P [3.14]

Again if we consider wave propagation in the positive direction only, then

taking the lower sign,
yHe

1 -
7 Yy J. S(p) exp. [p(t + Byx) + Cxp®l dp 3.15}

y~i=

where RI'Y is d2finzd in the nsual way. Again if we choose £(£)=3 (#) so
that f(p)=1, the above integral can be casily integrated, Magnus ef i,
We can transform this integral into the form

%=(l/7t) Jcosz (¢4 Bx) —c, x2%] dz {3.16)
G
which is expressible in terms of Airy functions
» 1 Byx+t\
- A —3~us B2 .
7 (3 Clx)lw i ( (sz)hJ)

! cos [_z_ Bx+0? /4}, [3.16)"

TV B Cayx (Bpx 41y B GHVE

‘the asymptotic expression of A7 for large value of r when-x/t is kept fixed.
We briefly verify this result by the method of isaadle points. ~ The exponential
term in the integral [3.15] can be written as’ '~ -

exp ¢ {p[1+ B, (x/t) 1+ C, (x/0) °}.
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For fixed value of x/t, we evalumate this integral for large 2. The sadgje
points of F(p)=p [L+8, (x/)]+ C, (x/1) 1p* are

Po, 1= il(t/x +By) A3CH% .16y

saddle points,

1
TG B

3 [y (po) exp i {30+ By xWVI(/x+ By (1/3 )] w4

+y (pyyexp —i1{2 0+ Bx) vV ((t/x+ By) (1/3 C)l - /4} ]

1 s (Byx+ )3 "
= [« = ] - +
V7 [3Cax (Byx+1))¥4 051 P3Gl 7/ [3.17]

when ; (p)=1. This is the same as in [3.16]. This represents essentially
the lower order waves. We find that the solution does mnot hold at the
observation point x=0 and the frent B,x+t=0, Lighthill and Whitham®,
We also note that 5 o< (1/4/x) or y e<(1/4/¢) for fixed x/t, showing diffusion
of the lower order wave by the higher order ones.

The solution in the negative x direction can be easily obtained by changing
B, and G, to B, and C, respectively.

Before we consider the non-linear wave propagation, we briefly indicate
the results as obtained by the quick methcd, Whitham®®. For example,
for the wave corresponding to (3x/31) =43 we put (3/31)=—/3 (3/ox) in
equation [3.1] and introduce the variable £ ~ x~v/31, we get the equation

(3% /2x38) = —L[2-3 9,-2V3 U,ly. [3.18)

With the conditions that 7 =0 on the front x~v/31=£=0and 3 =7 (z) on x=0,
the solution of equation {3.18] can be written in the form, Garabedian®,

10%02x0 , f.

plx. = )2V AE -1 )] dy,. [(3.19

Similarly, the solution near the wave front x= —4/3¢ is obtained by smnply
changing £ to £ =x+4/3t. For the lower order waves, if we put (3/21)
= = Cy2(3/3x) in equation Whero C, ={Upt V(U3 +1-14)/1 —3,,
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e get c -3
21, 21 G- B _o iy 2 [3.20]

ar ax 6(l-pg Bx

zfter integrating out once with respect to x. The solution of this equation
can be expressed in terms of Bessel functions.

4. INiTiat VALUE PrOBLEM

Now we consider the initial value problem for the hyperbolic system
2.6 —(2.9) where equatiops [2.8] and [2.9] are expressed iz terms of the
chsracteristic variables z and z as

(27/32) (a7 /3z) = (WA/3), {2.8}
(awfas)—(aw[a2) = (2]V/3). 12.97

We assume that g (x, 0) and U(x, 0) arc given. We seek the solution in
the form
p=0a (qeton), U=a(Uytaly), ‘"““3’2(00‘('““1)’

Q= (Q+a 2y, . [4.1]

since the equations of Long give » with an error of 0(a®. Here p and U
are functions of 2z and z. We substitute the expressions [4.1] in equations
{2.6) ~{2.9]', taking note of the assumptions {2.4] and [2.5].

After some calculation, we get the following equations. Zero order
system :

a;._(”__"‘;:_/i‘@ S /«/.i) . 4.2
(/32) (=70 +V3 Up) ={~ 0e/V3), {4.3)
(370[32) ~(359/32) = (w*V/3), o M4
(Dwo/82) — (Beog/82) = (2,/4/3). [4.5)

Fust order system :

3 [, +V3 U, +(24/2)]
3z

~{wpi2) (V3 7+ 2 Up) — (@, VD), [4.6

+4/3 U, (314/52)
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Lny +V3U = (2 /3.0, (apofaz)

¥z
=(“‘o/2) ('\/3 'f]o"z Uo)""(‘*’1/'\/3)s 4.7
(5771/37')"(3771/3;)=(‘°1/"\’/3)’ {4.8)
(Fw,/22) — (2w, /32) = (2, /V3). 49

The equatjons satisfied by 74 and 7, are found o0 be

2 2 2
P T Y -
pos o ) j
a2 3zt 2z 3z
2 2 2 -
(i R S _) n=F@ (411
3z 3z? 3737

Where F(z, 7)
- ?—-’—%’;+\/3[—B:( uoih) ‘E( U,,ﬂe)]

Azdz az 3z 3z dz
V3 3 (310 2\

~X2 (- 2y (V3 +2 Uy
2 ¥z \ 3z 3z V370 °

+(v/3/2) (3/32) [(370/32) = (B370/32)] (V3 74 -2 Up). [4.12]

We easily verify that the characteristics of the differential operator on the
left hand side equations [4.1] and [4.2} are z +(24V/3) z=(3£V3) (xF )=
const, agreeing with the linearised equation [29] of Long (1964). Thus the
characteristic slopes of the zero order solutions are =1, while those of the
non-linear system are +v3. We consider, in particular, the initial value
problem 7 (x, 0)=2 « cos x, U(x, 0)=0, so that we find from equations [4.10],
{4.2] and {4.3] that

76 (X, 1) =cos (x+7) +cos (x~1), Uy(x, 1)=cos (x—~1)~cos(x+1). [4.13]

Thws, it is more convenient to introduce the characteristic variables

wy=x—t, By=x-+t {413}
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so that 7, can be shown to sarisfy the equation
(3%, /d0,38) = —L cos(ay + By +3 [cos 2 oy +cos 2 By

— 'z (c0s &g +cos By). . [4.14]

The solution of this hyperbolic differential equation with the initial
condition 7,=(37,/30,)=(37/38) =0 on the initial line &,=f from
equations [4.6] and [4.7] is

3= (B — o) [$ (sin 2 oy —sin2 fy) +5 sin B, —sin ;)]

+4 cos (a; +8;)—cos 2 &, ]+ L (cos 2 g —cos 2 By)

=t[2 {sin2 (x—0)~sin2 (x+0} +% {sin (x+1) —sin (x-H}]

+}{cos2x—cos 2 (x—1)]+4[cos 2 (x~t)~cos 2 (x +1)]. [4.15)

We find that a secular term in the frst order term of the solution appears so
that the solution is valid only for wt < < 1. While the secular terms in
ordinary differential equations have been treated quite successfully, there does
not seem to be any general way of tackling them for partiai differential
equations. For example, Broer (1965) has considered some simple cases
when a transformation of the time variable can be guessed from the solution.
The term (o 1/G) [sin (x +¢) —sin (x—1)] in [4.15] can be easily combined with
the zero order tcrm by the transformati m ¢ == 1+ (e 1/6) but the other secular
terms cannot be removed. The divergence of the solution for large ¢ is not
due to the linearising of the characteristics since we can easily fit the exact
characteristics by stretching the x-co-ordinate by 1/4/3, but does not remove
the singularity for large . This perturbation scheme is not suited to give
solution for the far field for which a different procedure similar to that given
by Cole (1968) would lead tothe Korteweg equation which provides the
solitary wave and other periodic solutions, Kruskal and Zabusky®. In any
case, the above solution for r < (1/&) shows that in the first order solution
we get zero order solution and its double harmonic out of phase with the
zero order solution by /2 and-these together have their amplitude increasing
linearly with time while the other double harmonic in 7, remains bounded.
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RAMAN SPECTRA OF 1,2:DICLOROETHANE AND
2-CHLOROETHANOL

By A. SELVARAJAN AND K. KRISHNAN
(Department of Physics, Indian Insriture of Science, Bangalore-12, India.)

[Received : August 17, 1970]

ABSTRACT

Raman spectra of 1,2-dichloroethane and 2-chlorcethanol have been recorded
using both the 4358 A and the 2537 A excitations In the specrra obtained
with the latter excitation, many new Ruman lines are found for the first time.
Assignments of these lines are discussed. When the exciting wavelength is
changed from 4358 A to 2537 A, the relative intensities and depolarization
ratios of scme of the Reman lines of the two substances are seen to change also.
These changes are explained on the basis of the resanance Raman effect.

1. INTRODUCTION

The Raman spectrum of 1,2-dichloroethane and 2<«chloroethanol has been
studied by numerous investigators'~%. The problem of internal rotation in
substituted ethanes has been studied in detail by Mizushima2. It is now well
known that both in the gaseous and liquid states 1,2-dichloraethane exists as
a mixture of two rotational isomers, having the trans- and the gauches forms
respectively. The trans- form of the molecule belongs to the symmetry
point group C,, and the gauche. form to the point group symmetry C,.
Complete vibrational assignments from normal coordinate analyses for these
two forms has been given by Nakagawa and Mizushima®. The molecular
structure of 1,2-dichloroethane has also been studied by X-ray’, electron
diffraction® and infrared®? methods.

The Raman spectrum of 2-chloroethanol has also been the subject of
numerous investigations'-1%, Infrared obsorption’-1, electron difraction’®®
and microwave?! studies of 2-chloroethanol have also been reported in the
literature. These studies have shown that the 2-chloroethanol molecule also
exists in two rotational isomeric forms~the traps- and the gauche-ones.
Whereas in 1,2-dichlorocthane the trans- form is more stable, in 2-chloro-
ethanol the guache- form is the more stable one. In the latter case, the
chlorine atom and the hydroxyl groups take part in the formation of an internal
hydrogen bond.

13
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" All these earher studies on the Raman spectra of the above ty,
compounds had been carried-out using the visible mercury 4358 A eXcitatioy
methods Pure 12dchloroelhane and 2-chloroethanol were found g e

) Sufﬁcxemly transparant 0 the~ 2537 A- mercury radiation. Tt was thoughy
fA‘wcmhwhx]e, therefore. to re-examine the, Raman spectra. of the above ryg
““isquids asing the 2537 A excitation, with a view .to filfd out the changes if any,
_‘whzch take pl,,ce in 1Lespectra, 4s the exciting frequency inthis. case will be
" much éloser to the electronic absorp ion frequencies of the compaunds.

J2 EXPERIMENTAL DETAILS . ’

Two sets cf Raman spectra were- recorded for each compound, one using
the vs.ble mercury 4358 A exciation and the other us'ng the ultraviole
mercury 2537 A radiation. A Toronto Iype\hel‘cal mercury arc was the
sources of the visible radiation, while a water‘cooled,” magnet-controlled
quartz mercury are served (o produce an intense bezm ‘of - the ultraviolet
radiation. A saturated solution of sod/um nitrite was uged to cul off ]
radiations cf wavelength less than 4358 A in the firs. cese ; for the ultra
violet studies, a filter of dilute acetic acid was used to cut off all radiations
of wavelength less than 2537 A The vis'ble Raman spectra were recordsd
using 2 H lger two prism spectrogreph on Iiford Astra III plates. For the
ultraviolet Raman spectra, a Hilger med um quartz spectrograph was used,
the spectra beirg photographed cn Ilford Zenith Astronomical plates. For
the depolarization measurements, a double image prism was inserted in the
path of the scattered light. Tke light coming cut of the double image
prism was condersed on to the slit of the specircgreph using a crystal
quariz lens. TLe lens w:s so chosen that by ils opt cal activity and biref-
ringence the two componets of the scattered light com ng out of the double
image prism, were effectively cepolarized. Thus the two beams d.d not
suffer unequal rcflection losses inside the spectrograph. The Raman spectra
were microphotcmetered using 2 Moll m'erophotemeier.

Analar qu¢ lity 1, 2-d’chlorcethane, and 2-chlorcethanol were used in the
study. Both 'le liquids were distilled twice before use. For the ultraviolet
study, the samples were kept in a high optical quality fused silica Wood’s tubs.

3. RESULTS

Figures 1a and 1b show the Raman spectra and the microphotometer
tracings of 1, 2-dichloroethane as excited by the 2537 A and the 4358 &
radiations, respectively. F.gures 2a and 2b show the corresponding Raman
spectra of 2-chloroethanol. The observed Raman frequency shifts, their
visually estimated relative intensities, and depolarization ratios of 1, 2-dich-
loroethane are listed in Table 1. The frequency shifts of the Raman lines
of 2-Chloroethenol, along with their visuzlly estimated relative intensities are
given in Tuble 3.
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TABLE 1
Raman Spectrum of 1,2-Dichloroethane
I
7537 A excitation 4538 A excitation Species
e e . Assignments e
s 0 @S e T O
125(3) dp 125(4) 0.63 ), torsion a
223(0) 223(1) vig C-Cl bending b,
265(2) 0.47 263(2) 031 v C-Cl bending a
301(8)  0.54 3008) 040 C-Cl bending  a,
414(4) 0.94 412(4) 0.8l W C-Cl bending b
465(0) - vsvg  OL  vigv® A, or B,
537(0) Vivs ot 2ug A, A
650(10) 0.13 652(10) 0.18 C-Cl stretching a
680(8) 0.88 678(6) dp v C-Cl stretching b
752(10) 0.39 754(10) 0.23 g C-Cl stretching a,
833(4) 0.18 881(3) 0.88 v, CH, rocking b
944(5) 0.34 242(4) 026 1 CH, rocking a
990(1) 989(1) P by CH, rocking b,
1032(1) 1032(1) A C-C stretching a
1054(3) 0.57 1052(4) 047 v, C-C stretching a,
1145(2) dp 1143(2) dp s,  CH, twisting b
1169(0) Wl A
12097 071 1206(6)  0.65 CH, twisting a
1264(0) 1262(1) dp ¥ vy CH,wagging b, a
1305(9)  0.35  1303(7)  0.45 oy, v}, CH,twisting a, b
H328) 072 1439(8) 0.82 s, »{s CH, bending 2, b
1444(6) 1443(5) dp CH, bending 4,
1507(1y 2y A
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TABLE 1~ {comrd.}

2537 A excitation 4358 A excitatio S;Jecies
- - Asgignmets —
Tigmels: e oy e T Cuh
= - T
1630(0) - . . R A B
2062(1) .. . - v3tus A,
2005(1) - . co v AV o7 vty Bora
226008 - . . N A
BI6EO) . . .. Ce phely 5
2470(1) .. .y .. vy +vj or v,;+v; A
2525(1) . - .. .. v+ 1ig B
2569(1) . .. .- Vit vy OF vy+up A
2603(0) .. .. .. 2wy OF 2vig A A
mah . .. .. va vy B,
2744(1) .. .. . v vy A,
2844(5) p 28414 P [ A
2875¢5) P 2875(4) p v, A,
205 .23 2960{10) 0.23 v, 4+, CH sretching a, ab
3005(3 160 3007(7) dp vy vjv}, C-Hstetchingb,  ab

(s) Numbers wthin brakets give the relativ: intensitus estimated vissuaily.
(b) Valucs reported by New et al. (4).

