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A lattice-gas model is constructed for oil-water-surfactant mixtures. The phase diagram of this
model is obtained by using mean-field theory and Monte Carlo simulations aided by low-
temperature expansions. Microstructures, structure factors, and mean droplet lifetimes are also
determined in some phases. Both two and three dimensions are studied, the former in more detail
than the latter. It is shown that it is natural to interpret the paramagnetic phase in our model as a
microemulsion. Our model is found to exhibit various properties that are in qualitative agreement
with experimental observations of oil-water-surfactant mixtures: (1) two- and three-phase coex-
istence occurs between oil-rich, water-rich, and microemulsion phases along first-order phase boun-
daries or a triple line in certain regions of the phase diagram of our model; (2) the triple line, which
ends in a tricritical point, is short and this leads to low oil-microemulsion and water-microemulsion
interfacial tensions; (3) microstructures (includingbicontinuous ones in three dimensions)and struc-
ture factors are similar to some experimental ones; (4) droplets in our microemulsion phase are long
lived like their experimental counterparts; (5) long-lived, metastable phases, including long-period,
lamellar, and glasslike phases, appear at low temperatures. The limitations of our model are dis-

cussed. Our study is compared with other studies of models of oil-water-surfactantmixtures.

I. INTRODUCTION

In this paper we study phase equilibria, static correla-
tion functions, and some nonequilibrium properties in a
lattice model that we have developed' for the study of
systems that exhibit microemulsion phases.?” We begin
this introduction with a survey of the experiments that
have been done on these systems and a brief critique of
current theories. We end with an overview of our princi-
pal results. In subsequent sections we present the details
of our study.

A. Survey of experiments

Microemulsion phases occur in a class of three-
component fluid mixtures,® in which there is a strong ten-
dency for one of the components to be adsorbed at the in-
terface between the remaining two components. The
most common examples are oil-water-surfactant mix-
tures, such as mixtures of decane (oil), water, and AOT,
i.e., sodium di-2-ethylhexyl-sulfosuccinate (surfactant).®
Such mixtures exhibit a variety of phases because of two
competing tendencies: (1) oil and water tend to phase
separate, since the oil-water interfacial tension oqw is
large ( =50 dyn/cm); and (2) surfactant molecules, being
amphiphilic, are adsorbed at an oil-water interface, SO
they tend to solubilize oil in water. (This adsorption
lowers the bare oil-water tension oow to values as low as
0.1 dyn/em.”) The phases obtained are?~* (1) oil-rich
phases (O); (2) water-rich phases ( W); (3) lamellar phases
(L) in which layers of oil and water are separated by lay-
ers of surfactant molecules [Fig. 1(a)];*~!! (4) hexagonal
phases (H) in which cylinders of oil (orwater) are packed

in a hexagonal array [Fig. 1(b)] in a water (or oil) back-
ground, with surfactant molecules at oil-water inter-
face~;~—(5) microemulsion phases (ue) whose micro-
structure, though controversial (see below), is often pic-
tured as small (~100 A) droplets of oil in water [Fig.
I{c)]) or water in oil [Fig. 1(d)], with surfactant molecules
at oil-water interfaces; with comparable amounts of oil
and water, the microstructure is envisaged as percolating,
bicontinuous regions of oil and water separated by surfac-
tant molecules [Fig. 1(e)];*~>!* (6) cubic crystalline
phases (C), which are often made up of a complex ar-
rangement of tubes, with water or oil cores and a sheath
of surfactant molecules;>!° and (7) disordered, glasslike
phases (G) whose structure and thermodynamic stability
are not completely clear.'?

Phase equilibria among the above phases have been
studied experimentally for many years.2™® A rich variety
of phase equilibria is found. Such phase equilibria are
displayed typically in triangular phase diagrams, at con-
stant temperature (Fig. 2). The details of such phases di-
agram very, of course, from system to system; however,
these phase diagrams share the following qualitative
features: (1)oil-rich (O) and water-rich (W) phases occur
at low concentrations (up to a few percent by volume) of
surfactant molecules; {(2) microemulsion (ue} phases
occur from low (a few percent by volume) to fairly high
(=~80% by volume) concentrations of surfactant mole-
cules; (3) lamellar (L), hexagonal (H), and cubic (C)
phases occur from medium (— 20% by volume) to high
(up to 100%)concentrations of surfactant molecules; and
(4) both two-phase (O-W, O-ue, W-pe, W-L, L-H, H-C,
ete.) and three-phase (O-W-ue, L-H-C, etc.) coexistence
occur (Fig. 2). We refer the reader to the growing litera-
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FIG. 1. ldealized microstructures for (a) a lamellar (L)
phase, (b) a hexagonal (H) phase (a top view of the hexagonal
array of cylinders and a side view of one cylinder are shown),
and microemulsion (i) phases with {c) droplets of oil in water,
(d) droplets of water in oil, and (e¢) a bicontinuous structure.
Shaded regions represent oil and unshaded regions, water. Sur-
factant molecules (shownwith round heads and flexible tails) re-
side at oil-water interfaces [sometimes (e) they are not displayed
for pictorial clarity].

FIG. 2. Schematic phase diagram for an oil-water-surfactant
(O-W-S) mixture in the composition triangle at fixed tempera-
ture. Unshaded areas represent single-phase regimes, areas
hatched with tie lines indicate regions of two-phase coexistence,
and dotted areas denote three-phase coexistence regions. Oil-
rich, water-rich, microemulsion @e¢), lamellar (L) hexagonal
(H), and cubic (C) phases are shown. In laboratory mixtures all
these phases might not coexist as shown at one temperature;
furthermore, different types of cubic, hexagonal, and lamellar
phases might occur. The microstructure of the ue phase varies
from the oil-in-water type [Fig. 1(c)] near the water-rich corner,
through the bicontinuous type [Fig. 1(e)] in the middle of the
triangle, to the water-in-oil type [Fig. 1(d)] near the oil-rich
corner.

ture?~>14=18 on experiments that trace the evolution of
these phase diagrams as functions of temperature and the
concentrations of other components (cosurfactants and
electrolytes).® Critical points are also found in systems
that exhibit microemulsion phases.

