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1. INTRODUCTION

THE steady flow due to the rotation of an infinite plane lamina in an in-
compressible fluid has been discussed by Th. v. Karman.! The correspond-
ing problem in a compressible viscous fluid presents enormous difficulties
due to the non-linearity of the equations of motion, viscosity and heat con-
duction. It has been possible, however, to reduce the equations of motion
to three non-linear equations by assuming heat conduction to be negligible
and the equation of state to be of the form p = p, + kp”; py, k and y are
constants. The equations have been simplified further by assuming y = 5/3
and then integrated after the manner of von Karman.

2. EQUATIONS OF MOTION

The equations of motion for a non-heat conducting viscous compressible
fluid, in cylindrical co-ordinates are
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where u, v, w are the radial, the azimuthal and the axial components of
velocity respectively. If the lamina rotates with an angular velocity £2 about
an axis perpendicular to its plane, we put
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u=f(z); v=2g ) ; w=@Eth(z); p=po— pp:(z)

z= (Lt z
and obtain the following equations:
plf* —g+fhl=S" )
pl2fg +ghl=¢" (6)
ph' = py'+ (2/3) (f" + 2h") M
2o+ gz () = 0 ®)
where a dash denotes differentiation with respect to z;. We further assume,
p= — h3(z). The equation for pressure using (8) becomes
pi = — h*h or p, = (1/5) p°3.
Therefore, * P = po — (uQ]5) P73, ©)
Equations (5), (6) and (8) become
Blf2—g+fh+f"=0 (10)
BR2fg+ghl+g =0 (11)
f+2R" =0 | (12)

The solutions of these equations have to satisfy the following boundary
conditions:

fO)=f(<) =0; g0)=1,g(ex)=0; 2(0)=0 (12 @)

For small values of z;, we have
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For large values of z;, we have

f= Ae*? — é + B ez | (16)

2ccy
g=Be% | ... (17)

* On account of the boundary conditions (12 g) the density becomes zero on the rotating
lamina. This has been pointed out earlier by Lord Kelvin. [Papers, 1, 83-87]. Also ref. C.
Truesdell, On the Equation of the Bmmlmg Surface, Publication, U. S. Naval Research
Laboratory, 1951, 71-78,

A2



118 S. D. NiGAM

A .. A24B? |
h = — Cp -+ 3o e 21— “8";;2_;—" e~z + s 604 =cC (18)

The constants ag, by, ¢, A and B have to be chosen so that £, g, 4, f’ and g

are continuous for some finite value of z; and it will then follow from the
differential equations that all other derivatives are continuous.

3. DETERMINATION OF CONSTANTS

We follow a method of approximation to determine the coefficients.
It is highly probable that the expressions (13), (14) and (15) are convergent
for z;<<1. The coefficients of various terms are decreasing rather rapidly,
so that, even for z; =1 we mneglect terms ~ O (z;®). Again, in (16), (17)
and (18) we neglect terms ~ O (e73¢%.) The equations for constants are

Qy = AeC¢ — A® + B®

“2¢cey e
1 -+ bo = Be—¢
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2
@Gy = —¢ [Ae‘c A2 ;;B e 2"]
bo = — C Be—C.
The constants are
Gy =3"634,by = — ‘833, c=5,c,=1-49, A = 1184-232, B = 24-735,

The functions f, g, 4, are given in Fig. 1.

f and g tend to zero exponentially and become indistinguishable from zero

for z; = 2. Hence, if, u/Q is small, »/Qr and v/Qr are appreciable only in
a thin layer [6 = (u/£)}-2] near the disk. This points to the existence of
a boundary layer adjacent to the rotating lamina.

The solution applies strictly only to an infinite disc; but if we neglect
the edge effect we can find the frictional moment on a rotating disk of radius a.
The shearing stress is given by

D2é = p a = (u2%% rg’ (0)...... at the disk, so that the moment is

M = — [ 20r%,4dr = mat (uQ%)t x -4165.
q
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Fic. 1 The flow functions
4. SUMMARY AND DISCUSSION OF RESULTS

In the corresponding problem for the incompressible viscous fluid? the
functions mod. f and mod. & are everywhere less than the maximum value
of mod. g. In our case the functions mod. f and mod. % are at some places
greater than the maximum value of mod. g. The radial and the axial compo-
nents of velocity at some places exceed the velocity of the disc. This is quite
in accord with the phenomena associated with the compressibility of the fluids.
But for these compressibility effects, which are confined to the neighbourhood
of the disc, the general features of flow are same as in incompressible fluids.
There is a steady axial flow towards the rotating lamina; this is necessary to
preserve continuity. The fluid moves radially outwards near the lamina.

- . In conclusion, I thank Mr. K. S. Rangasami and Mr. R. S. Gupta for
the help they have given me in checking up the numerical results and in
drawing the sketches.
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