4. Discussion

A study of the Tables 1 and 2 shows that besides the Reman lines
already reporied by earlier workers, the Raman spectra of 1, 2-dichloroethane
and 2-chlorocthancl excited by the 2537 A radiation contain many new lines.
These lines are mainly in the region of comb.nation and overtone bands.
We have used the assignments for the fundamental vibrations of 1,2 dich-
loroethane as given by N.kagawa and M zushima S. Tuble 1 gives these
assignmestts, together with our assignments of the newly observed Raman
lines which have been cssigned as combinations and overtones. In making
the latter assignments, the following facts were taken into account : (i) only
the overtones and ccmbinations expected wre these involving in ‘general, the
stronger fundamentals :nd (ii) the resultent states of the combinations and
the overtones should belong to a Raman active species.
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TABLE 2

Raman Spectrum of 2-Chloroethanol

Frequencies (cm ~%)

Present study Assignments

2537 A excitation 4538 A excitation

165(1) Torsion

263(0)

294(4) 2923(3) )
393(5) 302(4) 1( C-C-C1 bending
474(3) 473(3) C-C-O bending
661(10) §60(10) |, )
748(5) 7474y C—C} stretching
848(4) 8478 | )
939(3) 937(5) }- CH, rocking
1031(4y 1031(5) C-C streiching
1057(1) 1056(1) ‘

1078(2) 1075(2) C-O stretching
1180(2) 178(2) ) L
1242(3) 12413) | CH; twisting
1281(2) 1280(2) ) .
1301(2) 1203(2) [ CH, wagging
1434(5) 1432(4) .
1457(5) 1455(5)- }’ CH, bending
1598(0) .

1884(1) ‘

1566(1) ?

2492(1) [ Qvertones and combinations
2610(1) ]

2735(2)

2880(4) 28814 4

2928(3) 2430(3)

2962(10) 2960(10) L C-H stretching
3011(4) 30114y -4 - ' .

3460 3460 - O-H stretching
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The last column of Tables 2 gives the vibrational assignments for e
2-chloroethane molecule. These a ssignments have been made by a comparison
of the Raman spectrum of 2-chloroethanol with the Raman spectra of
1,2+dichloroethane and 1,2-ethanediol 22.

A comparison of the Raman spectrum of I,2 dichloroethane excited by
the 2537 A radiation with that obtained by the 4358 A excitation shows tha
the relative intensities of the two Raman lines at Ca. 1305 cm~! ang 3 ¢,
1432 ¢m~? are reversed. A comparison of the depolarization ratios of these
two lines shows that in the 2537 A excited spectrum, these two Raman lineg
have lower depolarization values. Similary, the Raman lines at 848 and 939
em=~! have their intensities reversed in the 2537 A excited Raman spectrium
of 2—chloroethanol. The changes observed in the relative intensities, though
small, are beliecved to be genuine. In the short wavelength ranges where
these Raman lines occur, the variation of the sensitivity of the photographic
plate cannot introduce any appreciable error. And, in our depolarization
measurements, any error in the determination will only tend to increase the
depolarization ratio to the limiting value. Thus the decrease in the
depolarization ratios of the two 2537 A excited Raman lines of 1,2-dichloro-
ethane must also be genuine.

It is well known that in the phenomenon of the resonance Raman effect
there is a2 many fold increase in the intensities of some of the Raman lines of
the molecule, when the exciting frequency approaches the electronic
absorption frequency of the molecule®. If the molecule has a non-degenerate
ground and excited electronic states, the depolarization ratio tends to 0.50 as
the exciting frequency approaches the electronic absorption frequency. This
has been verified experimentally in the case of substituted nitrobenzenes by
Rea®. However, in the case of saturated molecules, sach as cyclohexane,
1, 4-dioxne, etc., there does not seem to be a consistent pattern in the
intensity changes as the exciting frequency is in the resonance region?s,”®. Tn
the latter ease, however, Bernard and Dupeyrat?’” have shown that the
depolarization values do tend to 0.5.

Thus we can conclude that the changes observed in the spectra of 1,2
dichloroethane and 9-chloroethanol, when the exciting frequency is increased,
arise due to the resomance effect. It is quite possible, in both cases, that all
the lines that do change in intensity in the 2537 A excitation, actually
increase in intensity; only, say, in the case of 1,2-dichloroethane, the Ca.
1305 cm™' Raman line increases intensity much more than the line at Ca.
1432 cm™l.

The Raman lines at €a. 1305 and Ca. 1432 cm~? in 1,2-dichlorethane arise
from the twisting and bending vibrations of the methylene group. The848 cm™!
and 939 cm™! lines of 2-chlorethanol arise from the methylene rocking
vibrations. It is interesting to note that in cyclohexane and also in 1,4-dioxane,
it is the CH, group frequencies which show the resonance effects?,.
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The electronic absorption spectrum of 1,2-dichloroethane was recorded
using & Unicam absorption specirophotometer, and it was found to be
continuous below 2520 A. This is very similar to the absorption spectrum of
ethane®®, and can be connected with the fact that all the valance electrons are
used up in forming the single bonds and the only nomn-occupied orbitals
arising from the valence electrons will be antibonding ones and so will lie
fairly high.  In this case, therefore, it will be a good approximation to think
of the continum level to be replaced by a single non-degenrate level and this
might account for the changes observed in the intensities and depolarization
ratios of the Raman lines on going to the resonance region. Similar
explanations have bzen given by Albrechi®, Tsenter and Bobovich® and Leite
and Porto™ to explain the resomance Raman scattering from various
substances. o
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A NOTE ON THE HOT WIRE METHOD FOR MEASURING
HEAT CAPACITY OF GASES AT LOW PRESSURES
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[Received: June 3, 1970]

ABSTRACT

A hot wire cell has been devised jor measuring the specific heat of gases at
fow preasures, in particular of vapours below their normal boiling point. The
method is based on the heat loss from an electrically heated fine wire immersed in
the fluid. When the pressures are greater than about 10 torr, the heat loss is
proportional to the thermal conductivity of the gas, while at pressures below
1 torr, the heat loss depends on the specific heat. Thus, in a single experiment
the thermal conductivity, the accommodation coefficient and the specific heat of
the gas are determined. Measurements on dry air at 0°C and 40°C are
reported.

1. INTRODUCTION

The hot wire cell method of evaluating the heat capacity of gases at
constant volume has some advantages over the other methods. Firstly,
only a small amount of gas sample is required and secondly it is possible
to measure the heat capacity of gases at low pressures. The low pressure
specific heat is the ideal value which can be directly compared with the
spectroscopic calculations. Moreover it is possible to study the specific
heat of vapours at a temparature below their normal boiling point. This
feature is valuable because the region of interest in a few gases is at a
temperature below their normal boiling point.

The hot wire assembly is widely used in other areas also. For example,
it can be used to evaluate the thermal conductivity of gases' and has indeed
bzen used for the msasurement of thermal conductivity of vapours below
their normal boiling point®. It is also used in aerodynamic studies to
evaluate the velocity of flow of gases’. The present note” is confinsd to s
brief digcussion of the specific heat measurements.

21



22 K. GoviNDaraJAN avD E. S. R. GoparL

2. PRiNCiPLE OF THE METHOD

The hot wire cell consists of an electrically heited w're of radiys r,
fength L, mounted along the axis of a tube of radius r, The gas unde,
investigation of molecular weight M is at a pressure p. A siudy of the
heat transfer through gases®® shows that when the mean free path X of the
gas is much smaller than the heat loss is proportional to the therma]
conductivity of the gis. Molecular flow conditions occur near the wire
when A > > r; and over the whole tube if A > > ry. In the molecular flow
region the heat loss from the wire at an absolute temparature Tj (o the tube
at a temparature 7, is given by

Q=27 Lpa (B+1) [RIQRMTDIP (T,-Ty) . .. 1

In this expression, originally due to Knudser®, B=C,/R and « is the
accommodation cofficient.

It is evident from Eqn. [{] that by studying the heat conductivity of
the gas at low pressures it is possible to evuluate C,, prov ded a can be
obtained. Now the mechanics of gas interaction on the solid surface are
quite complicated?, and it is best to consider the a.c. as an effective parameter
1o be determincd under the operating conditions. Therefore atitempts have
been made to evaluate o as well as C, from the same arrangement.

Following the eailier -suggestion of Eucken?, Kistizkowsky and
coworkers?, assumed that the ratio of the a’s for different gases approach
unity at low teinparatures ard .studied the specific heats of ethane etc, in
relation to a standard gas, viz, Argon. A d flerent procedure was used by
Vanderkooi and de Vries? following the earlier arrangement of Eucken and
Krome. A wire and a fial ribbon are both used inside the same outer
tube. The heat losses determined in the usual way will be of the form . -

Quie=Aw (Ty=T)) p (MT)" 12+ Ay, (T;=T)) p (MT™1? @

where A, depends in addition to the geometrical parameters, on the ac.
Qg and (B +1). A4, is a coupling term depending on &, and ap A
similar equation holds for the ribbon also. «, and C, are obtained by
- studying the heat loss from the wire at different setiings. A third procedure
has been suggested by Gregory and coworkers!!.  They have used Eqa. [1] at
low pressures. At high pressures the heat loss, including the temperature
jump, is written as

1 _In(ryfrp + A l‘\/Tz + VT, ]

-

E 2 KL (T;‘Tu) 14 (TZ*TS) Iy r
1 -
whete A= (-—-—-—ZW M~ --1*- ‘iL Gl
R 2nl 2a (B+1)
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It is suggested that at ©high’ preasures the plot of 1/Q against 1/p isa
siraight line from which K and [(2— at)/ «(8 +4)] can be known. This combined
with the value of a(B+1) obtained in the *low’ pressure Eqn, [1] enable
all the quantities to be evaluaied.

3 EXPERIMENTAL ARRANGEMENT AND RESULTS

Because of the interest in the study of the specific heat of some vapours
below their normal boiling point, it seemed worthwhile to investigate the
possibility of using 8 hot wire cell for the evaluation of the specific heats.
Of the procedores for estimating o the method suggested by Gregory was
adopted. It allows a simpler hot wire cell than the wire and ribbon procedure.
Further, the thermal conductivity may also be compared with the standard
values to check the procedure, whereas, such a check on K is not possible in
the more complicated wire-ribbon method of Eucken. The method used by
Kistiakowsky and coworkers does not appear to be free from objections.

Two compensated hot wire cells of “the type used by Gregory and
coworkers'!, have been used in the present arrangement; one cell was of
glass and the other of copper. Platinum wire of radius 0.00375 cm has been
used for the central wire. The glass cell had a diameter of 0.830 cm and
the copper tube 0 625 cra.  The compensating cell had a length of ~ § cms
which is adequate for the elimination of end conduction. The glass cell had
an effective length of 15.72 cms and the copper cell 13.90 cms. The hot
wires of the cell were included in the two arms of a Callendar Griffith
Bridge. The temperature of the wire was measured by previously calibrating
the platinum wire resistance as a functian of temperature. The current
through the wire was measured by connecting a series standard resistance
and using a Vernier potentiometer. The cells were placed in an ice bath or
in an electronically regulated paraffin oil bath.

An all glass high vaccum apparatus was used for the purpose, A Toepler
pump was used for adjusting the pressures while a manometer and a McLeod
gauge were used to measure the absolute pressures. The vacuum techiques
were of conventional design.

The observed heat loss I?R should be correcied for several factors.
The radiation loss is obtained by measuring the heat loss in the highest
vaccum  ~107% torr. Convection effects under the conditions of the
experiment are negligible if the hot wire cell is mounted vertically. Finally,
the end losses are eliminated by employing, as mentioned above, a compen-
sited pair of cells.

The two hot wire cells were tested with pure dry air at the two
temperatures of 0° and 40°C. Figure (1) shows performance of the glass
cell at t,=0°C and Figure (2) that of the copper cell at ~40°C. The plots
are quite linear and the values of the various quantities obtained from the
figures are :



24

Qg MILLIWATTS

K. GovINDARAIAN aND E. 8. R, Gopar

50~ GLASS CELL
0%
"~ HIGH PRESSURE PLOT

- e

I
Q16 O

18

] 1 ] i A

- 67004 008 Of
: Yo tmmHg™"

Fio. Ia - "
¢ )
GLASS CELL ‘ s

[0,]

™ LOW PRESSURE PLOT

L

! i ]
oiE ok

PImmHGY.. v,
Fie. 1b

Behaviour of the glass cell at an ambient temperature of 40°C
{a) bigh pressure region. &) low pressure region.



Hot Wire Method for Measuring Heat Capacity of Gases a: Low Pressures 25

13-
.
ol
R
¥
- METAL CELL
401°c
HIGH PRESSURE |
PLOT
1 " 1 i 1 M
0 002" 004~ 006 008
ifp (mmHg) "
Fig. Il a
]

Qg MILLIWATTS

METAL CELL
40-1°c
LOW PRESSURE PLOT

VUV BTV WUV
O 004 008 012 016 02

p mmHg

Fic. II'b

Belaviowr of the metal cell at an ambient temperaturs of 46°C.
(@) high pressurc region (b} low pressure region.



26 K. GoVinNDARAIAN AND E. S. R. GoPaL
At 0°C: K =58, x 107 calfem deg.sec; C,/R=25; a--0.4g,

At 40°C: K=6.2; x 10°% cal/cm deg. sec; C,/R=24,; =0.55,

The value of the specific heat is as expected very close to that of an ideg
diatomic gas C,=(5/2)R. The values of K compare well with the values,
summarized for example, by Dickins'?; Kat 0°C=5.84 x 105 can/cem see,
deg. and K at 40°C=6.5; x 107°. The value of the a.c. are not comparabie
for they refer to the specific experimental conditions. They are of the same
order as those for fully absorbed surfaces. It is only for very clean surfaces
in much higher temperatures that smaller values of a are obtained.

In conclusion, Gregory’s method of evaluating the a.c. appearsto be
suited for using the hot wire cell to evaluate the specific heat vapours and
that the present arrangement is suitable for studying gases under various

conditions.
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ABSTRACT

The buckling problems of skew plates with different edge support conditions
involving simple support and clamping are considered. The in-plane stresses gr
represented in terms of oblique components.  Rayleigh-Ritz method 15 used
employing a double series of functions appropriate to the combination of the edge
conditions. Numerical results are presented for severdl combinations of side
1ativ, skew angle and different loadings.

1.  INTRODUCTION

Skew plates have their application in construction of modern swept
wing aircraft. The buckling problems of plates of such shape are of
interest to the designer. The boundary conditions obtaining on individual
panels are more nearly in the nature of elastic restraint against rotation.
Analytical treatment of this boundary condition, however, is somewhat
tedious and it is even more so for skew geometry. Consequently, the ideal
boundary conditions of simple suppert or clamping are usually analysed.

While considerable literature is available on buckling of rectangular
plates under different loadings (Refs. 1,2,3) yet buckling coefficients fory the
many different combinations of edge conditions involving simple support
and clamping are not fully available.