Light-scattering,'®!°~2*  x.ray-scattering,” "2’  and
neutron-scattering?®~%* studies yield the most reliable
data on the microstructure of the preceding phases (Fig.
1). The oil-rich (0) and water-rich (W) phases are uni-
form liquids. The lamellar (L), hexagonal (H), and cubic
(C) phases can be characterized, respectively, by the or-
der parameters that describe conventional one-
dimensional, two-dimensional, and three-dimensional
crystals. To the best of our knowledge, detailed scatter-
ing studies have not been attempted in glasslike phases in
these systems.

The interpretation of scattering data from microemul-
sion phases is not straightforward. Figures 3(a) and 3(b)
show schematic plots of the sorts of structure factors that
are found for microemulsion phases. If the static struc-
ture factor S(k) has a peak at some nonzero value of
k =k, [Fig. 3(0)], then k,; ' can be identified as a charac-
teristic length, such as a mean droplet size. However, a
careful analysis of such structure factors shows that the
same data can be fit by assuming that the microemulsion
under investigation consists of a polydisperse system of
spheres or a monodisperse system of ellipsoids o revolu-
tion.>* Nevertheless, the general belief, based on scatter-
ing'%1°=33 and other studies,?»?*3%3¢ is summarized in
the schematic diagrams Figs. 1(c)-1(e): at low concentra-
tions of oil (water),microemulsions consist of polydisperse
spheres of oil (water)in water (oil); when the concentra-
tions of oil and water are comparable, a bicontinuous mi-
crostructure [Fig. 1(e)] is obtained.’” Extended, cylindri-
cal micelles have been reported in aqueous solutions of
ionic surfactants.”® However, it is not clear experimen-
tally whether cylindrical microemulsions (i.e., mi-
croemulsions with cylindrical droplets) exist and are new
phases that are distinct from spherical microemulsion
phases (i.e., microemulsions with spherical droplets).>

The microstructures of microemulsions are not frozen
in time: droplets and bicontinuous structures are in dy-
namic equilibrium. However, the typical lifetime of a
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FIG. 3. Schematic plots of the structure factor S(k) vs the
magnitude of the wave vector k (k =1k) in the microemulsion
phase. In some cases (a) S (k) displays a maximum at k =0; in
others (b) S(k) has an additional maximum at k =k,, with
ki'~100 A. For more detailed graphs see Ref. 31.



droplet®**? (~107%s) is far greater than microscopic re-
laxation times in simple liquids (~107'? s).*' Recent
light-scattering measurements*? have found a slow, non-
Debye relaxation towards equilibrium in microemulsion
phases.

Starting from potentials that describe the interactions
between molecules of the three components of a mi-
croemulsion, a theory of phase transitions in systems
with these three components must obtain the following:
{i) the phases and their coexistence in such systems (Figs.
land 2), (i) the static structure factors in these phases
(Fig. 3), (i) the equilibrium microstructures in these
phases (Fig. 1), (iv) the mean times for which basic units
(such as droplets) retain their identities in a given micros-
tructure, (v) the modes of relaxation (perhapsnon-Debye)
to equilibrium in different phases, (vi) transport
coefficientsand response functions.

The theoretical tasks listed above are formidable, so
theories have attempted only to explain some of the ex-
periments outlined above. Some theories’!>*** have
concentrated on microstructures, others!3#~61 on
phase equilibria in certain regions (say the region of low-
surfactant concentration) of phase diagrams like the ones
shown in Fig. 2, and yet others®*$! on critical points in
microemulsion  phases; calculations of transport
coefficients and response functions are in their infancy.*
These theories are of two sorts: (1) continuum theories
that start with phenomenological free energies*~** and
(2) lattice theories that start with lattice-gas mod-
e | ~ . ~ , ~Neither ane-of-these twe types of theories
uses realistic potentials to describe the interactions be-
tween oil, water, and surfactant molecules. In addition,
phenomenological theories either make ad hoc assump-
tions or approximations that cannot be controlled: e.g.,
one class of phenomenological theories*® ~>° assumes that
the mean size of droplets is an order parameter for the
microemulsion  phase; another  phenomenological
theory®22 uses an effective, attractive, droplet-droplet in-
teraction to obtain critical points in microemulsion
phases. Many studies of lattice models**~*® make as-
sumptions that imply, in effect, that microemulsion
phases are periodically modulated.

B. Our model and principal results

Before we describe our lattice-gas model for oil-water-
surfactant mixtures, we delineate briefly the reasons for
adopting the statistical-mechanical approach we follow:
we construct a simple, albeit incomplete, model for the
oil-water-surfactant mixture; we analyze thoroughly the
statistical-mechanical properties of this model (via
mean-field theory and Monte Carlo simulations); thus we
elucidate the minimal microscopic elements that a model
must possess to yield various macroscopic properties (e.g.,
phase equilibria) of oil-water-surfactant mixtures. We
find that our model, whose simple potentials mimic
effectively (a) the tendency of oil and water to phase
separate and (b) the tendency of surfactants to solubilize
oil in water, displays various properties (see below) that
are qualitatively similar to those of oil-water-surfactant
mixtures. In addition, our study leads to new insights

about such mixtures; in particular, it leads to insights
about the nature of microemulsion phases.

Our lattice model does not use realistic molecular sizes
or interactions. Nevertheless, the qualitative results we
obtain from our study do have a bearing on the micro-
scopic behavior of oil-water-surfactant mixtures. The
principal advantage of using lattice models is that they
are far easier to study in detail (via, say, Monte Carlo
simulations) than continuum models: it is far easier to
obtain reliably the phases, their microstructures, and
phase boundaries for a lattice model than for a continu-
um model. We also note that phases of a continuum,
fluid mixture can be qualitatively similar to phases of a
(suitable) lattice model, as long as the densities of the
components of the lattice model vary slowly (on the scale
of the lattice spacing) in these phases. (Dropletsand oth-
er structures in microemulsion phases are characterized
by lengths that are much larger than molecular lengths,
which can be taken to set the scale of the lattice spacing
in a lattice model.)

