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ABSTRACT

Stokes’ and Seth’s solutions for the slow motion of a sphere in a
viscous, incompressible liquid have been discussed from the viewpoint
of the structure of the velocity field and its relation to the drag of the
sphere. The problem is analysed from a different angle in this paper.
It is believed that it throws more light on the physics of the problem.

1. INTRODUCTION

TuE steady motion of a sphere in a viscous incompressible liquid when the
Reynolds number is small has been the subject of a number of investigations,
Stokes,* Oseen,? Lamb? and Seth.%® The equations of motion are

pvrV = \/p (1)
Vv =0. @
The boundary conditions are

V=Ui onr=a

V=0 at oo A3
A simple and instructive way of solving the problem is to put

v=v(2)+V =D @
where

p=j(-32) ++(%)- e
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This gives the pressure

P=py+p VX , - © %
and the Equations (1) and (2) reduce to 5
Vi6=0, V¢X =0, 7
The appropriate expressions for ¢ and X are ”
¢=_%?.; Xzﬂff (8 %
The liquid exerts on the sphere a resultant force 6muUa along XO and there-

fore to maintain a uniform motion of the sphere with a velocity U along OX
a force of magnitude 6auUa along OX is required.
We make the following observations : ‘
(1) The velocity (4) can be expressed as the sum of two types of terms
V=V, +V | €)
such that
VXV=Y xV,
(2) The drag on the sphere comes entirely from V,,

irrot.

There is hardly anything to be desired in the solution of the above
boundary value problem from the mathematical point of view. But it will
surely lead to a better understanding of the physics of the problem if we
could incorporate the external force 6zpUa in the equations of motion (D
and then generate the flow field outside the moving sphere from this force.
An interesting innovation in this direction was made by Seth*® who enquired
what field will be created by a force 6 muUa acting at a point (say origin)
and moving with a velocity U along OX. Using the analogy between the
equations of linear elasticity and the Equations (1) and (2) he was able to
show that this velocity field was V... of (9). This velocity does not satisfy
the boundary conditions (3). In order to obtain the complete solution it
Wwas necessary to superpose on V.. the veloéity field due to a doublet of
strength — Ua®/4 { situated at the origin and this gave the complete velocity

field outside a moving sphere. For the steady motion of any solid we have
the following theorem :

Seth’s Theorem.—The slow viscous motion of a solid can be obtained
by superposing, on an irrotational motiorr due to a ° generalized doublet ’
a solution due toa“ concentrated force’ in the direction of motion,

[
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On re-examining the problem we find that the moving sphere does not
exert a concentrated force at the origin, on the other hand, it exerts on the
liquid a system of stresses distributed over the surface whose resultant should
be 6 muUa. The stress system has been incorporated in the equations of
motion and it has been shown that the entire velocity ficld (4) can be derived
from thc stress system.

2. MATHEMATICAL FORMULATION AND THE GENERAL SOLUTION
The equations of motion appropriate to the physical problem are
pVEV — \p A pP =0 (10)
and
\/ .V == 0 (10 a)

where P == (X, Y, Z) is the body force per unit mass within a volume T and
vanishes outside T. If we take the velocity field as

Vo= XA | (11)

where A = (F, G, H) is a vector potential then the Equation (10 a) is identi-
cally satisfied. We express the body force P in the form

Po\/® 4\ xB, B=(L M, N) (12)

where @, L, M, N arc known functions of X, Y, Z. Taking divergence and
curl of (12) respectively, we obtain

VP s \J P
VEB ==\ X P

They are Poisson’s equations and their solutions are

" l s VAR s VY N4 4
P o= — 4 fff (P \yR1) dx’ dy ‘dz (13)

and
B~ 4 f f f (P' X \yR) dx' dy' dz’ (14)

where P’ denotes the value of P at any point (x', y', z') within T, R is the
distance of this point from (x, y, z) and the integration extends through T.

Substituting (11) and (12) in the equations of motion (10) and taking the
divergence and curl separately we get

p=pp=—Lff f (8- R dx’ dy’ &7’ (15)
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and the equation

©V2 A 4 pB = 0. (16)
Using the identity

V(%) =2%

and the Equation (14), the solution of (16) can be written as
— __p__ . 7 5 ’ ’ ’ 17
A Smfffa) X VR) dx’ dy’ dz'. | (17)

From (11) and (17) we obtain the expressions for the components of velocity
in terms of the system of stresses acting in the region T,

V=J’_fff{% _;_?i'_%“ﬂ[(,-_r') ,(i-}-j-}-k)]}dx’dy’dz'
(8
where

r=(xy2) and r =(x',y, 7).

3. THB MOTION OF A SPHERE

When a sphere of radius ‘ 2’ moves along OX with a velocity U in a
viscous, Incompressible liquid, it exerts on the liquid a system of stresses
on the surface r = g whose resultant along OX is 6 muUa. In (19), putting

_6mUa 3¢ —a)

r

and
Y=Z=0

where ' = |¥'| and & is the Dirac-delta function, we obtain
__3U r'mS(r'—a) . WA SR 7Y
u—_z‘a—ffw——i—“smﬂr dr’' db
0 [

2 r oo
~3u 2 J Re¢ —ayrsine a av

0 s

where
R* =% 4-r2 — 2gr cos (0 — 6)

e b
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and r = [r|. Therefore, after integration
_3Uall ,1¢(, a& x2a?
"“T[? TR t3 "75‘]-
Similarly
__3Ua a? 1
v =7 (5~ )
and
p =300 (&L
T4 v r3)
The pressure is obtained from the Equation (15)
3uUa x

P =Do+ 5 78
This agrees with the expression (4) found by solving the boundary value
problem,
4. CONCLUSION
The motion of a sphere can be interpreted in any of the following three
ways

(i) Solution of the boundary value problem satisfying the equations of
motion (1) and continuity (2) and two boundary conditions for velocity on
r = a and the condition at infinity (3).

(i) Solution of the equations of motion with a concentrated force 6muUa

acting at the origin satisfying the equations of continuity plus the solution

due to a doublet. The strength of the doublet is determined by satisfying
only one boundary condition (say, the normal component of velocity on

r = a.
(iii) The particular solution of the equations of motion (10) with a stress

distribution (19) on r = a satisfying the equation of continuity. This auto-
matically satisfies the boundary condition (3).
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