The problem of buckling of clamped skew plate under uniform compre-
ssion was studied by Guesi®. He applied the Lagrangian Multiplier method
10 get upper bounds and rather doubtful lower bounds (see Ref.5). In |
another paper® he considered the buckling of clamped rhombic plate under
bending and compiession. - Using Rayleigh-Ritz method, Wittrick studied
the buckling problem of clamped skew plates under uniform compression’

*Paper presented at the 22nd Annual Geperal Meeting of the Aeronautical Society of
India held at Hyderabad on 1he 20th and 2tst March 1970,
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and pure shear®. He used Iguchi functions and found that the convergence
was slow particularly in the case of positive shear. Hasegawa® calculated
the buckling coefficients of clamped rhombic plate under the action of pure
shear by the Rayleigh-Ritz method using polynomials. Hamada'® used
Lagrangian multiplier method to study the problem of buckling of clamped
skew plates under the actioa of uniform compression and oblique shear.
Matrix methods have also been applied!! to find the buckling coefficients of
the parallelogramic plates under the action of shear and compression.
Durvasula’® investigated the above problem using Galerkin Method and
expressing the deflection as a series of beam characteristic functions. The
buckling coefficients have been calculated when direct and shear forces are
acting either individually or in combination. Ashton!? also investigated the
problem using beam characteristic functions and Rayleigh-Ritz method.
Mansfield”® obtained a rough estimate for the buckling coefficient under

uniform compression.

Yoshimura and Iwata'¥ obtained the buckling coefficients for the simply
supported skew plates under oblique shear and compression. Durvasula'®
solved the problem using double Fourier sine series and Rayleigh«Ritz
method with in-plane stresses expressed in terms of orthogonal components.
Durvasula and Nair'é have also considered the buckling problem of simply
supported skew plates with in-plane stresses expressed in terms of oblique
compounents. Extensive numerical results ware presented for various com-
binations of skew angles and side ratios. [nteraction curves have also been
given.

In this paper, the buckling problems of skew plates supported differ-
ently on different edges are considered. The support conditions considered
are confined to different combinations of simple support and clamping on
the four edges. The in-plane stresses are represented in terms of oblique
components. Rayleigh-Ritz method has been used with the buckling mode
expressed as a double series of beam characteristic functions appropriate to
the combinations of the edge conditions in each case. Numerical calcula-
tions have b2en made to obtain the buckling coefficients mainly when each
of the stress components is present individually for different combinations
of side ratio, skew angle and boundary condition and for a few combined
loadings. Convergence has bzen examined in a few typical cases and is
found to be satisfactory.
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Notation:

a,b

ry

D

E

G, H®, H® H®
Gy

h

Pq P
Imy Jns

W (& 1)

X, (), Y, (p)
x, ¥y, 2

£

4

[+ Y (Ty, 0’)‘),

72
4%

¢
A
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dimensions of the plate

Coefficient in the series expansion of deflection
flexural rigidity of the plate. [EA3/12(1~3%)]
Young’s Modulus of the material of the plate
Matrices defined in Equation [15]

matrix defined in Equation [18]

plate thickness

integrals defined in Equation [14]

maximum value of indices m, r

maximum value of indices n, s

midplane forces (oblique components), kg, & a, ha
respectively

B4

integers

normal bending moment

non-dimensional midplane force parameters o, b%h/n? D,
a,bhn? D, o, b* hjx?® D respectively.

non-dimensional midplane force parameters
(o,a*h cos’$)[D, (o, a* h cos™) [D, (o, a*h cos*f)/D,
respectively.

strain energy of the plate

potential energy of the middle surface forces.
deflection of the plate

beam characteristic functions

oblique coordinate system defind in Fig. 1
non-dimensional coordinates, x/a and y/b respectivaly
Poisson’s ratio

obligne stress components defined in Fig. 1

Skew differential operator
=Sec? g [3%/ax? 2 Sin ¢(d%ox ay) + (3Y/3)3) |
Non-dimensional skew differential operator
- Sec? § [2%/0£7 - 22 Sin ¢ (3%adan) + A (3%/27) ]
Skew angle as defined in Fig. 1
a/b. gide ratio
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2. TFORMULATION OF THE PROBLEM

A sketch of the skew plate is shown i Fig. 1 along with the in-plane
ktresses represented in terms of oblique components. Since the geometry of
the plate is oblique in nature, the use of oblique stress components instead
of usual orthogonal components is preferable. In terms of oblique
components, expressions for the strain encrgy of the plate and the potential
energy of the middle surface forces are simpler and the structure of
these expressions is similar to those in the case of rectangular plates with
orthogonal stress components. The plate is assumed to be thin, uniform
and isotropic.

Using the classical, small deflection thin plate theory, the differential
equation for the deflection of a plate of constant thickness under the action
of middle surface forces is given by 17,

Deos f p* We —h (o, (3*W/ox™) +20,, (3*W/[3x 3y) + o, (32W/ay)]  [1]

In terms of oblique coordinates, the boundaries of the skew plate are

given by,
x=0, x=a; y=0, y=b. 12}

Oy

Z
Oxy

= X,X{ 8

0
e —| X
Fic. 1

Sketch of the Skew Plate and the in-plane Stress System (Oblique Components)
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The boundary conditions considered are confined to combinations of
simple support and clamping. These conditions are stated as follows ;

Simple support: W=M,~0 3]

ar alternatively for a polygonal plate’®
W=p! W=0 [3b]
Clamping : W=[(aW/om ]=0 13¢]
If the edge x—a, for example, is simply supported, then boundary
condition, Eq (3b) takes the form,
W=[ (3Y3x%) —2 siny (2%/dx 2y)] W=0 [

If the edge y=b is clamped, then the boundary condition Eq. (3¢) takes
the form¢*.

W={ (2W/ay) 1= 0 151

In this paper, the buckling preblems with different edges supported
differently are considered. An approximate solution of the buckling problem
stated by Equation [1], together with boundary conditions such as given by
Equations [3b, 3c] appropriate to each edge is solved using the Rayleigh-Ritz
method.

Non-dimensional coordinates £ and 5 are defined as follows :
§=xja; y=y/b [6

For the stress system shown in Fig. 1. the expressions for the strain energy
of the plate and the potential energy of the middle surface forces are given
respectively by V7,

v- 2SR f [ (W) =221 ) sec’sﬁ{W,gg W"ﬂﬂ_W?{*'} 1dg dy (7]

2a* °

kb ] 1
Veir of of (0 W2y +2X 0 W, W, +Xa W2\ d¢ ay t3]

For polygonal boundaries with W=0 along the edges the expression for
U reduces to 1*

_ Dcosg b

U
24%

11
JJ(VlZW)zdfd? ]
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The deflection W is expressed as a double series in terms of ““ admissible
functions ', f.e., functions which satisfy the geometric boundary conditions.
Beam characleristic functions which have been widely used in the literature
have been made use of in the preseat analysis. The series is written as,

£
Wi )= = 2 oy X () Y, () oy

where X, (§), Y, () are the beam characteristic functions which are appro-
priate to the particular boundaly conditions specified. For example, if the
edges £=0 and £=1 are both clamped, the clamped:clamped beam functions
are taken for X,, (£). Similarly, if the edge »—0is clamped and edge p=1
is simply supported, the clamped-simply supported beam functions are taken
for Y, (1)

Substituting the expressions for W in Egs. [8] and [9], we‘get,

3 1 1 M N M N
g- PeC¥b pp 3 3 ¥ % ¢,c, [X,’,,’ Y,—2 Asin ¢ X7, Y/

2a3 0 0 m=1 n=l r=1 $=1
+A X, Y,,”] [X,” Y, =2Asing X Yo+ A X, Y;’] dé dy {111
hb 1 1 M N M Iy‘
Ve — [ [ 2 2 2 Z CuCy 0. X, X LY,
209 & m=1 n=1 r=1 s=1
+ 200, Xp X, Y, Y+ No, X, Y, X, Y]1dédy [12]

The coefficient C,,, are determined from the condition'?

[(8/2C,, 1(U+V) =0 form=1, 2....M, forn=1,2 ,.. N [13] .

The integrals involving the functions X, (£), ¥, () and their derivatives
are defined as follows :

I~ [ X&) X2@)dE; s = [ Yo(p) Ye(p) dy [14]
0 Q

where p and g represent the crder of the derivative. The formulae for such
miegrals were given by Felgar®® and the numerical values of some of these
integrals are given in Ref. 21. Using the expressions for U and V from
Eqs. {I1] and [12] in Eq. [13], and using the relationships between the
integrals, we get, finally, a set of linear simultaneous algebraic equations in
C,, which can be expressed in the form of a matrix equation as follows :

[6] {C.} =R: [HD] {C,}+R; [HP] {C.}+R5, (4] {C.} (15]
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where
Gmrg= {122 TS + A* (120 129 2 sin of 12 IS + 112 118 + A (230 12
19 I +2X (1+2sin? gy T1L 70 [16]
HO =13 00 Q) =N IRTI HG =200 T [

This is an algebraic eigenvalue problem. To get the bucklmg loads
when N,, N,, N,, are present individually or in combination, numerical

values are given to two of the three parameters R: . ﬁ; , R, and the third
is treated as the eigenvalue. For example, if we wish to determine the

buckling parameter ?2;, when both N,, and N, are acring, we assign appro-

priate numerical values to .-I-E; and J—i;y and obtain the G; matrix as,

[G)]=[G] — R} [H®] — K, [H®] 18]
Equation [15] then reduces to

16 {C.} =K2 [HY] {C,} 119
which can be written as,

(6,71 [H®) {C,} =(U/RS) {C,.}) [20]

For combinations of boundary conditions symuietric about the diagonals,
the Equation {15] splits, into two cases: (m+n) Even and (r+s) Even:
(m+n) Odd and (r+5) ©dd. The Even case corresponds to skew symmetric
case consisting of modes which are doubly symmetric and doubly antisym-
metric. The Odd case cotresponds to skew antisymmetric case consisting of
modes which are symmetric-antisymmetric and antisymmetric-symmetric. This
splitting reduces the order of the matrix to be considered for finding out the
eigenvalues and eigenvectors. If K(=MxN) is the order of the original
matrix, then the size of matrix for the even case will be (K+1)/2if Kis
Odd and K/2 if K is Even; and the matrix size for the Odd case will be
(KE—1)/2 if K is Odd and K/2 if K is Even.

The eigenvalue R} can nmow be determined by using any of the standard
methods. The two groups give two eigenvalues; the lower of the two is
the desired critical buckling load. Similar procedure can be adopted to
dstermine the eigenvalues for other combinations of loads.

For cases where such symmetry of boundary conditions about the
d:agonals is not present, this splitting is not possible and the full matrix of
ordesr K will have to be handled.
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3. NUMERICAL CALCULATIONS

Numerical calculations have been made for different combinations of
side radio a/b and skew angle ¢ for different edge conditions. Since the
accuracy of the eigenvalues decreases with increasing value of s, more terms
have been considered for higher skew angles. For skew ¢ = 30°, the
number of terms considered is upto M =N=6 except in the case of N, acting
alone in which case the number of terms considered is upto M=N=5 only.
For i =45°, terms upto M= N=38 have been taken. The calculations made
are mainly for N,, N, or N, acting alone, though the combined action of
N,. N, and N,, has also been siudied in a typical case. Convergence study
has been made for one representative boundary coadition when N, and N,,
are each acting alone. The numerical values are presented in Tables 1 to 5.

4. RESULTS AND DIISCUSSION

Resutts of the convergence study for one typical boundary condition in
the case of a rhombic plate wilh ¢ =30° are given in Tables 1 and 2. Table 1

TABLE 1
Convergence Study : N, Acting Alone

A=afb=1, $=30°

conanrons M N Matrix size Eisengaiuc-

2 2 2 12.89

3 3 4 10.41

4 4 8 9.663

¢ 5 5 12 9,510

N a/S YA

< 6 6 18 9.391

7 7 24 9.352

8 8 32 9.302

9 9 41 9.282

*These values are all from (M--N) ODD case; (M-N) EVEN case gives higher values.
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TABLE 2

Convergence Study : N, Acting Alone

A=a/b=1; =30"

Positive Shear /{7} Negative Shear @

Eigenvalue* R,

Boundary conditions M N Matrix size — -
Positive Negative
2 —

ey 2 2 2 18.69 37.78
4 4 8 R.550 3434
6 6 18 8.314 3479

e m——
4 8 8 32 8.233  —34.75

= These values are all from (M-+N) EVEN case. (M--N) ODD case gives higher values.

gives the cigenvalues when N, alone is acting. Table 2 gives the eigen-
values when N, alone is acting: Ii can be seen from Table 1 that the
convergence of the eigenvalues is satisfactory. When N,, is acling the
convergence is equally good for positive as well as negative shears (Table 2).

The buckling coefficient -j(x has been obtained for seven different
combinations of boundary conditions for a/b equal to 0.5 and 1 and ¢ equal
to 0°, 15°, 30° and 45°. These are given in Table 3 along with resulis,
where available, for comparison. Similarly for the same combinations of
a/t and § and different boundary conditions, the buckling coefficients
Fexy and ﬁ, are given in Tables 4 and 5 respectively. In Table 6, the
buckling coefficient Rx in the presence of inplane forces N,, and N, is
given for a rhombic plate with skew angle =30 for a typical boundary
condition. From Table 3 it may be seen that even for rectangular plates
complete results are not available. For skew plates with different combina-
tions of boundary conditions no results could be found in the literature for
comparison. The results of the present paper are in good agreement with
the available results. - N
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The buckling coefficient R, =N, b*/n? D increases with the skew angle,
15 may be expected, and decreases with a/b. Also the values in Table 3 are
indicative of the relative stiffnesses of the plates with different combinations
of boundary conditions for a given combination of a/h and . One can
expect that for a given afb and i the buckling coefficient for a plate with
combination of clamped edge conditions (C) and simply supported ecdge
conditions (S) should be in between the values for a plate of the same
geometry with all edges clamped and all edges simply supported; this is
borne out by the present results except for a/b<=0.5, for the obvious reason
that in this case thé order of approximation is lower (M=N=4).

In Table 4, the buckling coefficients under positive and negative shears
. gré given along with some available results for rectangular plates. The
agreement between the present resulls and available results is quite good.
As in the case of T{x, the buckling coefficient }Xy decreases with a/b and
increases with 1.  The buckling coefficient I—Qxy for positive shear is less than
that for negative shear irrespective of a/b, ¢ and gboundary condition. This
js in conformity with the observation made previously'.

In Table 5, the critical buckling coefficient 1—’(,, is given for differnt com-
bination of a/b, and boundary condition. The buckling coefficient ']}y, for a
certain a/b and ¢ and boundary condition, can be related to ;tx for corres-
ponding b/a and , for appropriate boundary conditions. For example for
§=0°, a/b=0.5 foriboundary. conditions (Case 6) ﬁy can be interpreted as the
value of 11 for =0 and a/b=2 for boundary conditions (Case 5). For
this to be valid, the corresponding orders of approximations have to be
necessarily equal; the slight difference that is seen in the case of ix for
a/b=1(Table 3) and Ey for afb=1 (Table 5) is because the corresponding
orders are not the same.