Lattice models in general, and our model in particular,
do suffer from some drawbacks in their description of
fluid mixtures, such as oil-water-surfactant mixtures. We
discuss them in detail in Sec. V. Because of these draw-
backs, we have not tried to obtain all the phases that
occur in oil-water-surfactant mixtures. Instead, we have
concentrated on oil-rich, water-rich, and microemulsion
phases, the phase boundaries between them, and their mi-
crostructures. Of course, we do find low-period lamellar
and crystalline phases in our model; however, the
relevance of these phases to those found in oil-water-
surfactant mixtures is unclear.

We emphasize that we do not make any assumptions
about the nature of microemulsion phases: we study the
statistical mechanics of our model by using mean-field
theory and Monte Carlo simulations in a way that places
no restrictions on the spatial variation of the densities of
oil, water, and surfactant molecules. Most of our calcula-
tions have been done for a two-dimensional version of our
model. The principal qualitative points we make in this
paper do not hold only in two dimensions. We have
checked this by doing calculations for a three-
dimensional version of our model.

We highlight now the most significant, qualitative re-
sults of our study. (1} In our model, we identify the mi-
croemulsion phase with the disordered phase (like a
paramagnet, see below), for, in certain regions of our
space of parameters, this disordered phase exhibits mi-
crostructures similar to those of laboratory microemul-
sions, although the surfactant concentration is surprising-
ly large compared to that in real systems (see Sec, V for
discussion.) Furthermore, as the temperature increases,
these microstructures evolve smoothly, without any inter-
vening phase transitions, into microstructures that are
characteristic of homogeneous and completely mixed
solutions of oil, water, and surfactant molecules. This
important result, which makes clear the nature of the mi-
croemulsion phase in our model, should be tested experi-
mentally. By varying the pressure,®® temperature, and
the concentration of the constituents of a laboratory mi-
croemulsion, it should be possible to make it evolve



smoothly (no phase transitions) into a homogeneous and
completely mixed solution of oil, water, and surfactant
molecules. Of course, just as in the case of a liquid-gas
transition, the evolution from low- to high-density phases
might proceed via a first-order phase transition; however,
there should be paths in parameter space (pressure, tem-
perature, chemical potentials) along which this evolution
should occur smoothly with no intervening phase transi-
tions. (2) We find, as seen in experiments, a triple line
along which oil-rich, water-rich, and microemulsion
phases coexist. (3) This triple line ends in a multicritical
point (a tricritical point). The triple line in our model is
quite short (see below), thus all phases that coexist along
it are in the vicinity of a tricritical point. Consequently,
the interfacial tension between the microemulsion phase
and the water-rich or oil-rich phases must be low (even
though we have not calculated this explicitly).** By vary-
ing the temperature and the concentrations of the com-
ponents of a microemulsion, especially the concentration
of cosurfactant molecules, it should be possible to check
experimentally for a tricritical point in the vicinity of the

region of three-phase coexistence (O-W-ue coexistence).

Some evidence for such tricritical points and some criti-
cal end points already exists.'* (4) We obtain the first mi-
croscopic theoretical example of a microemulsion that
has a microstructure that can be truly described as ran-
dom bicontinuous. Such a structure has previously been
obtained from a cell model.*

In addition to T, the temperature, H, the difference of
chemical potentials of oil and water, and y, the chemical
potential of surfactant molecules, our model (which we
define precisely in Sec. II) has three parameters: (1) J, the
strength of the oil-water interaction (we choose J >0 in
order to favor the phase separation of oil and water in the
absence of surfactant molecules); (2) J, the strength of
the surfactant-mediated oil-water interaction (we choose
J, <0 to favor the solubilization of oil in water); and (3)
V, the strength of the surfactant-surfactant interaction
(we allow ¥ >0 or V <0, i.e., attractive or repulsive in-
teractions). ¥ can be thought of as an effective interac-
tion in which the angular dependences have been aver-
aged over. Very little is known about such interactions,
S0 we investigate regions of parameter space where V is
positive, negative, or zero. Unlike realistic potentials, all
our potentials are short ranged; indeed, they are nearest-
neighbor interactions in our lattice model. In some of
our calculations we allow for next-nearest-neighbor in-
teractions between surfactant molecules (Sec. IT). In Sec.
V we examine the consequences of using such approxi-
mate, short-range potentials.

In the following discussion, we sometimes use two sym-
bols for a phase because, in Sec. 11, we work with an Ising
model that is equivalent to the lattice-gas model we are
interested in. The second symbol refers to the nature of
magnetic ordering in this equivalent Ising model.

We set the scale of energies by taking J = 1, explore the
phase diagram of our model in the five-dimensional space
of parameters J;, ¥, T,H, and i, and obtain microstruc-
tures and structure factors for various phases. Our prin-
cipal results for our model are summarized below.

(i) At high temperatures our model displays a disor-

dered phase (a paramagnet P) which we identify as a mi-
croemulsion (uie): In certain regions of our parameter
space this phase displays an oil-in-water (Fig. 4) (or
water-in-oil) microstructure, in other regions and ind =3
it displays a bicontinuous microstructure. As the temper-
ature rises, the sizes of different domains in these micro-
structures decrease, and they evolve smoothly, without
any phase transition, into the microstructure of a conven-
tional paramagnet.

(ii} At low temperatures we find the following phases:
oil rich (O, i.e., ferromagnetic up F+); water rich (},
i.e., ferromagnetic down F —), low-period lamellar (LF +
and LF—, which are ferromagnetic, and LAF! and
LAF2, which are antiferromagnetic), low-period crystals
(the antiferromagnetic phases AF! and AF2), and uni-
form phases with a high density of surfactant molecules
and a high density of oil or water (the ferromagnetic
phases FS+ and FS—).

(iif) These phases coexist as shown in the schematic
phase diagram of Fig. 5. [For simplicity we show only
one three-dimensional section through the phase diagram
in our five-dimensional parameter space; also, we restrict
ourselves to our two-dimensional (spatial)model.] Note,
in particular, that we obtain two- and three-phase coex-
istence between oil-rich, water-rich, and microemulsion
phases (i.e., 0-W, O-ue, W-ue, and O-W-ue; cf. Fig. 2,
where densities vary and the temperature and the
strengths of interactions do not, as in our phase dia-
grams).

