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Long waves in inviscid compressible atmosphere II
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Abstract. Solitary waves have been found in an adiabatic compressible atmosphere
which, in ambient state, has winds and temperature gradient, generalizing our earlier
results for the isothermal atmosphere, Explicit results are obtained for the special
case of linear temperature and linear wind distributions in the undisturbed condi-
tions. An important result of the study is that the number of possible  critical
speeds of the flow depends crucially on whether the maximum Richardson number
(which is variable in the present example) is greater or less than 1/4,

1. Introduction

In a previous paper, (Sachdev and Seshadri [3], I hereafter) we derived the equa-
tions governing solitary and other long waves in an isothermal atmosphere with
wind shear. We discussed the existence and cardinality of solitary waves viz an
eigenvalue problem for a second order ordinary differential equation. In the
present paper we generalize these results to more general atmospheres,

The plan of this paper is as follows. In § 2 we formulate our problem for some
general atmospheres and discuss the zeroth and first order approximations, Ip
§3 we specialise the results of § 2 to the case of a linearly increasing temperature
profile and derive a model equation. In §4, the results of §3 are applied to
linearly increasing wind profile. Finally, we give the conclusions of our study
in §5.

2. Formulation and first order analysis

The more general atmosphere is again assumed to be adiabatic and inviscid, extend.
ing from the plane y = 0 to infinity in the vertical direction y. In its equilibrium
State, it is assumed to have pressure and density distributions that are strictly
dscreasing functions of y, tendir £ to zero as y — 00 in such @ mapner that the
absolute temperature is a non-decreasing functjon of y. Further, ai: ambient shear
flow is also assumed to exist, given by #,(y), the component of velocity in the
borizontal direction.

The equations governing the propagation of atmospheric gravity waves are

I . 3(pu) 4+ 200) _ 0, {1a)
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39




40 P L Sachdev and V S Seshadri

8u+uau+ 3u)=_§g (1b)

ot ox ay ox’
dv , v v\ _ _ P _

P} 5 ey Uas + v Ex 5 P8 (Ic)
op ap P\ _ dp!l, dp ap\ _

p 8t+u3x+ 7y ?P 3t+ua +vay ={, (1d)

where p is the pressure, p is the density, (u,v) is the velocity vector, and g is the

acceleration due to gravity.

A wave of permanent form moving \Mth a veloc:ty (c,0) is assumed to kave been
generated by some disturbance. This, for example, could be the result of an
unsteady motion created much earlier. Itis known from the theory of water waves

that the propagation speed ¢ of long water waves of permanent form is close to
some critical value ¢*. The purpose of the present apalysis is to find the critical
speeds of these waves for the model under study and also the equations governing

their propagation.
As in I, equation (1) may be rendered non-dimensional by

X =x/H, Y=y/H, T=1c/H,R =plp,

P =pl(p,c®, U=ulc, V=0[c;
the small parameter for the present problem is provided by

e=L—1 @
where |

L = (gH/c%, and A = (gH[c*?),
and the stretchings are defined by

&= arx-1), , - (3a)

V=&Y, 0=U-1 (3b)
The notations here are the same as in I

In terms of the new variables the undlsturbed conditior s, denoted by the suffix
e, satisfy :

0,() = oy (YHje — 11, 74 (¥) =0, "4
d, X
L= — R, (7). ‘ )

The governing equations for U, ¥, R and P, the boundary conaitions at the
ground and the perturbation scheme for these furctions are the same as 7 (a)-7 (d),
(8), (9) and (10) in L

To the zeroth order, we obtain

lﬁO(Y)zﬁa(Y)s RQ(Y)=R.(Y), . (6)
while P,(Y) is obtained by solving
dpP, _ . ;
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with the mnitial condition 7,(0) = L. By our assumption, Py(¥)and Ry(Y} are
strictly mounotonic functions of ¥, which d:crease to zero as Y — co, and the ratio
Py[R,, which is prorortional to the aosolute temyerature, is @ nondecreasing furc-
vion of ¥. The cquations for the first order aprroximations and the boundary
corditions are again given by (1Za)-(12dy and (13) in L