In Table 6, the critical buckling coefficient }, in the presence of
different combinations of inplane forces N, und N, is given for a typical
combination of a/b, 4 and boundary condition. The computer programme,
however, can generate data for other combinations of a/b, ¢ and any

combined loading and is thus capable of generating interaction surfaces
which should prove useful in design.
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TABLE 3

Buckling Coefficient R. For Different Edge Conditions

- Bound V=00 PRYS ? Cus30e ; P
i oundary [

Cese | Comdition | gpos| 1 o5 | 1 | os | t?ﬁ

1x =k "fs' 625 400 684 432 917 555 157 g4

2 ;EEZ— 10.4 485 113 521 149 651 241 9p;
686 5S4 145 616 968 162 152 102
3 (685 (5.74)°

4 ﬂ 109 622 18 655 153 787 243 104
s ﬂ 182 675 198 714 256 851 380 113

(6.74)°

6 ﬂ 770 176 §30 810 105 951 159 120
(7.69° (7.69)°
7 ﬂ 18.7 807 202 847 259  9.83 383 125

19.4 10.1 20.8 10.5 263 11.8 388 143

B

(@) Ref. 18 (Levy's Method) (¢) Ref. 2 (Tak=n from the graph)
The sigenvalues corresponding to this caseare taken from Ref. 16
(note that for a/b=0.5, M=N=4 and far a/b=1, M=N=6.)
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Positive Shear

TaBLE 4

7

Biickling Coefficient R,y For Different Edge conditions

Negative Shear

Boundary
Conditions

39

¥=0° | =150 $==30° ¥=150
alb=0.5 1| es | 0.5 1 I 05 |1
+9.40 7.15 6.52
—14.71 —27.4
+26.5 310.7 20.3 8.05 17.8 7.09 180 7.26
(26.88)° (1098 —40.3 —16.7 ~725 -30.6 ~-163 -70.0
+32.4 +10.7 24.6 8.05 217 7.09 222 7.76
(33.72)+ (10.98)° -49.6 —16.7 —89.5 —-30.6 —199 -70.0
33.1 11.7 24.9 8.79 21.9 7.63 224 7.66
-33.2 -11.9 —-50.9 -184 -—-90.7 -33.6 —-201 -76.2
+40.1 +12.6 30.8 952 26.7 8.31 268 8.37
(40.16)° (12.6)"’b —60.3 —-19.3 —107 -—34.8 —238 -73.5
+26.9 +12.6 205 9.52 18.2 8.31 183 8.37
(2.688)* (12.6)** —41.0 —19.3 —-73.9 -348 ~166 -78.5
+40.5 +13.4 30.9 10.1 270 875 269 8.71
—6l.1 —205 —109 —37.0 —242 -831
+342 +13.4 25.7 10.1 223 875 225 8.71
—~51.8 =205 -91.7 ~37.0 -203 -—83.1
+14.7 31.2 11.1 27.2 9.50 27.1 935
~622 =223 —111 —400 -246 -—893

! +41.0

* Bigenvalues for this case are taken from Ref. 16 ; a) Ref. 23, b) Ref. 3.
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TipLe §

Buckling Coeffigient R, For Different Edge Condiiion

l Y0 \ ¥=15 | $=30° | e
Case CE%‘&?&%;\}; ‘* T P N e T
ap=0s| 1 | 0s [t [ o5 [t s [
, T e——
£

1* /é‘ 4 4.00 43 5.55 8.40

2 ﬂ 24 574 235 615 273 156 345 102

170 485 180 519 215 646 280 9qy

3

4 227 6.22 26.1 6.53 27.8 7.80 348 104
5 27.¢ 7.70 294  8.08 34.2 9.39 423 120
6 19.4 6.75 202 713 23.0 847 285 113
7 289 8 09 30,3 8.56 346 101 428 131
8 24.9 8.07 259  8.46 29.3 978 360 125
% 316 10.1 325 105 358 118 431 143

* These values are taken from Ref. 16.
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TABLE 6
Buckling CoefficientR, vnder combined Loading for SCSC case

ojb=1; $=30°; N;=al N, =pN,

Boundary conditions & B R critical
0 0 9.51
0 0.5 6.66
] 10 493
0.5 0 6.77
0.5 0.5 5.08
0.5 1.0 3.96
1.0 0 4.87
i 1.0 0.5 3.96
10 1.0 3.27

5.  CONCLUSIONS

The buckling problems of skew plates with different edge conditions
involving simple support and clamping are considered with the in-plane
stresses represented in terms of oblique components. Rayleigh-Ritz method
is used expressing the deflection in terms of beam characreristic functions in
obligue coordinates. Buckling coefficients have been oblained mainly when
the in-plane forces N,, N,,, N, are acting individually for different combi-
nations of e/b, # and boundary condition and for a few combined loadings.
For buckling under shear loading (oblique components) two critical values
exist; the positive shear (acting in a way so as to reduce the skew angle)
1s found 1o be less than the negative shear in magnitude for all the plate
configurations and boundary conditions considered. The computer programme
developed can be used for generating extensive design data in the form of
buckling charts and interaction surfaces for buckling under combined loading.
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COMPUTATION OF MATRIX INVERSE BY
A POWER SERIES METHOD
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ABSTRACT

Discussed here is «a computational procedure for the inverse of a square
matrix by using a power series method' that firct transforms a matrix into one
whose inverse can be equated 1o a convergent power series and then finds the
inverse by a procedurc reverse to the aforesaid one that rests on only matrix
addition,. subtraction and muliiplication but no inversion.

1. DiscussioN

Cofactor method or triangular decomposition methods® obtain the
inverse of a matrix directly. Almost zll these methods are variants of the
Gauss’s method and they are very susceptible for the ill-conditioned (with
respect to inverse) matrices. A suggested method of Maulik? since it is
independent of the the spacing of the characteristic roots of the matrix and
since it does not demand division except at the last step and avoids redundant
multiplications, is much more rapid as also more accuiate than the co-factor
method. This novel method, though not a variant of Gaussian type, can be
applied only to matrices of oirder 2", n being a positive integer. The present
method cannot be classified in either of the aforesaid two categories. The
method, in the first phase, converts any arbitrary square matrix into one whose
inverse is replaced by a convergent power series. This inversion then allows
the method, in the second phase, to obtain the inverse of the original matrix,
that requires matrix addition, subtraction and multiplication but no inversion.

The general form for the conversion of the original matrix 4 (=a,) of
crder n into one whose inverse is approximated by a convergent power series Js

A,.y=A,+B,, p=12, .., n 11
where A, is identically equal to A,., excepting the p—th diagonal elément of

A,y and 4y=4 and
B,=u,v, 1.2}

43
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where the column vector 1, and TOW vecior v, are

upzi(' 0 , L=[0 0.. 10 .0 {1.3}
i 4]
i :
’app a;w
; 0
|
]

18 the p-th diagonal element of 4, and

a, >n(Eal,) q#=p [t4]

B, 4y, in u, and | in v, are the p—th elements of u; and v,, Tespectively.
We take a such that A possesses only non-zero diagomnal elements This
is very easy since we are at liberty to clioose am, satisfymg condition [1.4).
The matrix 4, , thus obtained, is the final transformed matrix. For the
above procedure of conversion the following theorem will be true.

Theorem : In an arbitrary raw, if the diagonal element of a matrix is
greater than » times the sum of the moduli of the off-diagonal elements, the
inverse of the matrix can be equated to a convergent power series.

We write A, =P+Q
ie. A = (I=P~ ' Qe (P QP (PTIQP + (P Q) . ) P! 2.1

where P is a diagonal matrix having the diagonal elements identical to those
of 4, whose diagonal elements are already non-zero as a’,, has been chosen
in the manner where no zero can appear on <the diagonal of 4, . O is a
matrix identical to 4, excepting its diagonal elements which are exactly zeros.

In Newton-Horner's scheme*
A7 ={~PQU+PPQUAPT QUL 0+ . )IDIPT [214])
We determmme first P71 Q (J+ P71 Q) and call it X. We then obtain
P Q+X) and call it X;. Next we find P~ Q (I+X,) and call it ¥, and

so on. We stop this procedure when the Erhard-Schmidt’s norm® of

X-X,_, e,
1 - H -1
{l Xi—X,_, { < a pre ass:gneq accuracy, say, 10710

i=2 3,
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Hence 1=(I—P~1 QX,) P~ for sufficiently large i [2.19]

The evaluation of 47 ! from [2.1a] is preferred to that of A;!from {21]. 3
Newton-Horner’s scheme rtequires less arithmetic operations (n matrix multj-
plications and n additions) and consequently results in less rounding errors.

It is easy to see that |P"'Q|rs < I. It can, furthermore, be noted
(hat we can increase the speed of convergence indefinitely by taking the
diogonal elements of 4, sufficiently large. We should, however, refrain from
taking too large diagonal elements for too rapid convergence, since these
introduce rounding errors due to matrix addition operations the effect of
which, however, is very much dependent on the precision of the computer
employed. This fact is illustrated through numerical examples that find
description in subsequent pages.

The method, in the second phase, obtains A~! using the knowledge of
A;'. The general form of the recurrence relations for obtaining A-tis

T=t4v, 470y, 3.1 »
B,=uy, (3.2}
AL =47 =( V)47 1B, At {3.3]

p=n,n-1, ..., 1

The above recurrence relations demand only simple matrix multipications
and additions and no inversion. We can, moreover, see that number of
multiplications and additions are only a few because, all elements are zeros
except one 1nu, and one Vp- An efficient computer program is easy to prepare
for the aforesaid procedure.

2. PROGRAMMING ASPECT
(N Store A = A, =(a;) i=1.2,,.,n;j=12, .., n
() c,=a,, p=12, ..., n

¢, (P=12, ..., n) are the diagonal elements a, (i=1, 2, . . ., #) of 4.

{ umlzZ] ag| P=12,...,n, g#p

I
@ 1 m> 1, m=35, say

If d, = O for any p, put d,~any non-zero number, say, 1.

. 4 {p=12, ., ., n) are the diagonal elements a}, (i=1,2, ..., mof P
which is a diagonal matrix.
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(v) 4,,=0 p=1,2,...,n
The matrix 4is now our Q.  The problem is to find 4!,

{aﬁ=0 i=1,2...,n

) N

a,j=b,j=—‘—1:—:- P=1, 2 ..o s =12,
(a;) and (b,j) are the elements of malrix—P“’Q.

(VD) k=1

(VII) by=1+by, i=1,2,.... 1

Now (b,) are the elements of the matrix I+ (—P~!Q). The following two
steps, namely, steps VIII and IX obtain the value of (I + P7'0)~1 using
Newton-Horner’s scheme.

(VITD) ¢, = 2 a,b, i=L, 2 ...,0;j=L,2 ... &
=1
(IX) by = ey i=1,2,...,n;j=1,2 n

Ly o v n s

fi= (2 2 pnym

1=1 j=1
X)
ifk> 1 go to step (XD), if k > 1, replace & by k+! and go 1o
step (VII).
Ja = mod (f, 1))
(XD

if £3 < 1078 say, go to step (XII) otherwise go to step (VI).

(XID) b, =V +8, i=12..

.. n
Now (b,;) produce the 4, 'P mairix.
b, . )
(XUD b, =2 i=12, . n5j=12.. ., n
by

(b,) are now the elements of 4% matrix.
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k=nn-1,...,1

V=14 by (G —d)

(XIV) b.. (c.—d.
e,.j=~'—k—(—$——'°’bk,,i=1, % mi =12
®
by =b,—¢, i=1,2 ...,n;j=01,2,...,n

Relations [3.1], [3.2] and [3.3] are computationally represented in step (XIV).
(byy) thus obtained are the elements of 45" or 47'. For k=n, we determine
7, all gs and all b7s. We then take k=n—1, and obfain 7, ;, all ¢'s
and then all b”’s and so on. Thus for k=1, we calculate 7,, all e,,’s and
subsequently &,’s.  The latest §;’s are the elements of A" matrix. The * = *
sign in all the aforesaid computational steps has the identical meaning as
that in Fortran.

Numerical Results: 8 dit floating point arithmetic has been employed
for all the calculations.

Example 1. A matrix that does not satisfy row (or column)-sum criterion.

r 4 3
4 2 1
L3 2 2

Three times the sum of the off-diagonal elements in the first, second and
third rows are 21, 15 and 15 respectively. 1f we choose their multiplying
factor 10, the mumber of effective terms in the power series becomes 6
and the final inverse (4™") is correct up to & significant figures. '

Any additional terms in the power series will not contribute anything
towards improving or diminishing the accuracy of A,,‘,‘. An extra term in
the series does, however, improve the accuracy when the precision of
calculations is considerably increased.

If the multiplying factor (m.f.) is 103, the A~'is correct up to 5
significant figures. Th= number of effective terms in this power series for
A7V is 4., For the m.f. 103, A~! becomes less accurate and the accuracy is up
to 4 significant figures. When the m. f. is 104, 4~'is correct up to 3 significant
figures, the number of terms in the power series for 4! being 3. The
inverse is, for m.f.=1.1, ‘ ’

[ —.1666667 x 10° .1666667 x 10° 1666667 x 10°
4166667 x 10¢ .5833333x 10°  —.9166667 x 10°
L - 1666667 x 1(° —.8333333 x 10° .1166667 x 10! J L
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and 44™! is
( 1000000 x 10t 1862645 x 10-8 3725290 % 1078
~.2680232x 10°7 1000000 x 10} —.1490116 x 1077
L .1490116 .« 10~7  -0000000 x 10* .1060000% 10 * }

The number of terms in the series for the aforesaid m.f. is 16 and the
result is correct up to all significant figures noted. When m. f. is 105, the
accuracy of 4~* comes down still further and it is correct up to 2 significam
figures. When it is 105, the 4~ is correct up to 1 significant figure.

The m f., when increased, reduces the nwmber of terms (in the power
series) and consequently the computing time at the cost of introducing more
error due to matrix addition. The other examples which we have dttempted
produce good results for m. f. lying between 1.1 and 10.

Example 2. A matrix satisfying row (or column)-sum criterion

|10 3 3 1
E 2 8 2 -3
I3 3 7
\‘ 5 2 115 ]

‘When m. f. =10, number of terms in the power series is 5 and the inverse is
correct up to 7 significant figures. When it is 10% the result is correct up
to 6 significant figures with effective number of terms in the series=4. The
inverse, for m. f. 1. 1, is

.1265405 x 10° —.7185299 % 1077 — 1149868 x 10~!  — 1744058 x 107!
—.4467430 < 10~! .1462368 x 10° —.1028829 % [0-! 3702685 x 107"
~.1980634 x 10~2  — 5831866 x 10~2 .5496259 x 107! — 2668354 x 10~
—.3609155 x 10~} .4841349 %< 102 1540493 x 10-2 .6932218 x 107!

and 447! is

1000000 % 10 ! .3259629 % 108 .1804437 x 10~ .1862645 x 1078 1
9313226 x 107° .1000000 x 10* ~.1746230% 10~ .0000000 x 108
.0000000 x 10° —.4656613 x 10~° .1000000 x 10* —.1862645x 107%

\‘1862645><l"’° —.1862645 % 10~ — 4656613 x 1072 .1000000x 10"
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The number of effective terms here is 12 and the result is correct in all the
sigmificant figures shown.  For m. f.= 1.5, the number of terms in the series
is 10 and the result is identical to the above result up to all the significant
figures retained. When m. f.=10°, number of terms in the power serics
1s 2 and A™! is correct up to 3 significant figures.

Example 3. A near-singular matrik
i 5 3 7
2 4 1 6
3 1 -2 3 ' \ ‘
2 9.90 6 14

The (4,2)<th element is made 9.9 instead of 10 to make it slightly near-
singular.