(iv) In Fig. 6 we show the structure factor (oil water) of
our model in a region of parameter space where a mi-
croemulsion phase exists. This should be compared with
the structure factor of Fig. 3(a). We have not been able
to find any region of parameters in our model in two di-
mensions where a structure factor like the one of Fig. 3(b)
obtains.

(v} Our model displays many long-lived, metastable
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FIG. 4. Representative microstructure of the microemulsion
phase obtained by Monte Carlo simulations of our model for
two dimensions with ¥, =0, u=— 1.0, H= —0.025, V= —0. 1,
J,=-2.6,T7=0.575, and J =1, The surfactant molecules are
indicated by lines. The microstructuresare the water (squares)
-in-o0il (empty spaces)type shown in Fig. 1(d).



phases, some of which are glasslike (i.e., disordered, but
frozen on the time scale of our Monte Carlo simulations).

(vi) If we use single-spin-flip Glauber dynamics® in our
Monte Carlo simulations, then the mean lifetime of a
droplet in our microemulsion phase is 10°~10° times the
mean lifetime of a droplet in an Ising model with
T=1.1T,, where T, is the critical temperature of the Is-
ing model. This enhancement of droplet lifetimes, com-
pared to microscopic relaxation times in simple fluids,
occurs in laboratory microemulsions.*

The remaining part of this paper is organized as fol-
lows: In Sec. 11 we define our model and determine its
phase diagram in certain limits (7 =0 or ¥ =0), where it
can be obtained either exactly or by the mapping of our
model onto another model whose phase diagram is
known, at least qualitatively. In Sec. III we study the
phase diagram of our model by using mean-field theory.
In Sec. IV we obtain the phase diagram of our model by
doing Monte Carlo simulations; we also obtain micro-
structures and structure factors in our microemulsion
phase. In Sec. V we list the limitations of our model,
compare our results with those obtained from experi-

FIG. 5. Schematic phase diagram in two dimensions in V,J,,
and T space for />0, V>0, J; <0, ¥,=0, and H=0. Points
O, A,B,and D are as in Fig. 9(a). There is a sheet of first-order
transitions between the F and AF phases bounded by AB and
the line of triple points (A ). Two sheets of first-order transi-
tions branch off from the line ( A) and become sheets of critical
phase transitions at the tricritical lines (@), These sheets
separate the AS and F regions from the paramagnetic or mi-
croemulsion phase P at higher T; they drop to T =0 on the line
AD. Finally, there is a sheet of first-order transitions between
the F and FS phases [see Fig. 9(a)] and bounded by the line O A
and the line of critical points (®). The latter lies below the
phase P everywhere except at A.

Structure factor S(k) (arb. units)

n/4a n/2a

Magnitude of wave vector k

FIG. 6. Oil-water (partial)structure factor of our model for
J,=-=1.20, ¥=0.40, and 7=0.356, where a microemulsion
phase exists [cf. Fig. 3(a)]. Note that there is no subsidiary max-
imum. The width of the peak is larger than that for the Ising
model at a comparable distance from the transition.

ments, and compare our model with those of other
groups.

II. MODEL AND LIMITING CASES

Our model is a generalization of a model due to Alex-
ander.%! The Hamiltonian is

IT

F+(0)
\ Jy=~2J+pu
AF1 & AF2

H

FIG. 7. Schematic phase diagram for Alexander's model in
dimension 4> 1 (J=1). Shaded planes indicate first-order
phase boundaries that terminate in critical lines (solid lines) or
meet critical surfaces (unshaded) along lines of tricritical points
(dot-dashed lines). Phase boundaries continue smoothly beyond
the wavy lines at which they end in the figure. The ferromag-
netic phases F + (oil-rich)and F — (water-rich) and the antifer-
romagnetic phases AF! and AF2 evolve at high temperatures
into the paramagnetic phase P which we interpret as a mi-
croemulsion (ue). Note that there is no first-order phase
boundary along which oil-rich, water-rich, and microemulsion
phases coexist.
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and ((ij,ik )Y are, respectively, distinct pairs of links that
meet at sitesi at 90° and 180”. We associate the Ising spin
o, =T1(—1) with the presence of an oil (a water) mole-
cule at site i; thus, the field H is related directly to the
difference between the chemical potentials of oil and wa-
ter; the exchange interaction J is chosen to be positive so
that it favors the phase separation of oil and water.%¢ We
associate 7;; = 1 (0) with the presence (absence)of a sur-
factant molecule on link (i }, & is the chemical potential
of surfactant molecules, and ¥V and ¥V, are used to
parametrize the interactions of these molecules. J; is the
strength of the surfactant-mediated interaction between
nearest-neighbor Ising spins; we choose J; <0 since it
favors an antiferromagnetic alignment of nearest-
neighbor spins ¢, and o; (if r;; =1); i.e.,, J, <0 favors the
solubilization of oil in water in the presence of surfactant
molecules.

For ¥V =V¥,=0, the model (1) reduces to the one pro-
posed by Alexander.®! As he noted, in this case the parti-
tion function of this model is the same as that of the d-
dimensional Ising model on a hypercubic lattice with an
effective coupling

B, +p) —BJ—n)

=74+ -L
Jg=J+ 2Bln[(l-i—e )/(1+e @

(B=1/ky T, where kg is the Boltzmann constant) be-
tween nearest-neighbor spins and with a field H acting on
every spin. (This follows by summing over the 7;’s, an
operation that is referred to as decimation or dedecora-
tion.) Thus, in the limit ¥ =¥, =0, the phase diagram of
model (1) follows from the phase diagram of the
equivalent Ising model described above.

Figure 7 shows a schematic phase diagram for model
(1) with ¥=V,=0, u=0, and d> 1. (For H=0 and
d =2 the model can, of course, be solved exactly.®®) Simi-
lar phase diagrams obtain for p0. Alexander’s model
has the phases we want to describe: two ferromagnetic
phases F+ (oil-rich O0) and F — (water-rich ¥) and the
paramagnetic phase P (microemulsion ue).®” However,
his model does not exhibit important, qualitative features
that are present in experimental phase diagrams of oil-
water-surfactant mixtures: in particular, it does not show
first-order phase boundaries along which there is two-
phase (O-pue, W-pe) and three-phase (O-W-ue) coex-
istence between oil-rich, water-rich, and microemulsion
phases.