Besides,
Ov(k o, ¥y =0, Py(d w, ¥) =0,
Pt o, V)= P, (Y), R (+ w, ¥)=0, (8)
where P, (Y) is obtained by solving
W~ Ra(D), (9)
with the initial condition P, (0) = — I

Eliminating 7,, V., and 1{, fmm thur perturbation equations we gt a single
differential cquation for 2 :

(R .dpl "+ P" a p“ (‘,{!’l) n R, ]
oy v T aTav)\ay i«z‘, dY)‘

L a* P I ap,
St = 0. )
Lacay ™ Cgoa¢ =0 (10)

We exclude critical levels oceurring in the flov region, the function U (¥) =
[v, (YH)/¢ — 1] is therefore non-zero for Y ¢ [0, w). The factor [dPydY —
(5 Fy/Ry) dRy/d Y] is al:o not cqual to zero for Y e [0, w) by our sssumptions on
Fy(Y) and R, (Y).

The boundary condition ¥, (¢, 0) == 0 can be shewa to be cquinalint ro

'1)“ (1}2 [’1 l)‘l‘
Further, we impose the condition that the first order terms do not grow Jarger in
amplitude, compared to their zeroth order counterparts. This requires

=0 at Y - (1

Py

p % =0 (1) for all ¥. (1)
[{

Equation (10) can be transformed to

a4 H l -y |

(?[l’: { [a}((./ " {})J [{ kkkkk (13'}
where

w1 ap |

11 - !\‘-u L“&,w * (!4}
and

‘!PO ; dR ’ ’
f (R P IT "~ Rear) Y (15

P.(A)—4
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If T denotes the absolute temperature normalized by p,/(p,R,) where R, is the
un‘iversal_ gas constant, we have

P/R = iT. , (16)
If T, denotes the normalised temperaturc to the zeroth order, we have
Y
11 dT, (y-=1) (IRO ,
f R, [To dYY =~ R, dY’ ax’. (a7

By our assumptions on Py(¥), Ry(¥) and T, (Y), (17) gives

> -6-0 [ By -o-v[clp 1] ®

This implies that # = o0 as ¥ — 0. Moreover, the integrand in (17) is strictly
positive. We, therefore, conclude that thc transformation (15) is a one-one
mapping of ¥ e [0, c0) onto # & [0, ).

Applying a theorem due to Hille and Wintner [2], we find that (13) has a solu-
tion H, (1), unique up to a multiplicative constant, such that

H, (n) =0(1), H;(n) =0(1/n) as n - o, ’ (19)
if and only if

VGRS

that is,
w -
J [Ryn/UZ (¥)] dY < 0, (20)

whers # is given by (17).- There is also another solution H, (#), non-unique, such
that

Hy () =0(y), H;(n) =0(1) as y - oo. 1)
Assuming that (20) holds, we obtain
1 B.P;[ - dAl aAz o

where 4, (£) and 4y (&) are to be found from the boundary conditions. Inte-
geating (22) with respect to £ and using the conditions at | {| = oo, we get.

2= 4@ — & ) H ) + B ~ B ()] Hao) + 2 @
To satisfy condition (12), we put [B; (&) — B, ()] =

Assuming 4, (c0) =0, we get
P, = Ry (¥) 4, (©) Hy (n) + Poo (Y). (24)
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From the asymptotic behaviour of H (#), given in (19), which arises as a result
of imposing the condition (20) on the function Uy (Y), the right hand side of (24)
is O(Ry) as Y — . To satisfy the condition (12), however, it is sufficicnt that
it is 0 (Py) as Y — c0. S'nce (Py/R,), which is proportional to the temperature,
is assumed to be a non-decreasing function of ¥ we conclude that the condition
(20) is only a sufficicnt condition for (12) to be truc. For the isothcrmal oz sc given
in I, however, the condition (20) is also necessary for (12) to be satisfied. In
this case it is casy to see that

n={_y—1[exp (¥)-1]

and therefore (20) becomes

‘dY‘ - w
oa(y) =™
0

which is the same as the condition (21) of 1.