When the moltiplying [actor=10, number of terms in the power series is 6
and the inverse is correct up to 4 significant figures. The inverse is, for
m. f. 1 5 with number of terms in the series 12,

(6750068 x 10
l 12000022 x 10?
‘ 4600046 x 10?
| —.4350045 » 10°

and 44" is

[ 1000003 x 10!
| 11072884 % 1073
{ 2145767 % 10-5
| —.2145767 % 10~3

When the (4,7)-th element is made 9 99,

—. 1150010 x 10?

—.3179908 x 104

—.9000064 x 10
.5500064 « 101

—.3814697 x 10~°
.9999990 % 1¢°
—.1907349 x 10-3

9536743 x 1076

with number of terms in the series 6,

.5500045 x 10!

.1478940 x 10-*

.4000030 x 10!
—.2500030 < 10!

~.1907349 % 10°5
— 4768372 % 10°6
9999981 + 10°

1907349 x 10~5 -

~.3000031 x 10?
~.1000010 x 10?
—.2000021 x 10%

.2000021 x 10%

—~.1335144 < 1074

—.3814697 x 10~%

~.1144409 x 10~4
1000010 x 10

4

the inverse becomes, for m,f. 10

[ .6076449 x10° —.1150218 x 10? .5501015 = 10* —.3000717 x 10* )
2000490 x 108 —.7378161 x 102 .3428161% 1077 —.1000242 x 10*
4060965 x 10 - .9001453 x 10! 4000676 x 10" —.2000478 x 10°

[ —-4035970 x 103 5501461 x 10 - .2500679 x 10! 2000480 x 1¢°
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snd AA7Y is

{ .1000088 x 10t 4577637 % 107%  .7629394 107> — 1831055 x [9~3 )
; 2670288« 107* .1000004 x 10! 0000000 x 10° —.7629395 « 10~ %
i 5531311 x 107 (1525879 % 107%  ,1000008 x 10} —. 1525879 x 10~3

{

| —.5722046 x 10-¢  —.2288818 % 107  .7629394 x 10~7 1000137 < 1ot j
When the m. f.=1.5, the accuracy of 477 is nearly the same as above ; the
rumber of cffective terms, however, is doubled.

When (4,2)-1h element is made 9.999, the inverse becomes, for m.f,
1.1 with number of effective terms 14,

6006932 % 10¢ — 1150117 x 1? 5500659 « 10! —.2999716 « 108
f 1999808 % 104 —.3841519 % 10~? 2170578 x 1078 —.9%99039 x [(®
i
'{ 4005622 x 10* - .9000781 x 10} 400044 x 104 —. 1999811 x 10¢
{ —.4003120 x 10* 5500776 % 10! 2500438 x 10! 1999810 x 104
and AA7' is
7 1000488 » 10 0000000 x 10° 0000000 x 10° 9765625 % 103
E 1678467 x 1073 1000061 x 10? 3051758 < 1074 .3662109 % 103
t .3204346 x 10 0000000 x 10° . 1000061 % 10° 6103516 x 1072
[ 3356934 x 10°*  —.1220703 x 10~* - .6103516 x 10~%  .9992676 x 10°

Any result better than above can only be achieved by using higher
precision arithmetic.

We have, in all the aforesaid examples, used Newton-Horner's® scheme
for the evaluation of the power series (I+P~'Q)~%.
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ABSTRACT

Presented in this paper is a simple extrapolation technique to obtain numerical
derivative of an analytic function, complex or real. The function may be in
tabular form or in funétional form. A few numerical examples are added for the

purpose of illustration.

{.  DiscussioN

The method of finding the temperature at which the volume of a gas
becomes zero (a situation which cannot be reached in practice) by extrapola-
ting the curve of relative volume versus temperature (°C) to zero volume,
prompted the idea of obtaining the numerical derivative of a function (that
cannot be obtained numerically using the theoretical definition.

Ay _dy

Lt >
Ax""oi Ax dx

for any analytic functien because of the precision limitation of any arbitrary
compuier used) by extrapolation.

Let us first consider a real function of a single real variable. The
generalization to many variable functions and to complex functions then
follows readily from it. Let Ax,, AX,, Axs be three small positive real
numbers satisfying the inequality

Axy> Axy> AXxg
and Jet xq be the point at which we want to obtain the derivative of f(x).
The problem is then posed as follows :
S(x [ AX ) ~f (%[ Ax,/2])
Axy

A xy——>
51
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A FLAX/21) ~f (5~ [ Axy/2])

Ax; A,
Ay s LU FLB 5/ = (o= [A2D)
Axy
Q-emy 7 i

Evidently, the answer to the guestion mark (?) is the numerical derivative of
the function at x,, and it can be obtained only by extrapolation since the
quantities
S (g #00,/2) — F {2 —10./2])
Q

.

S +10./2]) — f (% —[0./2])

or 5

cannot be obtained numerically due to obvious physical limitation,
(0, indicates that Ax —— 0 from the positive direction and 0_ indicates
that A x—— 0 from the negative direction.)

2. EXTRAPOLATION METHOD

The aforesaid problem Is one of quadratic extrapolation since r. h.s.
informations are provided corresponding to three quantilies Ax;, AXy
Ax; only. One can as well pose the problem as cubic, biquadratic or any
other extrapolation considering 4, 5 or more r.h.s. informations corresponding
to 4, 5 or more quantities Ax,, AX;, Axy, AXs, Axsete. It s, however,
the fact that the use of biquadratic or higher-order extrapolation does not
offer any significant advantage over quadratic or cubic extrapolation which is
simpler and more economic'. [t is worth mentioning that the aforesaid
situation is analogous to the fact that the Wilkes-Harvard and Newton-
Raphson iterative division scheme with an order of convergence more than
two or three are uneconomical for realization in computers!. We therefore
restrict ourselves to the discussion of quadratic and cubic extrapolation.
The next problem is how to choose Ax,, Ax,, AX, etc. Since we do
not possess definite knowledge about whpt Ax’s should be so that the
numerical derivative turns out to be the most accurate within the allowed
precision of the computer, we devise the f:}glowing iteration process.

We exirapolate the r.h.s. quantities toAx=O, using Lagrange’s inter-
polation formula of order 2 or 3.. We chbose for this purpose AXx, as
[AX/2], Ax;as [Axy{2], Axsas[Ax,/2] and so on. We can, however,
choose any other spacing of Ax’s, equidistant or non-equidistmmt. After
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obtaining the numerical derivative of f(x) by extrapolation, we reduce A xy
to half and pass through the identical procedure to obtain the second
\teration value of numerical derivative. The process is repeated, halving
e interval A, at each iteration till the continuously increasing or
continuously decreasing numerical derivative attaing a maximum or
minimum value. The maximum or minimum value is the required numerical’
derivative.  For greater accuracy, Ax; should be small (starting with, say,
1 or 2) but not too small.

It can be seen that we have used in [I] the central difference scheme
and not forward or backward difference schemes for initial approximate
derivatives. This is because central difference scheme produces a truncation
error of the order of A while forward or backward difference scheme produces
an error of the order of A.

The suggesied lechnique is also true for complex functions. The
arithmetic employed here has to be complex.  Functions of many variables
do not pose any extra problem; in this case we obtain numerical partial
derivatives.

If we use both the quadratic and cubic extrapolations, then the difference
between the values of f' (x,), so obtained, provides us in the first place an
idea of the accuracy and also an idea about the interval size 1o be chosen
for the argument of the function. If the interval is big, so far as the nature
of the variation of A f(x)/Ax is concerned, both quadratic and cybic
fittings may produce results almost completely different, thereby indicating
that the interval should be reduced.

A function f'(x) is said to be ill-<conditioned with respect to its deriva—
tives if f(x) 1s violently fluctuating, i.e, a little change in x causes a very
large change in f(x). The degree of ill-conditionmg? is dependent on the
degree of fluctuation of f(x). Such a function of f(x), however, is a
problem under any treatment. The basic fact 1s that the function f(x) is a
near approach to a discontinuous function.

If we denote AXx,, AX; AXx; byp,, p, p; respectively and the
corresponding right hand quantities in [I} by ¢,, ¢,, ¢; respectiaely, we then
write, by Lagrange’s interpolation formula, the extrapolated numerical
derivative as
Y BE g )

G o T ) () 2 B B3 opD)

4(0) =

The formula in [TI] is the result of quadratic fitting. Similarly we can obtain

' (x) using cubic fitting. -
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3. NUMERICAL

RESULTS

We have taken the Bessel functions Jy (x), J; (%), Yy(x), ¥} (x), Ty (o)

I; (%), Ky(x) and K, (x) with real argument x as examples.
are carried out in about 8 Mt fleating point arithmetic.
is National Ellioti 803 computer with fixed word-length of 40 bits.

The calculationg
The computer uged
Numeri-

cal derivatives of the aforesaid functions at x=2, obtained by the rresen

method are presented in Table I.

The starting value of Ax, is 2 in each

case. The calculation of the functions Jo, J;, Yo Yy, I I, Ko, K, are
carried out using Chebyshev polynomial expansion®.

Tasie I
Function Quadratie Fittings Cubic fitting
F(xe) £ (o) No. of iteration £ (xe) mitaratioﬁ
Js(D ~.57672439 5 —.57672486 3
(min) (max)
J, () — $4470331x107" 7 —.64471851x10"} 3
. {min) {max)
Yo (2 .10703253 5 10703247 3
{min}) {max})
Y, (D .56389175 5 56389244 5
(mm) (max)
I (2) 15906365 x 1O 4 15906397 < 10 4
{min) (max)
I, (2} 14842662 x 10 5 14842662 x 10 3
(min) {max)
K, (2} —.139%6553 5 ~ 13986603 3
(min) {max)
X (2 - .18382511 6 -.16382710 4
(min} (max)

1t is noted that in the quadratic fitting the derivative value decreases
with iterations and after attaining a minimum Malue with 4 or § iterations
starts increasing. The situation is just reverse in case of cubic fitting. In
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Table I the word “min’ within closed parenthesis under the heading * quadra-
tic ftting * indicates the minimum valué attainéd By the derivative at the
corressonding number of iteralions mentioned alongside} this minimum
value is our required numerical derivatrve.  Similarly, in the case of cubic
fiiting, the maximum value of the derivative 1s the required derivative. The
results are seen fo be correct up to about 6 sigmificant figures.
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ABSTRACT

Yapour phuse dekydration of ethanol to ethylene over Shevaroy bauxite hgs
been studied in a fluidised-bed reactor. Factorial design of experiments has been
carried out. A mathematical expression representing the dependence of conversion
as a function of temperature and vime factor has been proposed.

I. INTRODUCTION

. Vapour phase dehydration of etharol to ethylene using bauxite/alumina

- as catalysts has been a well studied reaction. However, most of the work

reported in literature is for the reaction in fixed-bed reactors. Therefore,

in the present study of alcohol dehydration over bauxite from Shevaroy

{Tamilnadu State) a fiuidised bed reactor was employed. Factorical design

of experiments was carried out to determine the nature of dependence of
conversion as a functicn of temperature and time factor,

2.  CATALYST

Bauxite obtained from Shevarov was first washed to remove clay
material present and dried to remove free water. It was them activated to
remove combined water and to increase its adsorptive power.

A few important characteristics of this bauxite are :

{1}  Particle size —65+80 T.S.8.
{2) Bulk density 1.30 gms/cc.
{3) Surface area 68.34 sq. cm./gm.

" The surface area of bauxite was determined by benzene adsorptien method in
a desiccator.”

3. EXPERIMENTAL

The equipment was of laboratory scale, as illustrated schematically in
Figure 1. Tt consisted of feed system, vaporiser, reactor, condenser and

56
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gas collection system. Ethanol from storage carboy was pumped to the
overhead by using compressed air, from where it was fed continuously to 4
vaporiser at constant rate. The vaporiser was 1/4” x 3/8" stainless steel tybe
of 24" length, packsd with porcelain beads and electrically heated, Ty,
temperature of the vaporiser was maintained at 1254 1°C.  The reactor was
a stainless steel tube 2” dia. and 12" long. A stainless steel wire mash wag
used as the catalyst support and feed distributor. The reactor was heated
by external resistance coils to the required temperature and controlled 1o
within + 5°C by a simmerstat. Hot gases leaving the reactor were passed
through a double walled surface condenser to condense out the water prody-
ced by the dehydration of alcohol, as also any unconverted alcohol. The
gas collection system consisted of a low pressure gas holder of 250 litreg
capacity. Suitable weights were used for the gas collection under positive
pressure. A T-stop cock was placed midway between the liquid-product
collector and the gas holder for tapping gas samples for analysis.

The vaporiser and the reactor were heated to the desired temperature
and then alcohol was allowed to flow at a predetermined rate. The vapours
then passed through the reactor containing a known weight of bauxite fora
period of one hour. The condensate was collected in a flask and the gaseous
product in the gas holder.

The gaseous product was analysed in a modified Orsat gas analysis
set-up. The liquid product being mainly water and unreacted alcohol was
not analysed even though very small amounts of acetic acid, ethyl acetate
and acetaldehyde were present.

A design was used involving two factors namely temperatare (A) and
time factor (B), each at four levels with equal intervals. The experimental
runs were carried out in a random order so as to improve the experimental
efficiency. Care was taken to avoid batch to batch variation in the raw
malerials.

5. RESULTS AND DiscussioN

The responses obtained at various levels of temperature and time factor
are presented in Table 1. The method of analysis employed is as suggested
by Davies.? The first step is to calculate the linear, quadratic and cubic
components of the effect of factor A for each level of factor B and that of
factor B for each level of factor A. The interaction of components of the
factors A and B are then calculated. The analysis of variance of Table 1 is
presented in Table 2.

The conclusion that can be drawn within the range of experiment are
therefore :

(i) There is a significant linear increase in conversion with increase
in temperature,



Ethanol Dehydration over Shevarsy Bauxite 59

(iiy There is a significant linear decrease in conversion with increase
in time factor.

(iif) The quadratic and cubic effects of temperature are small, so that
a linear function provides an adequate represehtation.

(1iv) The interactions of linear temperature with linear and quadratic
time factor are significant which means that slope of the line is
not the same for different levels of time factor,

All the components of the effect of temperature and the linear and cubic
components of the effect of time-factor are significant which imiply that there
occurs & minimum or maximum conversion at some intermediate combination
of temperature and time factor, or a point outside the range examined. Taking
into consideration only those effects and interactions which are significant at
5% level (see Table 2) the conversion of ethanol to ethylene as a function of
temperature and time factor could be represented as:

x= K+ Kz + Ky + K2 + Ko + Kgyz + Kiy2* 1

TasLE

Responses obrained at various levels of temiperatuié dnd timé factor
Temperature (A) A =380°C

A,=420°C
Ay=460°C
A, =500°C
Time factor (B) B, =28.97
B,=36.30
B,=47.63
B,=56.96
Response :  Mole% conversion of ethanol to ethylens.
i
B, B, By B,
A, 34.78 38.25 28.63 26.54
A, 46.22 55.03 43.10 39.64
A, 80.70 92.37 71.70 47.63

A, 78.30 89.43 75.20 51.28
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TaBLE I
Analysis of Variance of Table I
Seurce of variation Sum of squares Dfrgef;gn‘]’f s\gl‘:gg: Var;itaigcc -
Main Effects
Linear 4597.00 1 4597.00 200.20+
A Quadratic 182.00 5096.10 1 3 182.00 7.93%
Cubic 317.10 1 317.00 13.81%
Linear 988.30. 1 988.30 43.04%
B Quadratic 491.00 1590.70 1+ 3  491.00 21.38+%
S \Cublc 111.40 1 111.40 4.84
Interactions -
Linear A x Linear B ... 183.80 1 183.80 8.01%
Linear A x Quadratic B ~156.30 1 156.30 6.81*
Quadratic A x Linear B ~6.02 _42}0.86 o1 9 6.02 0.26
Remainder = Error To.o 13474 6 . 22.47 —
Total .. 7167.66 15

* §ignificant at 5% level of ‘the F statistio, because with 1 and 6 dcgrecs of freedom,
50, slgmﬁcancﬂ level requires a variance ratio of 5.99.

where x is the mole? /0 conversion of ethanol to ethylene

» is the temperature
z is the time factor, and
K’s are constants.