To overcome this failure of Alexander’s model, we let
Vand ¥, be nonzero in model (1). Now it is not easy to
obtain the phase diagram of this model, for it cannot be
mapped onto an Ising model with interactions between
nearest-neighbor spins. We describe below how we ob-
tain the phase diagram in the limit 77=0. In this limit,
all we have to do is to find the configuration of ¢;’s and
7;'s that yields the lowest minimum of # [Eq. (1)].

At zero temperature ( T =0) we use Karl’s method® to
obtain exactly the phase diagram of model (1) for two
cases: (a)¥;=0 and all other couplings arbitrary and (b)
H =0 and all other couplings arbitrary. In case (a) [case
(b)] the minimization of H with respect to the o;’s and
7;;’s reduces to the problem of the minimization of the

energies of the finite cluster of ¢’s and 7’s shown in Fig.
8(a) [Fig. 8(b)]. The ground-state configuration of o;’s
and ;'S that gives the lowest minimum of H, is obtained
by repeating periodically the lowest-energy configuration
of the finite cluster (Fig. 8). All zero-temperature phase
boundaries are first-order boundaries (Figs. 9 and 10);
they are found by determining the loci of points along
which the lowest minimum of # has an n-fold degenera-
cy, with n 2 2.

In Fig. 9 (Fig. 10) we show representative, two-
dimensional sections through the zero-temperature phase
diagram of model (1) for d =2 (d =3). In addition to the
zero-temperature phases of Alexander’s model (Fig. 7),
we find low-period (upto period 4) lamellar and superan-
tiferromagnetic phases. A richer variety of phases ap-
pears for d =3 (Fig. 10) than for d =2 (Fig. 9). We have
not studied the zero-temperature phase diagram in detail
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FIG. 10. Zero-temperature phase diagram for model (1) in
d=3 with u=H=V,=0. The phases AFl, AF2, LAF],
LAFR2, F+, F—, FS+, FS—, LF+, and LF— have micros-
tructures which are the natural three-dimensional analogs of the
corresponding d =2 structures displayed in Fig. 9(a). The struc-
tures of the phases denoted by V11 and VIII are shown in (b).



¥, and H are nonzero. We have
tried to find ground states in this case via slow, Monte
Carlo annealing;® this has not yielded long-period lamel-
lar or superantiferromagnetic ground states; however,
given the complexity of our model, we cannot rule out
the existence of such ground states when ¥, and H are
both nonzero.

Along some of the zero-temperature phase boundaries
in Figs. 9 and 10, many more phases coexist than are
shown; e.g., in Fig. 9(a) (d =2, T=H =V,=0, J =1) the
ground state is infinitely degenerate (in the thermo-
dynamic limit) in the following regions: (1)along the line
Jy= -1, V=2(1—u)/2 the total ground-state entropy
S(T=0)~N, where N is the number of lattice sites; and
(2) along the line J;==2+p, V<0, S(T=0)~V'N; at
the point J, = —2+pu, V=0,S(T=0)~N.

Zero-temperature phase boundaries, along which the
ground state of a model is infinitely degenerate, are of po-
tential importance: Thermodynamically stable, long-
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which, when minimized with respect to the order param-
eters {s;} and {¢;}, yields the mean-field equations for
these order parameters. The values of s; and ¢,; at the
lowest minimum of F yield the mean-field values of
M;={o;) and 4;=(r;) (theangular brackets denote
thermal averages) and  Fyp(T,H,JLu,V,V,J))
=F({M;},{A,}) the corresponding, mean-field free en-
ergy. The loci of nonanalyticities of Fyp Vield the
mean-field phase boundaries in the six-dimensional space
of the parameters T,H, u, V,V,,and J; (J = 1).

Note that we make no assumptions about the spatial
variations of the order parameters s; and ¢;. This is in
contrast to some mean-field studies of other lattice mod-
els for oil-water-surfactant mixtures. In these studies, the
authors assumed that the order parameters vary periodi-
cally in space; in addition, they almost always assume
that the order parameters vary along only one spatial
direction.

In Sec. IT we noted that (for ¥, =0 or H =0) the prob-
lem of minimizing # with respect to {o,;] and {7}
reduces to the problem of minimizing the energy of the
finite clusters shown in Fig. 8; the ground-state
configuration of the o,’s and ;;’s in model (1) follows by
a periodic repetition of the lowest-energy configuration of
these clusters. This occurs because the lowest-energy
configurations of contiguous clusters are not frustrated
with respect to each other (thiswould not necessarily be

period phases often emerge from such phase boundaries
(lines and points in Figs. 9 and 10) at nonzero tempera-
tures in models with competing interactions.””  Such
long-period phases do not always emerge from infinitely
degenerate lines and points in the zero-temperature phase
diagram of a model. In some models, infinitely degen-
erate ground states lead to a completely disordered phase
(a paramagnet) at any 7>>0. In Secs. III and IV we use
mean-field theory and Monte Carlo simulations to deter-
mine for model (1) whether long-period phases emerge
from the phase boundaries (in Figs. 9 and 10), along
which the ground state is infinitely degenerate.

111 MEAN-FIELD THEORY

To obtain the phase diagram of model (1) in the mean-
field approximation, we assume that the density matrix of
this model can be written as a product over single-site
and single-link density matrices. We then use a standard
variational method” to obtain the function

Lijtiy
«ij, ik
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true were ¥,;5£0 or H=s£0). The application of the
method of Karl®® similarly reduces the problem of
minimizing F [Eq. (3)] with respect to {s;] and {¢;] to
the problem of minimizing F defined for small clusters
(Fig. 8). This is true for ¥, =0 or H =0, and at the /eve!
of the mean-jield approximation, it follows rigorously
that, at the lowest minimum of F, M; and 4,; are period-
ic with period at most four and the resulting phases are
either lamellar or superantiferromagnetic in d =2,
Therefore, within mean-field theory, we must have both
V', and H nonzero to obtain long-period or completely in-
homogeneous, thermodynamically stable phases.