Once the expression for Py has been obtained, those for R, Vi, Uy can be
obtained from first order perturbation equations and the cquilibrium conditions
(4) and (5). _ |

The vanishing of V, (¢, 0) gives

P | vPy 3* Py

I LRyIEIY
This, with the help of (24), becomes

H,(0) — yH," (0) = 0. (25)
As was done for the isothermal case, the critical speeds in this case are obtaircd
by solving (25).

The function 4; (&), occurring in (24), is determined by considering the second
order terms. However, il we continue the analysis for the general atmospheres
it soon becomes intractable.  We shall therefore restrict oursclves to the special
case of a lincutly increasing temperature distribution in the equilibrium state,

=0 at Y= 0.

3. Linearly increasing temperatare profile

Here we consider the special case of a lipearly incteasing temperature distribution
in the cquilibrium state, given by
T, =1+ 4%, (26)

where a is a positive constant. Then (26) together with (5) «nd the perfect gas
relation gives

e = A(L + oY), Q7
and
R, = (1 + oY)y (28)

where the definition 4 = 1/o has been introduced for convenience in writing. For
Y fixed, the limit ¢ — 0 gives the isothermal distributions of P, and R, of 1.
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The equation for P,, corresponding to (10), may now be obtained as

BP  (1+ 2 3P Ly +y—-1)}ap _ 9
3§3Yz+(l+aY)3§3Y+ yUR(1 + oY) ] 3¢ =0 (29

The boundary condition v, (¢, 00=0 becomes

y(—f—é—%#%%:um Y =0. (30)
In this case, # is given by

n=ply = 1)+ ml 1+ oY), | (31)
and the condition (20) becomes

o0
Ay
JE(Y)

. 32)

Under the condition (32), we have two linearly independent solutions, f(Y) and
g(Y), of th= differential equation

d*F | (1+24) dFfL{ay + 7y — D] 5_ 33

v T (T o) dV | 7070 + oY) F=9 9
such that

(D) =0 [(L + oV 0m], £7(¥) =0 [(1 + o)),

g(¥)=0(1), g (Y)=0[( +a¥)']as ¥ > 0. (34)
The solution for P, (£, ¥) becomes
P (& Y) =4 ) f(Y) = (1 + aX)H (35)

where we have used the equilibrium condition on P;.

Substituting for P, (&, Y) from (35) in (30) we gat the following cquation for the
critical speeds

f(0) + 2/ (0) = 0. , (36)
The first order quantitics are found to be

P Y)=4 QO Q) -1+ aY)H @37)

R (¢ Y)=— 4 f (V)L (38)

Pt )= - QUM LA 5D DI LD T )
and

0, 1) = 4 LD IO LTI T e

_a+ an““f(Y’]. ()

o
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The equations goveming the second order terms are the sams as in J with
G, — G, defined in the appendix.

The boundary condition V¥ (£,0) =0 gives

Po(é, 0) = 0. (1)
The equation for P, may be derived by eliminating U,, ¥, and R,:

PPy (1 + 2)3 P, -L*(nf._:}qu)_}?;& _

e V(T av)va [y(l i oYX s 1 (42)

here

G = — [{1(3’ -1+ ?93)] <Uon ~G> + [m ty - 1] 90,
5 7 (1T + 4 Y) Uz 7+ oY) | a¢

1 ar. 26, _ (L+a¥)'* G,
(" a.Y)é)Y[’ (A +al) 52 + 707 ] (#3)
The general solution of (42) is given by
9Py _ : "6, YY) 4
=B O + B2V +5(V) f il ay
F G (Y)g(Y) .,
1™ [ S (44)