By least square fitting their values are found to be :

K, ~1.09 x 10
K= —1.06 % 10
come e Ky=—3.28%107
K,=121x10
- Ky=2.43 21074
K;=1.82
K,=2.09 %1072

Given a temperature and time factor, within the range studied in the present
investigation, Eq. [1] can be employed to caleulate the coaversion.
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6. OpTiMuM CONDITIONS

The relationship between mole% conversion and the two independent
veriables viz., temperature and time factor, is represented as a contoyr
diagram consisting of lines of constant mole%, conversion as parameter, the
coordinates beirg temperature and time factor.  Figure 2 shows such
contours, on which the circles represent experimental points, while the
crosses represent theoretical points calculated from Eq. [1]. In order 1o
obtain theoretical points on any contour the corresponding valae of the
mole% conversion () is put in Eq. [1] and a value is assumed for tempera.
ture (y), so that the equation reduces to a quadratic equation by solving
which one gets two values of time factor (z). It is evident from the contour
diagram that an optimum point of temperature and time factor lies inside
the region bounded by the contours V and VI

7. CONCLUSIONS

In the range of variables employed in the present factorial study iz,
temperature, 380°C 10 500°C and time factor, 28.97 to 56.96 gms. of bauxite
per gm.mole alcohol per hour, the effects and interactions which are signifi-
cant (at 5% level) are the linear, quadratic and cubic effects of temperature,
the linear and quadratic effects of time factor and the interaction of linear
température with linear-time factor and quadratic-time factor.

At all combinations of temperature and time factor in the shaded
region of Fig- 2 the conversion is more than 959%,.
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ABSTRACT

The present repori consists of a brief ve .sume of the properties of microwave
resonators, such as, mode degeneracy, coupling of companion modes etc , and the
derivation of the equivalent circuit by using Lagrangian method. After making a
comparative study of the Sommerfeld and Harms--Goubau surface wave lines,
the report deals with the theory of surface wave resenator excited in E, and EH
and HE modes. As each of the latter two modes are coupled modes it is expected
that the Q fuctor will be very low, so emphasis is luid on the E, —mode resonator,
which may be called the Sommerfeld surface wave resonator.  Numerical
Computations for Q (E,) and guide wavelength A, (E,) as function of the length |
of the resonator and frequency of excitation for the Sommerfeld resonator show
that Q (E,) increases linearly with increasing length of the resonator for different
Jrequencies of excitation, whereas, A, decreases almost exponentially with increase
in frequency.

{. INTRODUCTION

The study of electromagnetic oscillations in resonators is inherently
associated with Maxwell’s equations and the concept of standing waves.
The study of standing waves in resonant cavities first made by Lord Rayleigh
remained for many years a subject of theoretical speculation. Almost half a
century elapsed before the piactical importance of standing waves could be
realised and resonators became very wuseful practical tools for microwave
work. The obvious answer as to why standing waves were for such a long
period of only academic interest is that the technique of generation of
microwave power was not sufficiently advanced so as.to make microwave
work possible ; and yet this is hardly an adequate answer as the original
experiments of Hertz were done with millimeter waves. The practical

This Project is supported by PL-480 Contract No. E-262-69 (N), dated August 30, 1969.
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o

application of resonators to microwave work was made possible due mainly tg
the work of Southworth and Scheikunoff at the Beli Telephone Labaoratories,
and Barrow, C hu and Stratton at the Massachuselts Institute of Technology
in the middle of 1930’s, )

The resonance phenomena in microwave resonators of simple and some
complicated shapes have been studied by several authors'=®.  The concep
of resonance in enclosed type of microwave cavities has been urilised by
several authors® % to study ‘the surface-wave properties of Sommerfeld
and Harms-Goubau lines. The investigations on electromagnetic wave
propagation®® initiated by Sommerfied and Zenneck®® and followed by
Wai-% Bowwkamp', Barlow and many others®~® have led to the
modern concept of surface-waves and the evalution of different types of
surface-wave structures which can be used as waveguides or antennas
depending on the nature of surface-reactance.

“The present iavestigations have been motivated with the object of
making a theoretical study of the resonance properties of a surface-wave
tesonator ;consisting of Sommerfeld surface-wave line of radius terminated
by identical plane metalic circular plates of each of radius a (a>> d)a
both ends such that the surface-wave line forms the axis of the resonator
(Fig. 1). The resonator has been developed with a view to make a systematic
experimental study of the surface-wave properties such as field distribution,
attenuation constant, etc. of a corrugated cylindrical metallic structure.
The present study is the first step towards undertaking the more involved
probiem of surface wave modulated structures. It is thought worth while to
give a brief ré'sume of some of the fundamental properties of a microwave
cavity resouator’ which will have some bearing on the study of the
resonance properties of the Sommerfeld surface wave resonator.

b3

TERMINATING
PLATE

TERMINATING
PLATE

g

ZSOMMERF ELD
LiINE

‘Fi6. 1
Fieid compopents and coordinate system in surface wave resonator.
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2. MICROWAVE RESONATOR-—BRIEF RESUME

9.1 Equivalent Circuit

A microwave cavity resonator, hike the conventional resonant circuit,
can be described as composed of an inductance—capacitance network with
the kelp of the Lagrangian equation, which for a holonomic system is expressed

as follows, in terms of the generahsed co-ordinates g, 4, 45 . . . g, and the
corresponding velocities g, g2 91 - -« dn
pRLBG)—BL2g)=F,; k=1, 2, 3. .. n M

where, p=d[dt. F, represents the dissipative forces and any external applied
forces present in the system. The symbol L representing the Lagrangian is a
function of ¢ and ¢ and is expressed in terms of the kinetic energy 7 and the
potential energy ¥ of the system as L=T-V¥. The charges Q,, O, Q5 ...

Q, and the currents Ql, Qz, Q3 Q'n in an electrical network can be
considered as equivalem® to g, ¢, 93, ... g, and ¢y g3 43+ -+ 4
respectively. So, the Lagrange equation for a single lossless cavity can be
written as

PRTBYD+(V/3Q)=0 [2]

The kinetic and the potential energies of the cavity of volume V can be
written as

T=1/2 2 kz.) Q2_1/7z£ 0% V=1/2¢€ ko, 02=1/2 2 (Q¥C,) (3]

where k, represents the wave number for the a® mode of oscillation. The
constants of the medium inside the cavity are representcd by w and €. The
equivalent lumped inductance and capacitance of the cavity are represented
by L, and C, respectively.

From equations [2] and {3}, the differential equation for a lossless cavity
is obtained as follows :

£.Q+Q/C-0 {4

which represents a parallel induclance and capacitance network having
resonant frequency.

wa=V(1/£,C,) (5]

A microwave cavity is usually coupled to external circuits by means of loops
or coupling holes. The equivalent circuit of a single or a double loop
coupled cavity can be similarly found with the help of Lagrange’s equation.



66 S. K. CHATTERJEE, ef. al.

2.2 Resonani Fregquencies of aCavity

Let us comsider the case of an ideal right circular cylindrical cavity
having infinitely conducting walls and end-plates and enclosing completely 5
lossless dielectric. Natural electromagnetic oscillations once started in sycp
a cavity will persist indefinitely and would be subject to Maxwell’s equations
expressed as follows in m.k.s. rationalised unils,

yx}'f=-~p(a?1/a:); 7><?I=e(a—§/at); 7-—;1=0; y-%:o 16

inside the volume of the cavity. The following boundary conditions shoulg
be satisfied.

TRy
n.H=0; nxE=0. m

at the inside surfuce of the cavity. The symbols have their usual significance.

Let ©is assume that an oscilating electromagnetic field whose Eand i
components are given by the following equations has been set up inside the
eavity

> 1> [k R k
E=—\7ze5m('\/eut+¢>’ H~thos(ve—l—‘f+¢> it

where, the electric and the magnetic field configurations are given by the

- -
mode vectors ¢ and h which are vector functions of positiononly. k and¢
are coustants.

The fleld satisfies Maxwell’s equations
if - -~ - -
V xh=ke; V xe=kh 9]

within the volume of the cavity and

> -
nhnxe=0 110}
at the boundary wall of the cavity.

Al
These equations when solved show that any given cavity can sustain an
infinite number of modes of oscillation having eigen frequencies k1{2m/€,u,
kl2nven. .., ., k| 2rnVen with eigenvalues &y, &y, k; . . . Ky

The resonant frequencies of a cavity depend on the manner in which the
cavity is excited. Broadly, two general classifications are made, namely
transverse electric (H), having the electric field transverse to the axis, and
transverse magnetic (£) having the magnetic field transverse to the axis. The
resonant frequencies of a cavity whether it is excited in the H or E mode is
given by

Sima =V {en[2LY+ (£)}a) (1
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where,
L-Length of the cavity

J=number of full period variation of F, along the angular ¢ cordinate.
m=number of half period variations of E; along the radial  cordinate.
n=number of half period variations of E, along the axial or z cordinate.

c=velocity of electromagnetic waves in free space.

The cut-off frequencies (f;);, are given by
Flm = (e K f2 m0) for H,, mode

and
(f)im = (ckypm[ 2 7a) for E;,, mode [12]

Where, « represents the radius of the cavity. The quantities k', and &,
are the roots of the following equations :

J (k' )=0; for H, modes; J,(k,,)=0; forE, modes [13]

There will be a distinct resonance for each combination of I, m, n, which is
referred to as a resonant mode of the system. Theoretically, a triple
infinity of modes for each class is possible, but only the several lowest
modes are of practical interest.

2.3 Mode Degeneracy

In experimental work on cavity resonators, generally the H, mode is
used, whereas, for surface-wave work, the mode of primary interest is E,
since all the other modes have very high attenuation. From eqn. [13],
k'gy=k=3.832as Jg(x)=—J (x). So, the resonant frequencies eqn. [11]
Soa and fy,, for the Hy, and E,,, modes respectively are identically the
same. This is an important case of double degeneracy. When a cavity is
excited in the desired mode Hy,, the other mode E;; which is the companion
mode invariably appears.

2.4. Field Components

The Field components for these two modes are given by the following
expression.

Hyyy mode :
E,=E,=Hg=0; Ey=Jy (k) sinkyz;  Ho=(kafk) Jy’ (k,P) cos ksz;
H, = (k,/k) Jy (k,P) sinkz (14}
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E,,y mode:
E, =~ (ky/k) Jy' (k,0) cos O sinkyz
Eg=(ky/k) [J; (k\P)/k,P] sin @ sin kyz
E,=(k;Jk) J, (kP) cos 8 cos kyz
H,=~[J, (k,P)[k;*] 5in 0 cos kyz
Hy=~Jy' (k,P) cos Bcos kyz
H,=0 | "

25 Hy mode

In spite of the double degeneracy, the Hyy mode is invariably used for

cavity excitation for the following reasons :

(i) The field distribution of the Hy mode shows that the wall currents
flow in circles perpendicular to the axis of the cylinder and
hence no current can cross the contact surfice of an adjustable
plunger used to resonate the cavity to the cxcitation frequency.
So, a pon-contact type of plunger can be used for turninga
cavity, This avoids any fluctuating loss taking place at the
surface of contact with the walls of the cavity.

(i) When a cavity is excited in any desired mode, a number of
crossing and interfering modes appear depending on the volume
of the cavity and the wavelength of excitation. For a cavity of
of volume ¥ and wavelength A of excitation, the number of
modes N that can appear is given approximately by the following
relation®*

Nz (87/3) (u/X) [16]
But the Q of the cavity is given by the following relation :
Q=2 f (W/P) (17

As the mean energy W stored in the resonator is given by a volume integral,
whereas, the rate of dissipation of energy P is given by a surface integral, it
is evident from eqgn. [17] that, in order to obtain high Q, the volume of the
cavity must be large. This is undesirable as it will make a larger number of
spurious mocdes appear in a cavity. It can also be shown that Hy is the
mode which gives the highest possible Q with minimum volume of the cavity.

2.6 Interaction of Hy and E,, modes

In the absence of perturbation, it can be shown®’, that there is very
little interaciion between the two modes Hy, and E;; so that the two modes
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can co-exist without interacting with each other. It has been shown by Wien®
that the interaction between the free vibrations of two resonators depend
on the coupling coefficient &” and the ratio of the resonance frequencies of
the two resonators. We shall caleulate the coupling coefficient &' of the two
companion modes under normal condition with the help of the field theory.

The coupling coefficient between the two modes is defined broadiy as
follows :

K= (W, DIV (7 W) 118}
Where, W, and W, represent the energies stored in the H,, and E;, modes
respectively and W, ,=W,, represents the mutual energy, or the emergy

interchanged between the two modes. The total energy of the two modes in
the resonalor 1s given by the following relations® in m.k.s. rationalised units,

o
j (B +By) « (By+B,) dy

i1

[
[

vl ®

{Jﬂ‘zdo-flj._]:ﬁ-l{zdu%- '(szdv} [19]

v L3

The first and the last terms of the right band side in eqn. [19] give the
energy stored in the desired and the companion modes respectlvely. The
second term gives the energy used in bringing the two modes into interaction,
of, in other words, the muiual energy between the two coupled modes.

Hence
W= u[ H,+« H,dp [20]

For a cylindrical cavity resonator having radius a and length L, the expression
equation [20] for the mutual energy becomes
a 2r L -
W1.2=“6f [ [ H-Hpdrddd&
0 )

The expressions for the components H, and H, for the two modes Hy and
E,, are

H = (18 Uy ()T cos? ksz + (k7M7) JgF (Ryf) sin® gz} (21]

| Hy | = {30k P) 207 sin®0 cos? kyz + U, (yPYF cos? cos kyz} 2 [22]
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Substituting eqas. [217 and [22] in [20] and integrating and making some
approximations, the following expression for the mutual energy Wiy is

obtained?
. 2reuk® [ L sin2k,L 128k, {a* &°
\ LSS U N X 2 e
W= —— Tz v o TS 2kya
3, 3 3
+ -—\_)—a sin 2k, ﬂ'sk‘ad £0s 2kya — I-6%:4_3111 ZA]a} 123}

The maximum energies stored in the electric field of the resonator opcratmg
in the Hy, and E,, modes respectively are given by the following expressions™

2n L
w, =_2€j J jp (T, (k)] sinkyz db dB dz
0

0 o

- "4"’ = Jg oy [24]
o ol
Wy~ ;[_E f '( J- P LI (k)P cos? B sinkyz dP dO dz
3 0
P
- %% f J f i (k P inte sinkyz 7 d9 dz
3 0 o
a 21 L
- %; J J j‘ p JZ(kyP) cos?B costkyz dp dO cz]
T 8 %
o i et R &)

The coupling coefficient &' between the two modes is found [rom equations
[18], [23-25] as follows :

, L sin2k; L
k=—256,uk‘,‘[7—— ]

Ak,

y {[a‘/8~(l/4k Da*cos 2k a-+ (3/8k})aPsin 2k a - (3/8k3)a cos 2k,a — (3/16k%) sin 2k4)

Saec LkkyJy (ko) T (k“)\/{vr(wa‘“? wIE[RE + ki k) } o
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2.7, Coupled Frequencies :

When the two modes Hg,, and Ey,;, coexist, the cavity will oscillate in
iwo different resonant frequencies, one slightly above and the other slightly
pelow the unceupled resonant frequencies fg,,, = /iy, =/o of the two individual
modes. These coupled frequencies depend on the coupling coefficient k' and
are given by

Ju=fVU+E); fa=RW(1-k) [2n

If the coupling is loose these two coupled resonance frequencies may be
quite close together and the effect is that the the cavity will oscillate over a
band of frequencies A f given by the difference of the two frequencies
fa—fe.  This can be reduced to A f=k' SV 1= (k')?], provided &’ is small.