For the case V,, Hs0, we obtain solutions to the
mean-field equations for {s;} and {¢;] only for d =2.
This infinite set of coupled, nonlinear equations reduces
to a finite set for periodic solutions. We look for lamellar
solutions (along (10) or { 11) lines), with period up to
10, and superantiferromagnetic solutions, with unit cells
as large as 6 X6 and sides along {10) or ( 11) lines. To
investigate the existence of completely inhomogeneous
solutions, we look for solutions to the mean-field equa-
tions for all the variables {s;} and {¢;;] on a 32X 32 lat-
tice with periodic boundary conditions. We use an itera-
tion method to obtain solutions of these equations. For
this 32X32 lattice, we start from various random
configurations.

Figures 1l(a) and 11(b) show representative, two-



dimensional sections through the mean-field phase dia-
gram of model (1), with d =2, J =1, ¥, =0, and H =0.
The phases shown in the zero-temperature phase diagram
of Fig. 9(a) remain thermodynamically stable at low tem-
peratures. They coexist with each other along the first-
order phase boundaries (solid lines) shown in Figs. 11(a)
and 1l(b). There are some exceptions: Since the zero-
temperature phase boundary between the phases AF1
and FS+ [marked AD in Fig. 9(a)] is infinitely degen-
erate (infinitely many phases have the same energy along
AD) at any finite temperature T >0, the transition from
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FIG. 11. Mean-field phase diagram for model (1) in d =2 ob-
tained as described in the text. Solid lines represent first-order
phase boundaries; dashed lines indicate critical lines. Closed
circles denote tricritical points (a) p=H=¥,=0 and V=0.4.
Note the three-phase coexistence of the microemulsion, water-
rich, and oil-rich phases along one of the first-order boundaries.
() H=V,=0, o= —1.0,and V= —0.2. Note the coexistence
of lamellar, ferromagnetic, and paramagnetic phases. All ener-
gies and the temperature are in units of J =1.

AF! to FS+ occurs via a sequence of two continuous
transitions: AF!1-P followed by P-FS+. As the tempera-
ture increases, these low-temperature phases either (a) be-
come one phase at a critical point, as is the case with the
ferromagnetic phases F+ and FS+, or (b) evolve via
first-order or second-order (dashed lines) transitions into
the disordered paramagnetic phase P. Solid circles
denote tricritical points where first-order boundaries
meet second-order (ordinary critical) lines. Note in par-
tic_l]J_Iar that three-phase coexistence between the phases P,
F T, and F — is obtained for some values of J,. [This
first-order boundary is actually a triple line; it develops
into first-order planes when H=£0; along these planes the
phase P coexists with F T (F—) if H >0 (H <0).] This
coexistence between P, F+, and F — (which we interpret
as O-W-ue coexistence in Sec. IV) persists even when we
include the fluctuations that mean-field theory ignores;
however, these fluctuations reduce the length of the first-
order phase boundary by a large amount; and they yield
microstructures in the paramagnetic phase P that are
similar to microemulsion microstructures. (At the
mean-field level the paramagnet P is completely struc-
tureless: M;=0 for all i.) We elaborate on some techni-
cal points below.

The first-order phase boundary between the phases
F+ and FS+ does not show up on the scale of Figs.
11(a) and 12(a); however, it is shown in the schematic
phase diagram of Fig. 5. The nature of the F +-FS+
transition is easy to understand: it occurs at such low
temperatures that the Ising spins ¢; can be set equal to 1
in model (1); the resulting Hamiltonian for the variables
7;; isjust a lattice-gas model that is equivalent to an Ising
model. Thus the F+-FS+ first-order transition is like
the ferromagnetic-up to ferromagnetic-down transition in
the Ising model.

In the vicinity of the point A we find (in mean-field
theory) the following sequence of transitions: P,
— F+ — P as the temperature is lowered; both P, and P,
are paramagnetic phases, but the latter has a much
higher density of surfactant molecules than the former.
Equilibration problems have prevented us from checking
whether this sequence of transitions persists when we do
Monte Carlo simulations of model (1).

It is easy to understand the mechanism that leads to
the triple line along which P-F+-F— (.e., pe-0-1¥)
coexistence occurs: We expand the variational function F
[Eq.(3)] about s;=0 and #;;=41, retain terms to order
(t,,—%)z, and then eliminate the ¢;’s (via, say, a summa-
tion over the ¢;’s, which is possible because the integrals
are Gaussian). This elimination of the ¢;’s yields an
effective variational function F,; with a quartic term in s,
whose coefficient is T/12—J%/4T. For |J,|>T/V3,
this coefficient can be negative and leads to a first-order
boundary along which three phases coexist; such a first-
order boundary also ends in a tricritical point.

In addition to quantitative shortcomings (e.g., the
overestimation of the length of the first-order phase
boundary), the mean-field phase diagram of model (1)has
one qualitative failing: In the limit ¥ =¥, =0 and with
H=0 and J,=—-2J—pu it follows from Eqg. (2) that
J.£#=0, so there can be no phase transition at any temper-



ature; however, in this limit, mean-field theory yields a
nonzero transition temperature from the paramagnetic to
the ferromagnetic phase.

Our mean-field theory for model (1) yields a variety of
metastable phases that include long-period lamellar and
superantiferromagnetic phases and disordered, glasslike
phases, whose microstructures are similar to microemul-
sion microstructures. These metastable phases appear in
the range of parameters where the ordered, low-
temperature phases of Fig. 11 are thermodynamically
stable.

Most of our mean-field studies have been done with
V,=0. However, none of our principal, qualitative re-
sults change when V,5£0. In particular, three-phase
coexistence between P, F T ,and F — phases persists even
when V5£0. It is possible that long-period lamellar or
superantiferromagnetic phases might be thermodynami-
cally stable with ¥; and H nonzero (Sec. II); however, we
have not been able to find them in our mean-field calcula-
tions in the regions of parameter space that we have ex-
plored.