where B, (&) and B, (&) are to be found from the boundary conditions. We shall
now analyse the various terms in (44) for large Y. The expression for G, given
in (43) involves G, G,, G; and @,. As Y becomes large, one may check that
the term which contributes most to G is proportional to U2f(Y)/(1 + oY) and
this, from (34), is of the order of U2 (1 + o¥)~*** as Y — 0. On the other hand
W(f, g) (Y), the Wronskian of the two linearly independent solutions f(Y) and
g (¥) of (33), is easily seen to be proportional to (1 + o ¥)~**4). Thus,as ¥ — oo,
the leading terms in G (£, Y) f(Y)/[W(f, &) (Y)] and G; (¢, Y) g (Y)/[W (f,8) (Y)]
would be proportional to U2(Y)(l + oY)~ and U2(Y) respectively. Assum-
ing now that U,(Y) is such that

P O3(Y) (1 + oY)t dY’ < oo, 3)

1]
we find OP,/0 = 0 (1) as ¥ — oo unless we choose

F 6, Y) 1) 4 6

2O=- | “wira)

. o
We take this to be the case and obtain

Y
oP G, Y)eg(¥) .o,
32 = B @O/ +s(D) J TWGEam w

Y G (& T e () o
- | Twaam “n
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It is easy to see from the asymiptotic behaviour of the integrands in (47), given
earlier, that oP,/d¢ is still not of the same order as 9P;/df as ¥ — oo. For,
if we take a linear ambient velocity profile u, () = By, so that U, (¥)=
(BHY/c — 1),and 0 < o < %, we see that the conditions (32) and (45) are satisfied,
and

TE =0(Y% as ¥ - 0. A (48)
Consequently, if we take P, as given by the integral of (47) with respect to ¢, the
perturbation expansion for P will be valid only for a limited range of Y; the
rang: will depend on the ambient velocity profile. In the above example of a
linearly increasing ambient velocity profile the perturbation expansion for P will
be valid, to first order, for all ¥ which satisfy ¥3 = 0(l/¢). In our subsequent
analysis we shall restrict our discussion to distances Y, determined by the ambient
wind, for which the perturbation expansions remain uniformly valid.

31’2 / opP,

The second order term, ¥,, is then obtained as

2o — et [vm s v+ anr o0 (8O

f g g’()}(,” (IY'} + (g (V) + 7 (1 + a¥) g (V)}

4

G f(r) (1 + oY) G, (€, V)
X W(f”)(Y’)dY] Ll =D+ 7 ally

7 (1 + o Y)24 an

YL TN jal A

(49)

Applying the condition (41) we get

[g(O)-t[yg’(O)] f [(0 4 oY)*# £(Y) G5]dY

G, ( 5, 0) aGa

where we have made use of the condition (36) and where d = W (f, g) (0). Wenow
spzcify the functions f(Y) and g (Y) by requiring d = 1 and g (0) + yg’(0) = 1.
Equation (50), after some lengthy calculations, reduces to

94 4 3
my 732} + my 4, %51 + m, "’a;{: 0, (51a)

0) =0, . ' - (50)

where

o [ B Ut W+ DT
o 'f PL1G =1 ¥ 7a] wo G
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[ea]
mo= U @+ [ ka0 B2+ B+ B
(1]
ay, - (51c)
o .
Ky =D+ ya] [ (1t aX)H f2(T) ]
my = » (7(?(1;) ay, (51(1)
' 0
B = — G+ &) (1 + qY)4? + 4T (1 + aY)*
2 Y2 yU;
_ L[ya+ (y — DI + aY)® + (1+a) (1+ aY)r-?
yUE (» =D +ay]L
B, = AU+ eV 4T (L +aD) (20 —4fp) (1 + a )
LI =10+ 74l U Us ’