3. SOMMERFELD SURFACE "WAVEGUIDE

Sommerfeld surface waveguide (see Fig. 2) consists of an infinitely
long straight metallic wire of circular cross-section having finite conductivity
imbedded in a dielectric of infinite extent and excited by E, wave. Treating
this as a boundary value problem and matching the fields at the surface
{p=a), the following characteristic equation for the E, wavé is obtained.

K aw_ K OH 28]
By Jy (W) sy0 BV (o)

where
u=Yd; o=Yd; Vi=K-R; Vi=ki-K;
Be=o?u e+ive, 4 ; kB=o?ue.

h=axial propagation constant.

The following cases are of interest :
For oy~ o= eqn. (28] reduces to

H{Y (p) -0 29]
H,“) (o) . .
€y

o MED § 3 y.0% &,

FiG. 2
Sommerfeld surface wave guide: Coordinats system
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If v is small i.e. for & very thin conductor
2, 9
—_lln—_f’

HEY (o=
o 1]

2i
. [43] A
> Hll (l)) = ;; [3G]

The principal branch of H" (g} vanishes at all infinite points of the Positive
imaginary half-plane. The roots of only the principal branch of the myl.
valued Hankel function are of interest, but the principal branches of HiY (5)
and H{ (v) have no roots so,

H{V () _ coln 2P0 B

Hl(l) (v) 2%

where, ¥=1.781
possesses the only solution »=0 i.e. A=k,.

This means that when a cylindrical conductor of infinite conductivity
imbedded in a dielectric medium is excited by the fundamental £ wave,
the field is propagated in the axial direction with a velocity which is solely
determined by the characteristics of the external medium. If the conductor
is imbedded in free space, the field is propagated along the cylindsr without
attenuation and with phase velocity equal to the free space velocity c.

If ¢ is large but not equal to infinity, A = k, but the difference
h~k, for Ey wave is very small. So, p is small but |k | > >k, since
k, =~ |h|and u = k,d >>1. Therefore, representing Jy (1) and J, (u) by
asymptotic expansions and H" (v) and H{" () by small argument approxima-
tions, the following equation is obtained from equation [28].

To M kid

! ln 32
Cle Tl k, (32
which reduces to £ Iné=y [33)
where,
Y o\?
E=f 2=
(%)
2 2
and p= —'_..y_ Bl ﬁi’
2 pm, ky

Equation [33] 1s the basic Sommerfeld equation which when solved gives the
characteristics, such as the propagation factor in the axial direction,
attenuatlon comstant, phase constant and phase velocity of the Sommerfeld
surface wave
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Sommerfeld’s analysis leads to the following conclusions.

()

(i)

(iii)

A solid cylindrical conductor of circular cross-section can support
an infinite number of propagating modes. The amplitudes of
these modes are coefficients involved, in the field components.
These coefficients are determined by the nature of the source,

of all the modes, only the Eo mode possesess relatively low
attenuation. All the other symmetric £ and symmetric H and
all the asymmetric modes suffer rapid attenuation within a very
short distance from the source, even at very low frequencies,
and as such are of no practical interest.

In order that the Eo mode may be bound to the surface of the

conductor. the conductivity of the conductor can be high but
must be finite.

(iv) The electric lines of forces outside the conductor are almost

(vi)

(vii)

(viii)

perpendicular but not exactly to the surface of the conductor.
The wave front in the external medium is slightly tilted forward
in the direction of propagation. The Poynting vector being
directed towards the conductor, the energy ﬂow into the
conductor accounts for the Joule heat losses.

The phase velocity of the wave is slightly less than the free
space velocity for conduoctors having high conductivity and
radius of curvature greater than the skin depth.

The radial field decay in the region outside the conductor is
governed by the Hankel function H,™™ (7,#). The field extension
in the radial direction is large and can be reduced by decreasing
the conductivity and radius of the conductor and by mcreasmg
the frequency of excitation.. .

Since the wave is guided along the conductor, its attenuation in
the x-direction is produced solely due to definite conductivity of
the wire. In the conceptual limit of infinite conductivity,
the E wave passes to a T-wave and decreases in amplitude in the
radial dircction as 1/p

An ohmic loss on the surface of the guide is essential for the
Sommerfeld surface wave to be supported by the conductor.

Sommerfeld surface waveguide is not of much use in practice, as'the
Eo wave supported by the structure is not tightly bound to the surface i.e.
the extent of the field in the radial direction is inconveniently large. As such
any discontinuity in the path of the wave such as a bend or kink in the wire
produces considerable loss of power by radiation. The inherent short-coming
of the Sommerfeld guide is that its ohmic loss is essential to its operation
in contrast with the conventional waveguide for which the ohmic loss is only

incidental.

This difficulty has been obviated by Goubau® by coating the
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wire with a thin layer of dielectric. The dielectric coating loads the surface
in such a way that the Eo wave is guided by the structure and the extent of
the field spread in the radial direction is comparatively much smaller evey
in the case of the conductor having infinite conductivity. In a surface Wave
structure of this type, the ohmic loss is only incidental and the extent of the
radial field spread is controlled solely by the thickness and dielectric constapt
of the dielectric film. The characteristics of the dielectiic coated structure
was first studied by Harms® and then more exhaustively by Goubau’,

4. HarMmS-GOUBAU SURFACE WAVEGUIDE

Harms® made a theoretical study of the problem of wave propagation
along a cylindrical wire of radius 4 coated with a dielectric of thickness
(b—d) and dielectric constant Ey (see Fig. 3). Goubau®* made a detailed
theoretical and experimental study of the problem and evaluated its practical
usefulness as a transmission line for microwaves. Treating thisasa boundary.
value problem and using the impedance matching technique at P =5 for Ep
wave, the following characteristic equation isobtained.

19, 7o (,5) ¥ (Vyd) = o (hd) Jo (14D) - _11 _I_fﬂl_lg_b_)_ [34]
€0y (D) Yo (0, d)—Jp (,d) Y (VD) € H,\ V(1 ,b)

which yields the following equation® after some simplication.

(,u,/e,)""’ (72/ky) b 110,89 b=~ (u,/€ )2 (Ny/ky) b In (bfa) [35)

where k2=wiu €y and k2= wiuge,.

1o order that the radial impedances at P=b be continuous, it is necessary
that the axial propagation constant in the two media be the same, i.e.

V(2= 1B =V (k2 + 7D [36]

S et Fhitets
/ 7
wiet DIELECTRIK
COATING
Fia 3

Harms--Goubau surface wave guide
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The radial constant 7, and hence the phase velocity v,~ wV/ (k2 + 7,?) of the
wave can be determined from equations [35] and [36]. Since, 7, is positive
and real pp<u)/k2 which is the free space velocity in the case of the medium

2 being air.

The division of power between the two media 1 and 2 is calculated from

the Goubau relation

P& In(jd) :
a2 e 37
P, € In0897%,b105 371

where, P, represents the power of the surface wave which is contained in the
external medium. This equation is used to determine the thickness of the
dielectric coating (b—d) required for a dieleciric material to constrain a
certain percentage of power of the surface wave within a specified distance
from the surface of the structure. The above results are derived on the basis
of no loss. The effect of dissipation is determined by using the perturbation
method 7 e. by assuming thay the field distribution in an e2quiphase plane is
the same as that in the case when there is no loss. The conclusions drawn
from the foregoing analysis are:

(i) The field structure of Harms-Goubau guide is the same as that
of Sommerfeld guide.

(ii) The extent of the field spread in the radial direction decreases
with increasing dielectric constant and thickness of coating i.e.
the radial extension of the field can be controlted by modifying
the surface of Sommerfeld guide.

(iii) In the case of Sommerfeld guide, if the couductivity is increased
indefinitely, the radial extension of the field would increase in
such a way that the power carried by a wave of finite amplitude
would become infinite which is physically inadmissible. But in
the case of Harms-Goubau guide, the wave will still remain a
guided wave with a limited rad.al extension of ‘the field, even in
the case when the conductivity of the wave is increased
indefinitely, The field is only slightly affected,

(iv) Compared to the Sommerfeld guide the Harms-Goubaa guide
possesses higher loss. Losses of this type of guide consists of
(@) the ohmic loss in the conductor which is also present in the
Sommerfeld guide (£) the loss in the dielectric film which is not
present in the Sommerfeld guide (c) the loss due to the finite
size of the launching device. As the radial field spread is more
in Sommerfeld guide, it requires a much longer dimension of the
launching device than Goubau guide. For the same dimension
of the launching device, Sommerfeld line will have more loss.
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(v) The phase- velocity of the wave guided by the dielectric coated
structure is less than the free space velocity.

vi) As Hy® (i 7, b) is negative imaginary and H,"" (i 1, 5) is negative
real for positive imaginary argument, it follows that the surface
impedance is negative 1mag1nary, i. e. the surface impedance of
this guide is purely inductive. * Or, in other words, coating the
wire with a dielectric amounts to loading inductively the surface
of the conductor.

(vii) The axial component of the Poynting vector integrated over g
plane perpendicular to the axial direction yields a finite value
which leads to the physical realisability of Goubau wave,

5. ATYENUATION CONSTANTS

5.1 Sommerfeld Line:

From the relations

h=a+jB; Vomay— by kate wy Mg €= — (Bt T, 1)
and assuming that at microwave frequencies

kE > > (a—bR; 4> >b, [39]
the attenuation constant of the Sommerfeld line is™

a(sommerfeld) = (c/w) (a,h,) ' . {40
5.2 Harms-Goubau Line

Assuming that there is no loss due to radiation, the total loss in
Harms-Goubau lin¢ is due to the chmic loss in the wire (a,) and dielectiic
loss in the coating (a;). The attenuvation constants &, and a4 are®

ok, 1 N 41
‘~2d\/ 2ige. T AB 058 CPersim t

z .

Qg

€y 0.5
1- tan§Neper/m 4]
LT ,2k €4~ €g ( ) P / ) [

In 1,b+0.38

The radlal propagauon factor is obtamed from

G (N = — (T2 ) In (089 V) , 4]
whcre, )
6 (15) = __In@[d

(eaf€u~co) (NB)
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The attenuation constant &« (Harms-Goubau line) = a, +
where,
k = free space wave propagation
constant = w (4 €9)'2

¢ =dielectric constant of the dielectric coating

6. COMPARATIVE STUDY OF THE SOMMERFELD AND HARMS GOUBAU LiINES

A comparative study of the characteristics such as radial decay factor (7)
as a function of the radius of the Sommerfeld line and as a function of the
dielectric constant for different coating thickness in the case of the Harmss
Goubau line for different wavelength of excitation, ratio of the radii of the
consiant percentage power contour as a function of coating thickness b~d=a
for different wavelength of excitation and percentage reduction in phase
velocity as a function of wire radius are presented in figures (4-7) respectively.
Fig. 8 shows the percentage power flow for the Harms Goubau and Sommerfeld
line as a function of the radial distance from the line. Fig. 9 shows a com-
parative study of the conduction and dielectric loss in the case of ihe Harms-
Goubau line as a function of dielectric coating thickness in the X and K band.

7. THEORY OF THE SURFACE WAVE RESONATOR

The resonator (see Fig. 1) consists of a metallic wire of radius 4 termi-
nated at both ends by large circular metallic plates each of radius ¢ > > d.
The length [ of the wire is adjusted such that it is an integral multiple of half
the guide wavelength A, corresponding to the mode of excitation. The
resonator is open on all sides except at the two ends.

7.1 Fleld Components of Resonant Waves

The components of resonant waves, when the resonator oscillates in pure
E or H modes are respectively*?.

E mode :
E, (P)=2Xcos 0 cos (m, /D) 2], (7. P)
E,, (P)=2j (h 7,/ w? mg€o) X cos 0 sin (mym /D) z Jy' (7, P)
E,. (P)= —2j X (h]w® pg€y) 1/P sin O sin (m,x /1) z Jy (1.0)
H,, (P)=—21% (1/wry) (1/P) sin B cos (myw /1) 2 Jy (V. P)
Hy, (P) = =2 X (7, fwisg) cos 8 c0s [(m, %)) 2 Jy' (1.P) (44]
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H mode :
H,,(f)=—2jsin Osin(m,x[l) 2z T, (7, 0)
H,, (Py=24¢ (h 1,/ w?ugeq) sin 0 cos (m, w /1) 23, (7,9)
Hy, (P)=24 (hjwPugeq) (1/p) cos 8 cos (m, /1) z I, (V,0)
E,, (P)=—2¢ (I/weg) (1/P) cos @sin(m, /1) z I, (1,0)
Eg (PY =24 (V,/weg) sin B sin (m 7/l) 2 1) (F,0)
E,. =0
The above field components are derived on the assumption that the

electromagnetic energy is contained wholls within the volume = a¥ of the
resonator and that there is no loss of energy by radiation.

7.2 Conditions of Resonance
The conditions of no radiation leads to
HA (Y, d)=~HY (Y,d)
which yields
3, (t,dy=0 146}

as the condition of resonance when the resonator is oscillating in a pure
E-mode. The condition of resonance when the resonator is oscillating in a
pure H-mode and the energy is completely enclosed within the volume of the
resonator is

H® (0,d)=-H" (v, d)
which yields

J (7,d)=0 - o [47]

The eigen values 7V,d which satisfy the above equation is obtained when
J,(7,d) is maximum i.e. ¥, d=1.84, 8.54, 14.86, ctc.

7.3  Coupled E and H mode:

In the case of a conventional type of cavity resonator enclosed on ali
sides by highly conducting metallic walls, no loss of energy occurs by radiation
and E or H modes can exist independently, whereas,. in the case of an open
type resonator, due to the discontinuity which is invariably presemt at the
edge (P =a) of the end plates, some energy will be los. by rad.ation. As the
radialed wave in fiee space is a T-wave, Ef, HS and E’P', th of the Eand H
modes respectively, must vanish inside the resonator or approach zero valug
at P=a. But the radial componens of E and H modes of the non-radiating
standing wave part of the total field within the reson..tor cannot independeatly
become zero. So, it may be said that
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ES 4+ EN =0 [48]

or Hi+HEF=0 ’ {49]

at  =a, which signifies that the E and H modes are coupled.