IV. MONTE CARLO SIMULATIONS

We use Monte Carlo simulations to study equilibrium
and some nonequilibrium statistical properties of model
(1). Most of our simulations are done in the grand-
canonical ensemble: the chemical potentials, not the den-
sities, of oil, water, and surfactant molecules are held
fixed. In some of our simulations we work in the canoni-
cal ensemble and hold the densities of these molecules at
fixed values. In the grand-canonical simulations we use
Glauber, single-spin-flip dynamics and in the canonical
simulations we use Kawasaki, spin-exchange dynamics.®
In our two-dimensional simulations we use square lattices
of sizes 40X 40 to 70X 70; in our three-dimensional simu-
lations we use simple-cubic lattices of sizes 10X 10X 10to
16X 16X 16. Typically 3000 to 7000 Monte Carlo steps
per spin (MCS) suffice to obtain equilibrium; if not, we
use more steps or flip clusters of spins. For example, in
the vicinity of the phase boundaries where the phases P,
F +, F —, AF1i, and AF2 coexist with each other, equili-
bration is greatly facilitated by flipping a spin o; at site i
along with all the link variables 7;; that emerge from that
site.”> We use the leading terms in low-temperature ex-
pansions to decide which clusters of spins to flip in vari-
ous regions of our parameter space.

In our simulations, we monitor the mean values of the
order parameters that characterize the simple uniform
and periodic phases shown in Figs. 9 and 10, obtain typi-
cal configurations of o,’s and 7;’s to study microstruc-
tures in different phases, and, in d =2, we also calculate
the structure factor S(q). We also make rough estimates
of the time (measured in MCS)} for which a droplet re-
tains its identity in the microemulsion phase (seebelow).

Figures 12(a) and 12(b) show representative, two-
dimensional sections through the phase diagram of model
{1). We obtain these phase diagrams from our Monte
Carlo simulations. Parameters for Fig. 12(a) [Fig. 12(b)]
are the same as for the mean-field phase diagram of Fig.
11{a) [Fig. 11(b)]. Of course, our Monte Carlo phase dia-

grams are far more accurate than their mean-field coun-
terparts.

The phase diagram of Fig. 12{a) is qualitatively similar
to its mean-field analog Fig. 11(a). In particular, the
three-phase coexistence of most interest to us, namely,
the coexistence of the phases P, F +, and F — along the
first-order boundary, appears in both Figs. !1(a) and
12(a). Our simulations yield microstructures, like those
of microemulsions [Figs. 1(c)-1(e)], for the phase P (see
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FIG. 12. Monte Carlo phase diagrams for model (1) with the
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continuous transitions. (a) u=H=V,;=0 and V=0.4. Note
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pared to the mean-field results of Fig. 11(a). (b) H=V,=0,
u= —1.0and V= —0.2. Lamellar phases appear in this region.



below); thus we identify P as a microemulsion phase and
conclude that our model (1) shows O-W-ue (..,
FT-F—-P) coexistence. Our simulations indicate that
this qualitative property of the model persists™ even
when d =3 or ¥;50. Indeed, we find that small and pos-
itive (i.e., attractive) ¥, leads to an enhancement of the
length of the first-order boundary (by approximately a
factor of 2). Also, simulations of the three-dimensional
version of the model with ¥, =0 produce a three-phase
coexistence line of length comparable to that found in
two dimensions.

Not surprisingly, the fluctuations that are present in
our Monte Carlo simulations, but not in our mean-field
calculations, lead to far lower transition temperatures in
Fig. 12(a) than in Fig. 11(a). These fluctuations also
reduce drastically the length of first-order phase boun-
daries [cf. Figs. 12(a) and 11(a)]. By changing the param-
eter ¥V and V', the length of this phase boundary can be
increased or decreased; however, in our Monte Carlo
simulations, we have not found any values of V" and V;
for which this phase boundary is very long [at most twice
the length it has in Fig. 12(a)]. Thus, in our model (1),
O-W-ue coexistence always occurs in the vicinity of a
tricrtical point [solid circle in Fig. 12(a)]; it follows,
therefore, that the interfacial tensions between any two of
these coexisting phases must be very low.* Fluctuations
also remove some of the qualitative shortcomings of our
mean-field phases diagram (Sec. III): In particular, our
simulations yield no phase transition, when V =V, =0,
J,=-2J—u,and H =0, in agreement with exact results
(Sec. I1).

The phase diagram of Fig. 12(b) and its mean-field ana-
log Fig. 11(b) show the region of parameter space where
the lamellar phases of model (1) are thermodynamically
stable. The mean-field phase diagram [Fig. 11(b)] shows
first-order phase boundaries along which paramagnetic,
ferromagnetic, and lamellar phases coexist; because of
equilibration problems, we cannot tell whether such
first-order phase boundaries also appear in the Monte
Carlo phase diagram [Fig. 12(b)]. Otherwise these two
phase diagrams are qualitatively similar. Note, in partic-
ular, the coexistence between lamellar (L) and mi-
croemulsion ke., P) phases as seen in experiments (Fig.
2).

In Figs. 4 and 13 we show the microstructures of the
paramagnetic phase P in different regions of our parame-
ter space for d =2. These microstructures are of the sort
that we expect in microemulsion (ue) phases: there are
large regions of water (squares)and oil (empty spaces)
with surfactant molecules (lines) at oil-water interfaces.
Thus it is natural to identify the paramagnetic phase P of
model (1) as a microemulsion. Even at low temperatures
[roughly a tenth of the temperature at which oil and wa-
ter would mix in the absence of surfactant molecules™ in
model (1)}, there is a rich variety of possible microstruc-
tures. Compact clusters, roughly circular (Fig. 4) or
stringy [Fig. 13(a)], the analogs of roughly spherical or
cylindrical clusters for d =3, form when the concentra-
tions of oil and water are sufficiently different. With
roughly equal amounts of oil and water [Fig. 13(b)], the
patches of oil and water are large and connected.”” Simu-

lations on the three-dimensional model with roughly
equal amounts of oil and water produce a bicontinuous
structure in the sense that both the oil clusters and the
water clusters percolate. (We have checked this with an
explicit calculation.)