é.nd

1+ 24y + oy - %q “ _ (1 + aY)t+#
B (G2 ey ) (e = 0

It is easy to see that, as o — 0, (51a) reduces to (43a) with its co-eflicients given
by (43b)-(43d) of I. The latter corresponds to the equation for solitary and
cnodial waves for an isothermal atmosphere. As in the isothermal case, the
solitary and cnoidal wave solutions of (51a) may be written out. We may also
show that the speed of the solitary waves, ¢, which is close to a critical speed c*,
is such that |c|> | e*|.
~Equations (37)-(40) give the first order solution with 4, (&) satisfying (Sla).
The quantities, Py, Ry, U; and V,, are of the same order, for all Y, as their zeroth
order counterparts. However, the second order solutions grow in relation to the
first order quantities as ¥ — oo, the growth depending on the ambient velocity
profile. Consequently, the solutions given by (37)-(40) would remain uniformly
valid only in a limited range of ¥ provided by the ambient shear flow,

4. An example

We now apply the results of §3 to the special case
uy(¥) = By, B> 0. (52)
The critical speeds can be obtained by solving the differential equation

d215+ (1+24) dF
dy?

Ri, o
(1 + oY) HY + (1 +, uY) [Yl_ C*/(ﬂH)]z F=0, (53)

together with the conditions

F=0[1/1 + ¢Y)y**] as ¥ - 0, - (54a)

F(0) + pF (0) =0, . L e
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where
Riy = (ay + 7 — 1) g/7HE, (55)
is the maximum Richardson number. Equation (53) follows from (33) and (52).

We preclude critical levels, thus requiring that the two singularities of (53) do not
lie in the flow field.

Equation (53) can be travsformed to the hypergeometnc equation

Z(I-Z)Z—g DEC (1 (k + 140 +4 228

a4
—k(k+1+p)G=0, | (56)
by introducing the new variables
G(Z) = (Y — ¢*/(BH))™ F(Y), (57)
= —a(Y ~ c*/(BH))/s (58)
where
k=12 £ (1/4 — Ri,/5)"2, (59

and 6 =1+ ac*/(BH).

Tne bourdary conditions (54a,b) become

G = 0(I/I(1 + ¥ (¥ = c¥/(RH)*) as Y o0, (60)

Rl‘%‘j)*”‘] 5 )’*‘7(;_] ¢(>5)=0. (&

The solution of (56) which has the asymptotic behaviour given by (60) is
G(2) = (Y — c*(RH) W+ F(a',b'; ¢ 5 Z7), (6

and

where
a =32 +u +;k3, b =3/2 +pu ——11»., ¢ =2 +pu,
and ky = (Rin/s — 1/4)V/*.
Tae nature of the cig nvmlues is obtained by substituting G (Z) from (67) into
(61) to gt
G(5) =1 =02 = ra(l + 1a) (1 = )] F (e, b'5 ¢';3/(3 = 1)
+ yadF' (@', b'; ¢ 5 8/(6 — 1)) =0, . . (63)

where the prime over F, the hypergeometric function, denotes the derivative with
respect to the last argument. Since we require ¢* to be negative, to avoid critical
levels, we seek the roots § of (63) which lie between 1and — co. We also observe
that the function @ (8), given in (63), is analytic in & for & belonging to the range
(— o0, 1) and, consequently, the limit points of the zeros of G (), if any, could
onlybe § = — o0 or § = 1. Three distinct cases arise depending on whether the
maximum Richardson number, Ri,,, is less than, equal to, or greater than 1/4. The
nature of the eigenvalues can be predicted by knowing the asymptotic behaviour
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of the hypergeometric function for the above threc cases and the analysis is similar
to the one presented in paper I, the details may be found in [4]. The number of
roots of G (8) in (63) is finite when Ri,is less than or equal to 1/4, while there
is an infinity of them in the neighbourhood of § = 1 for Ri, greater than 1/4.
While these results are obtained from the eigenvalue problem, our theory, as
in the isothermal case, does not include solitary waves travelling near critical speeds
¢y for which nis arbitrarily large. This is because for large n, ¢¥, which is nega-
tive, is very close to zero and the origin Y = 0 comes close to the critical level
Y = ¢*/(fH), which lies belowthe ground. It is easily verified that, for large a,
R, and U, at the origin, given by (38) and (40) become large. Hence the spec-
trum of possible critical speeds, as obtained from the eigenvalue problem, has to
be restricted so that the critical level is not in the close vicinity of the flow ficld,