The characteristic equation for the coupled mode obiained by imposing
proper bourdary conditions on appropriate field components and utilising the

no-radiation condition is. .
_Joug ¥ HY (Ya) —HP (’yu) ~ j"/d @iy _y_H(lle (7d)—H@ (Vd) [50,]

Ha xHY (ay— H“’wa) I x H{ (Ya)—H2 (7d)
HP (v, &) .
here, =12 el sy
where, RO D) - - - ‘ {511
HY' (v,d)
and y= H(l)'(—y d)
and Y=Y

It can be shown that for the resonance conditions J,("/;d)=0, x=1 and
similarly y=—1 from the definition of x and y. By using appropriate

recurrence relations and x=1, y=—1 eqn. [50] reduces to
J, (Ya) o Ydly (Vd) T, (Yd) [SZj
Yal, (Vo) -1, (Ta) TN (vd)

which yields on differentiation with respect to. Ya ., R

YaT3(va)—27, (Ya) Iy, (Ya)+ Ya Bk (Ya)=0 - 1531
since

1 (0a) = constants.
Yalty (Va)—-J, (Va)

Let the roots of eqn. [S3]1 be §, (1=1,2,3, ...). For mh mrde, the eigen

values 7V, =" is given by ’7,,,— 3,/a and the condition of resonance for the
coupled mode is

[’”13 47 35]”2 - {54]

since, m, /I is positive and real (5, /a)<(21v/7\o\ and (32/az)< <(47"2/}‘o
Hence, Lt
I=p1, )\0/2 e ' {35}
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which states that the resonance condition is established, when the distance
between the two terminating end plates is an integral multiple of half waye:
length.

In practice d<<a and if Yd<<l, then by making small argumen;
approximation of Jg (Vd) 2= 1 and J, (7d) == 7d/f2, eqn. [52] reduces 10
Jy (Nyay=0 136)

which gives the successive eigen values whea resonator is oscillating under
the condition that the modes are coupled.

7.4. Q of the Resonator

The Q of the resonator is defined as

W W,
Q- Jeora B o

where, w is the angular frequency at resonance, Wy and W, represent the
maximum energy stored in the electric and magnetic fields respectively inside
the resonator and P is the total power loss inside the resonator.

The total power lost is equal to the sum of the power lost in the end
plates (P,) and power lost in the wire (P,) and the power lost by radiation.
Assuming that there is no loss of power by radiation and that the resonator
is oscillating in pure E or H modes and calculating

m a U
W;»%"—J |EP pdp db dx
§=0 pad z=0
27 e A
= j I [HPPdpdIdz
> p=  z=0

b €
P,—2xl/2,‘/f{_'i‘3j f |H.[* P d6 dp 158]

=0 p=d

for both the end plates and

2n !

P,=‘/3§.~_f“°j f [H.. ! dd0dz

w
§=0 =0
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the Q factor for the E(QF) and H (Q”) modes are
QF={{2- "} B (e = {Via~27 2} S (%, a)
A {V2dP 2%, =2} JR (Y. )] ST K] < 81.64 5 107
+[@ I () - Ty (V@) I, (Y, = IE (Y, )] [5 1.5
£ {—120.31x10°® [—4 V222 (V,d) ~ L 72 I3 (V, )
~(1=172a) J3 (Y, a)]-52.2x 107 Y2 4112 (7, d)} [59]

Q=179 10° /" I [E Y2 =D T2 (V@) + 1 72a? T2 (Y, a)
G- IF (N d) -+ AP I (1, d)]
= {694.22x 10212 /-T2 (3 V2 =1y J2 (Y, @)+ 3 V22 T2 (Y, @)
—G VR0 IE (v d) -3 VpdRIE (Y, d)]
+261x 1077 d 1V [52 % 107 (W*d) f~*~1112 (7, d)} {60]

The Q factor for the coupled EH and HE modes are respectively
Qpy=81.64x10¥ ¥ 212 -V} J2 (Ya)~ {2-724d?} I3 (v d)
+{1?d®+27-2} IZ (Y d)+1.57f5fi1[a11,2 (Ya)
—d? 32 (Vd)+d* Iy (V) T, (Y d))+ {12031 x 10" ¥ x
[—L Va1 (vad)+ (1= dY2) 12 (vd)— (1~ § V¥ T 2 (Va)]
=522 VI 107¥ U2 (vd)+ (JE (v dY A
~QI, (Y)Y (Yd)Yd) 1} [61]
where, Y=",,
QUE-179 < 10°1F (L V2 a®—1) I} (Y a)
—E V2D I2(vd)-y 12 d* I (Vd)])
69422 x 102 F-T2 2 (L V22 1) J} (T a)
(I a1 (vd)-L ¥ a?I2 (vd) ]
+2.61x10°T 1A Y [52x 10® £ =9 d =112 (Y d) } (62

where, ¥ =",,

1.5 Guide Wavelength

The values of the axial propagation constant k in the case of the reso-
nator oscillating in pure E or H mode are obtained from the condmon
We=W), at resonance from the following equations.
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£ mode :
26 10% F 4R 12 a* 37 (V. a)+IE (7, a)}
+N2AYIE(Y, )25 (Y, 427, (R (.
+I2( )} 2 TR, @-I2 (V. d) } ]
=22 %10 £ 232 (7, a) +4 12d2 T2 (Y, d) = [(V2aD)[2)
*» {33 (L3O I3
~L {32 (v, @) -1y (", ) LV a)} —Ld2I (Y, d)
H mode :
26 x 10P f 42 [ = Y2A2TE(V,d) -2 {3} (", d)

AT (N d)t R @ 91 (G @)+ I3 (@)} =2{3} (Y @) 12 (Y0}

=22% 10" £-2{V2a%2) {1} (Y, @) +J2 (V,0)}

— (12D (TP D+ A} - {02(7,0)

~ 12 (-1 dP I (,d) g (Y, d)

I (N DI (Y d +1a (12N, @) ~ T, (Y, Q)
LN}V T a)y~TE (V,a) -T2 (7, a)

+12 (0} — (V2R (pe) 33 (Y, )}

(63}

{64

The total propagation constants k for the coupled EH and HE modes is
obtained from eqn. [55] and [56] respectively by replacing 7, by 7, and 7, by
v, in equations [53] and {34] respectively and using the resonance condition

Jo (V@) =0,

EH Mode :

26 x 10% f~4 {32 a2 J2 (V) + Y2 A2 {2 (Nd) + 33 (Vd))

+2 {32 (Yay -3} OV} + 27 IE (vd)—2 12 (Vd))

= -2 x 10N FO{IF (V) =T} (Va)} =2 4P (B (v +L B ()}

(P22 I (Ta)]—1 & B (Ya)+1 @ {2 (vd)
~Jo () 1 (Vd)}

where, Y=17,,

[63]
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HE Mode :
26 % WEB 4R (= Va2 (vd) + 2 {F (V&) + 2 (vd)} + 2 2?32 (va)
~212 (va)] )
=22 10% £ (V2 63/2) J2 (Ya) ~(V dP)2) {2 (V) + 2 (vd)}
- {Jf (Ya) 33 ('Yd)}] - 1? d? {Jf (Y- (vd)~I, (Vd) 3, (‘1d)}
+3 a1 (Vo) — (VY2 { T () - I (Yay + 33 (v}
+(1/Y) I5 () [661
where, V=",
It is evident that the guide wave length A, determined from £ in each case
is a function of d, a, and f.

When ¥ and the argument of the Bessel functions are large equations
i59] to [66] reduce respectively to

QF= {[—~(27a/r) {cos? (Ya—3r/[4) +cos? (Ya—m[4))
+2Y I (V) FYE R I 81.64 < 10%
+[(2a/7rY) {cos? (Ya—3 r[4) +cos? (Ya—"7/4))
— {4/ 7?) cos (Ya—3n[4) cos (Ya—n/4)
~d* (Y ¥ 1< 1.57)
+ {120.31 x107% {1 v2 d* JF (7d) -+ (Va/x) cos 27a]
—52.2x10°% ¥ 41 32 (Vd)} 6N
where, Y=Y, °~
Q=179 % 10° £~ I{(Va[x) {cos? {Va—(3n/4))
+oos? {Va~ (/P ~ & d?-1) B () -1 P21 (1d)]
= {694.22 % 102 12 £ =72 [(Yajm) cos? (Ya~3r/4)+cos? (Ya—m[4))
~E M -1) B(ra)-4 *d? g (d)}
+2.61 x 10771 d V/(f) [52% 10% (B[d) =4 =11 » I} (d)} {68}
where V=17,
QFF =81.64 x 10° £ =32 g2 [ ({2 Y &} (2/Ya) cos? (Ta—3w/4)—2 1} (dj
+(27-2) 3 ()] +1.57 f521 {2aj= V) cos* (Ya—3x/[4)
—d? {33 (vd) —(23, (Vd) Iy (Yd)/ (YD) + 5 (Yd)} )
+ {12031 1079 J2 (d) — (2/m Va) (1 -+ 7 a?) x cos? (Ya~In [4))
=522 70 d1 % 1072 (2 (V) + B (Y)Y (VP dB)
~2J5 (Yd) 3, (Yd)/(Yd) )} [65}

where, Y=,
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QFF =179 < 1P L~V (L Y2 a?~ 1) (2/m Va) cos® {Ya—(3m/4) + 33 (V)
< {69422 102 B £~ (£ V2 a?—1) (2w Ya) 3 cos? (Ya—3)4)
+ R (VD261 1077 1 d f112
%[52% 102 B? f~4 -1 1] I2 (7d)} 7]
where, T="7,,

The variation of A, and QF with respect to the frequency of excitation and
the variation of QE with respect to the length of the resonator are shown in
figures 10 and 11 respectively. The following values for the constants have
been used in computing the results
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Q OF SOMMERFELD SURFACE WAVE RESONATOR

8.1, Field Components :

The mode of practical intest in cylindrical surface wave transmission
is rhe E, mode, since all other modes have very high attenuation. For
Sommerfeld surface wave line having radius 4 and immersed in air the field
components for the resonant waves Ey are®®

E,=2BH{" (j7,P) cos(nm z/l)
E, = -j2B /Y, 0) H{Y (7 7,0) sin (n 7 z/1)
H9r=2 B{w ey/Vy) H}”(/‘ Y, P) cos {nx =) [

where Y,=a, ;j b,
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8 2. Maximum Energy Stored ;

The maximum energy W, stored inside the resonator is
27 g B2 w? €31 R ) (5 @) s

W=~ 80 {7 dHW (Y, d) BE () 7] d)
MR (E NG 2o 2

T dHY (N d) BE (-7 d)] 01
8.3, Power Losi:

b fle) BBt (e ipo) Gy gy HD (e
Ce /\/(217,> '727;('7;’—-'73)[ J T2 i Y d)y B (~jy3 d)

~j Y d B (F ¥, d) HP (=j 5 d)]

(73]
PW=‘/<;—::> 2”;‘%53—@ H{" (j 1, d) B (~j 2} d) [74)
8.4. Q Facror:
The Q factor for the Sommerfeld surface wave resonator is
Q (Ep)=w (Wy [Py +Pyl])
=vo ug[-j 3 dBP GV, d)Bi(-j S d)
~i L dH{ (j R d)BP (~j 7] d)]
=411V Q2e ) [~] Y3 dH{ (j ¥, d) HP (-j 3 d)
~J T dHP (v dHP (=j 13 d)]
—[d(O; =DV Q o) B (Y, d) HP (=) 75 d)] 17

The magnitude of the arguments of the Hankel functions in most of the
practical cases is less than 0.05. Therefore, using the following small
argument approximations

HY (J YV d)=~(2n1,d)
HP(-j7d)=-Q/~" a)
H{ (7 Y2 d)=j Q2jac) (m+ [ n)
BP (- j " d)=—j@/x)(m+ jny [76]
where,
m=4 {089 d)? (af +hD)]

n= arc tan (5,/a,)
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the expression for Q (Eg) reduces to

- Viw uya,a,)
QU = T T V@ o, [ i (=) 72 25 5y v} o

where, the values of a, b, are determined from the solution of the following
characteristic equation given by Barlow and Brown™®
ML G L TN el nd) 78]
w e H,'W(j Vaa) oytjwey Ji(j7d)

where, 7, is the radial propagation constant for the region inside the con-
ductor and €, represents the dielectric constant of the conducting medium.
By using large argument approximation ]j 'Yld[ > > | for the Bessel functions
and smajl argument approximation fj Y2 d! << 1 for the Hankel functions,
eqn. [78] is solved to yield

4, =[(1.123| &| V) /d] cos 82, b, =[(1.123] £|V%)/d} sin 5/2 (791
where,
”x 1
=5 (1)
=lyl=|&im|&]
and fy]= 2 6\}‘3’-‘-‘4“4 (501

The Q (Ep) of the Sommerféld resonator at f=9500 MHz and with

0,=3.54x10" o/m, o, =58x107 y/m

Q(Ey) = 1076 [‘_;71‘_ __068a, by ] (811

! d[na? -b3)+2ab,m]
which for /=075 mandd=1.1x 103 m yields
Q (Ey)=18.830 and for =01 mQ (£y) = 14660,

9. Power FrLow

In deriving the expression for Q (F,), it has bzen assumed that the only
losses in the resonator occurs due to ohmic dissipation in the end plates and
the wire surface and the loss due to the radiation has been ignored. An idea
of the radiation loss can be gained from the power flowing outside a radius
P, corresponding to the radius of the terminating end plates.
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The total power flow P, outside the Sommerfele line {¢

2 @
P=1Re [ [ E, Hgpdpdé
8=0 g=d

7% €q w kB2 , Y.
=Re {] 72 -yxonlxl ’Yé) {J ";dHi(”(] ’de)
. . . e 517
H® (=) Yy d) +] ndﬂ‘s’mzdm(f)vmd)d

2egw Bzﬁ
= 10, b, (a2 +53)°

[ (b2 —~aZyn—2a,b,m) ] 182

where, h=a +jBz jB and small argument approximations for the Hankel
functions have been used.

The energy flow outside a radius @, is
& 2
PPe’%Re f f Eyy H;dePdG
p=pe =0
Rwegh B { Con .
[ ik, S y H,(0
[j’yz -7'2 (7;2_7%) JY P HY (G, 0,
Ho® (=7 Y5 P+ 920, Hy () 1,0,)

H,® ()73 0) (&3]
Therefore, the percentage of power flow outside a radius
p, is
P, [P < 100
=100 (=2 (a3 +£2) 0,/8 BY
Relh {JY3 HY Y (G 1,0 Ho™ (=73 p)
I D G PN HP (- vy et
{n(a% —F2)Y+2a,b,m]

84]

The variation of the percentage of power flow outside a radins p,=1 m and
P,=0.45 m as function of the radius of the Sommerfield line having ¢,and
g, values same as stated previously is shown in fig. 12. Tt is found that for
25 s.w.g. wire and end plate radius of 1 metce only about .03% power flows
outside the resonator, whereas, for end plate of radius 0.45 meire, the per-
centage of power flow outside the resonator, is about 1%:.
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10. FumRTHER SCOPE OF WORK

The following work in connection with the surface wave resonator which
has been developed (see fig. 13) is under progress.

(i) The effect of the tilt of one of the terminating end plates on the
Q of the resotiator.

(i) The problem of excitation of a metallic corrugated surface wave
structure.

(iii) Experimental study of the field decay guide wavelengh,
attenuation of surface wave lines with metdl disc loading.

(iv) Extension of the surface wave resonator technique to the study
of corrugated dielectric rod characteristic.
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