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ABSTRACT

We have found an exact similarity solution of the point explosion
problem in the case when the total energy of the shock wave that is pro-
duced is not constant but decreases with time and when the loss due to
radiation escape is significant. We have compared the results of our exact
solution with those of exact numerical solutions of Elliot and Wang
and have explained the cause why our solution differs from theirs in
certain aspects. ’

1. INTRODUCTION

SIMILARITY solutions in radiation-gas-dynamics have been given by Mar-
shak,® Elliot? and Wang® in which the flow is headed by a shock wave.
Elliot considered the explosion problem, solved earlier by Taylor* by in-
troducing the radiation flux in its diffusion approximation. Wang® has
discussed ° piston problem > with radiation energy transfer in the thick limit,
thin limit and also the general case with the idealised ‘ two direction > approxi-
mation. In the present paper, we find an exact solution of the propagation
of a strong spherical shock in a medium in which the density varies as Rf
where R is the radial distance and B is a regative number and such that
radiation flux is important. We assume a similarity form for radiation
flux and make use of the “ product solutions” of McVittie® to evaluate
it. The radiation pressure and radiation energy are considered to be small
in comparison to material pressure and energy respectively and therefore
only radiation flux is taken into account. Our solution would give realistic
results when the explosion, for example, takes place at a high altitude so
that the loss of radiation energy from the shock becomes significant in the
surrounding optically thin atmosphere. Thus, the total energy of the shock
is not conserved, but decreases with time. We have not explicitly used
radiative transfer equation, but have evaluated the radiative energy loss
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from the consenvation equations. The solution, therefore, holds without
any restriction on the optical properties of the medium.

2. EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

The equations of continuity, motion and energy are:
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where p, u, p are density, particle velocity and pressure respectively at radial
distance r and time 1,

where + is the ratio of specific heats and F is the radiation flux.

The density in the undisturbed medium is assumed to be
Pa = p*Rﬁ? (2' ~4)
where p* and g are constants and R is the shock radius given by
R? = A*R-*, (2.5

where A and o« are constants.

We regard the shock to be a thin surface so that the radiation flux is

continuous across it and we have the classical shock conditions for a strong
shock:
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-where the suffixes 2° and ‘1’ give conditions just behind and just ahead of
the shock respectively.

3. SIMILARITY SOLUTION

‘We assume the solution of the problem to be given in the simi-
larity form:

u = R (x), p=rpap(x), p= paR2P (x), E=R2E(x),
F = pg R2F (%), (3.1)

where x = r/R is the similarity variable. The equations (2.1)~(2.3) trans-
form into

- P 21 L
pr@—nl——(Z+a), G2
(i — %) @ — %aﬁ %, (3.3)
(u—~x)E'—-aE+p( +z")+£5§(%(ﬁx2)=o. (3.4)

The shock conditions (2.6)-(2.8) change into

2 . 2 7+ 1
ﬁ(l)-:ms P(l):ma P(l)—m- (3.5

We assume the product solutlon of the ‘progressive wave’ given by
McVittied in the form

_a®, | 3.6)
t b
p= QA+ Dft 23, 3.7
p=aft b7 (3)
where
e (3.9)
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a is some function of 1 and f(¢) and b () are given by

alt) = ?."‘/\:_ ffl?f (3.10)
b(’)=%};(_“02~2—a-——mt), , (3.11)

and o' and A are some constants. These equations satisfy (2.1) and (2 .2)
identically.

After changing this solution to similarity form which requires a to be

a constant, evaluating F from (3.4) and applying the boundary conditions
(3.3). we finally obtain the following solution: j

- 2

u(x)=y+1x, (3.12)

b(x) = NI (3.13)
e Sy .

- v l —

P(Y) = :/‘*—_:‘1 x)‘ = (3 . 14)

F (Y) —_ 4 (7 — YT }6 R 187) x('y+1)(ﬁ+3)/‘)'——1! (3 . 15)

v —=D*(B -5~y +10)
where

A=27B=-2@r =1
y—1

The temperature is obtained from

where R = gas constant,

so that if

Ra-
T==T,
R

"
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we have
= _ 2 (y — 1)
T — . {3.16)

This solution is an example of exact so]
corresponding to the exact solutions obta;
McVittie s Sedov.,® etc.

utions in radiation-gas-dynamics
red in ordinary gas dynamics by

RESULTS AND Discussion

For density to remain finite at the centre and for the fiux not to be
‘negatwe anywhere we have from (3. 14) and 3 .15)

By +84+6>0, (3.17)
T—y+B+By>0. (3.18)

For the permissible values of 8 corresponding to values of y =1-2,

15 and 5/3, we have tabulated the powers of x for 7, 5. and F in Table L.
We have also tabulated the values of

_23+8—a
a-+2

which gives the variation of total energy in the shuck

(« = 2HECLDELDN,

y+ 1
E,,. =47 | (B %) pr? dr = const 1 (3.19)
O .
and the ratio of mean radiative flux to the rate of change of total energy
given by
f 4712 F dr
= 9 _ =1 (3.20)
N dE . B+ By + &
dt

correspondu g to different values of y and B.

(1)‘Thls solution predicts velocity, density, pressure and rac.ﬁ.ation flux
_to be zero at the centre. The values of all these physical quantities mon:-
tonically decrease fromjthe highest at the shock to zero at the centre. The
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effect of change of 3 and y and consequently the change in the rate of energy .

loss by radiation is much smaller for velocity and pressure than for density.
This is in agreement with the results of Wang.3 These parameters (except
velocity which is a lirear function of x) show a steep rise near the shock.

This rise becomes much larger for small values of B. The. velocity and
temperature behind the shock depend only on y and are independent of g..

TABLE 1
' |
: F P gﬂﬂ;)_(f”f’”) a=2(3j_f;“) P — 100 % 4

' ! § 5
1 1-2 0 32 30 33 : —0-6905 | —0-0277 2-77
2 iz o -1 21 1 22 —0:5807 —0-04 4
3 1a | -2 10 8 11 | —0:35 —0-0714 7.14
¢ 12| -25 45 5 55 |  —0-1035 | —om7m | 11478
5 15 | o 4 12 15 —0-6111 | —0-0555 5-55
6 1.5 | -1 9 3 10 . —0.4615 | -0-0769 | 7-69
7 13 -2 s 2 5 5 —0-125 ; -0-125 12.5
] 53 0 il 2 12 —0-5714 | —0-0666 6:66
® 53 | -1 7 5 8 —0-4 t -0-0909 9.08
» 83 % -2 3 1 4 0 { ) 0

(ii) The temperature and radiation flux are particularly large near the
shock. showing that the very high temperature region is near the shock
bwnd.ary The radiation flux is everywhere positive unlike the results
obtained by ‘ﬂf’mng* for the piston problem wherein the radiation flux
becomes negative away from the shock towards the piston. Comparing

our results with those of Elliot® for his & — 100 which corresponds to
» pressure and radiation flux

the shock region. This is possi
by Elliot? which renders th )
shock region. In his other results which correspond to milder radiation
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effects, the radiation flux assumes its maximum somewhere within the shock
reglon and becomes zero both at the centre and very small at the shock.

(111) p which is a measure of mean of the loss of energy due to
radiation increases when B8 decreases from 0 to —2-5, say, that is, when the
undisturbed density falls off rapidly and the atmosphere is more rarefied.
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