5. Conclusions

In the present paper we have extended the results of I to more general atmospheres.
We have considered an atmosphere in which, initially, the pressure and density
were strictly decreasing with Y and the temperature was a non-decreasing function
of Y. With the help of a simple transformation, a growth condition on the
ambient wind profile was obtained which ensured that the first order terms are
of the same order as the zeroth order ones. 'The problem of finding the critical
speeds in this case also reduced to solving an eigenvalue problem for a second
order ordinary differential equation. Purther analysis in this general case, however,
was found to become too involved and therefore, for simplicity, a linearly increas-
ing temperature profile was assumed. This corresponds to assuming the atmos-
phere to be a pure thermosphere. Results similar to those stated in the isothermal
case were obtained. Also, for a linear wind profile, the first order equations posed
an eigenvalue problem for the Gauss’s hypergeometric equation whose eigenvalues
give the possible critical speeds of the flow. In this case the Richardson number
varied with height and. decreased to zero as Y increased to infinity. We Fave
shown that if the maximum Richardson number, Rj,, is greater than 1 /4, then
the number of possible critical speeds is infinite. On the other hand, if Ri, < 1/4,
only a finite number of them were found to exist. 'This change in the behaviour
of the number of critical speeds with the maximum Richardson number can be
explained on the basis of the behaviour of the solutions near the critical level, as
for the isothermal case. Also, our comments made in the isothermal case, on the
extent of the validity of our solution and the finiteness of the spectrum of the criti-
cal speeds, if we wish to stay away from the critical levels, remain valid in this case
too. Therefore, generally, the limited range of validity of the solution as well as
the need to keep the critical level out of the domain of the solution both inhibit
the cardinality of the solitary waves so that even for Ri,, > 1 /4 we shall have only
a small number of possible solitary waves in the atmosphere.
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Appendix

In this appendix we give the Gj’s for the case of linear temperature profile.
Writing # = (1 + oY), and using the notations as in J, we have,

I 1
G, = [Jl. £+ 5 . )(a.“ + )

yLU0 1+ ya
______,’Z}_l_/.l‘ _______ T - ) Y 7 2 %
t =TT 5 0710 Py =1+ 20 U™ | Az s
U"’ ________ - 14
G: "[{ To=-1 %70 O) "
0y at Dt Oy o U
AT S et L
(a. “4 1) i UO 4‘7’77”‘“ Uo_m

St D e (e (G s e

(o +1 4yt Uy 2y(at 1) ?I’if‘)
(” — 1 +- 3’(1.) U()

~ 0, yn*# Ug ”
2<L(3’ -1 + yu) Uu><]—4 (y =1+ ya) }ff
Ly-—l-{-ya,) L)’——-]'l-)'a) L(V"1+}’a)

_ R 720 o A,
T L(J’”l"“?’a) }f :\ Az

G- AL Us(f + ynf1) 84,
A L L{y—1+ ra)y &2
— fﬁo @Al [ 7’ (a + ]) lf() AR
G, = Lyttt ¢ + L (y —_ 1 4= 7’(1) Ujf

£ {1+ —10) Ty — 2031 + 2000 = 12 0* Ug
A
= y*(1 + 241 U f’“] 4 a--l,

and

) — o 4 q 1
\:(') W?ll}l; : )f]3 ) +(clf + G)ff +cr‘f’)A13A

(31—1-]—2'))(1) ?; 77
L(V-lwa)[{ 7 +2“U“lt°‘1}f

oy 0% A
+{ya,+2y77U0UO}f, fazgé,
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where ¢, ¢, and ¢; arc given by

SO T el Ul o) L i U 1 el T 0 10 B

6 = L (m) ‘ ;;03 y U(; y»_/g X
o2 Qo — At Apte T
ULy -1+ ya) U2 7
and
Co = (l' + 2’“‘2 y+ ay — 2@)7]1“' _ i
’ (7 =D+ ya) L 7 -
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