There is one unphysical feature in our microemulsion
phase in the region of parameter space where we obtain
O-W-ue coexistence in model (1): this phase has a far
higher density (sometimesas large as 80%) of surfactant
molecules than is found in laboratory microemulsions
(where it can be as low as 5%). We believe this unphysi-
cal feature arises because the relative molecular size in
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FIG. 13. Representative microstructures in the microemul-
sion phase from Monte Carlo simulationsin d =2 for (a) ¥, =0,
u=—1.0, H=-0.05, ¥=-0.1, J;=—3.0, and T=0.14 and
(b) Vi=p=H=0,V=-0.1,J,=—1.8, and T=0.33; in both
cases, J=1 and T is approximately 10% above the transition
temperature. Note that the clusters in (a) are stringy in contrast
to the compact, roughly circular ones in Fig. 4 in another region
of parameter space. In (b), the microstructure has large, con-
nected patches of oil and water and is the analog of the d =3
bicontinuous structure. Note that a bicontinuous structure is
not possible in two dimensions (Ref. 75).



the model is not realistic. In fact, a crude rescaling of the
size of the water regions by the ratio of the surfactant
length to the water-molecule length leads to much more
reasonable results. It is also possible that long-ranged in-
teractions such as van der Waals forces play a role.

To characterize percisely the nature of the microemul-
sion phase of model (1), we compute the structure factor
S(q). (The structure factor we calculate is the Fourier
transform of the spin-spin correlation function (o,-aj);
the analogous experimental quantity is the partial, oil-
water structure factor.) The structure factor correspond-
ing to the microstructure of Fig. 13(b) is shown in Fig. 6.
At large values of q=Iql, S(q) has peaks that signal the
incipient antiferromagnetic ordering in model (1) (Fig. 5).
We have not found peaks in S(q) at small, but finite,
values of ¢ as are found in some experiments [Fig. 3(b)].
The structure factor of Fig. 6 has a peak at g =0 which is
very similar to the peak in S(q) for a simple Ising model.
However, S(q) for the zero-field, two-dimensional Ising
model, at a temperature 10% above its critical tempera-
ture, is somewhat narrower than the structure factor of
Fig. 6.

Microstructures of the paramagnetic phase of an Ising
model (at temperatures 5-10% above the critical tem-
perature) are also similar to the microstructures of the
paramagnetic phase of model (1). The two-dimensional
Ising model yields microstructures like Fig. 13(b), and the
three-dimensional Ising model yields bicontinuous mi-
crostructures. The principal difference between the mi-
crostructures of the paramagnetic phases of the lIsing
model and our model is the following: elementary units,
such as droplets or bicontinuous networks, retain their
identities far longer (a factor of 10°-10% in the mi-
croemulsion phase (ue or P) of model (1) than in the
paramagnetic phase of the Ising model.”® (For a mean-
ingful comparison of mean droplet lifetimes, we must use
the same Monte Carlo dynamics for both models. In our
simulations we use single-spin-flip Glauber dynamics.)
Even though our Monte Carlo dynamics is not a good
representation of the dynamics of oil-water-surfactant
mixtures,”” we believe the large enhancement of droplet
lifetimes in the paramagnetic phase of model (1) (relative
to Ising-model droplets) is similar to the large enhance-
ment of droplet lifetimes in laboratory microemulsion
(relative to microscopic relaxation times in simple
liquids). One reason for enhanced droplet lifetimes is
simple: The addition of surfactant molecules to a mix-
ture of oil and water reduces drastically the temperature
at which oil and water can mix in the absence of surfac-
tant molecules’™ [the reduction factor is nearly 10 in
model (1)]; at these reduced temperatures, the dynamics
is slow. The only reason this slow dynamics does not
prevent us from obtaining equilibrium properties of mod-
el (1) is because we use multispin flips while calculating
these properties.

Our model exhibits various metastable phases, which
can be lamellar, superantiferromagnetic, or inhomogene-
ous (glasslike). In mean-field theory (Sec. III), these
metastable phases appear as configurations of {s;} and
{t;;} that are local, but not global, minima of F [Eq. (3)].
In our Monte Carlo simulations, such phases have very

long lifetimes at low temperatures. Precisely how long
they last depends on the details of the Monte Carlo dy-
namics we use. We must be cautious in associating the
results of our Monte Carlo dynamics with the dynamics
of oil-water-surfactant mixtures; nevertheless, it is tempt-
ing to associate the glasslike, metastable phases of our
model with the glasslike phases seen in experiments!>4?
on oil-water-surfactant mixtures.

V. CONCLUSIONS

In Sec. | we have listed the principal results of our
study of model (1) and in subsequent sections we have
given the details of this study. Here we discuss the limi-
tations of our model and end with a critique of other
theories that emerges from our study.

Model (1) has various limitations, so it is not surprising
that it does not obtain all the experimental properties of
oil-water-surfactant mixtures, which we discussed in Sec.
I. We list below the discrepancies between the results of
our model and the results of experiments.

(1) Our model does not exhibit the large variety of
long-period, lamellar phases and complicated cubic
phases®~!! seen in experiments; however, our model ex-
hibits low-period, lamellar, and superantiferromagnetic
phases which may or may not be of experimental
relevance.

(2) Our model does not exhibit a lower consolute point
at which microemulsions with high and low densities of
droplets (of oil in water) mix and become one microemul-
sion phase.!¢

(3) We have not been able to find a region in the
paramagnetic phase (i.e., microemulsion phase) of model
(1) where the structure factor S(q) exhibits a peak at
small g (s£0) as seen in some experiments.*! =33

(4) In the region of parameter space where we obtain
O-W-ue coexistence in model (1), the microemulsion has
a high density of surfactant molecules in contrast to labo-
ratory microemulsions.

Model (1) has some obvious limitations which, we be-
lieve, are responsible for the discrepancies listed above.
We comment on these limitations below.

(1) Model (1) is a lattice model; however, we use it to
describe mixtures of continuum fluids. Thus the physi-
cally relevant phases of model (1) are those in which the
order parameters {s;} and {¢;} vary slowly on the scale
of the lattice spacing. Hence, low-period lamellar and
antiferromagnetic phases (e.g., LAF1 and AF1 in Figs. 9)
are, most probably, artifacts of the model.

(2) Like all Ising-lattice-gas models, model (1) treats oil
and water molecules on the same footing: The Hamil-
tonian # is invariant under o;—~—o; and H— —H.
This leads to a symmetrical oil-water limit (formally, the
limit 41— — ), in disagreement with experiments.”® We
therefore expect similar disagreement between the coex-
istence curves of our model and those observed in oil-
water-surfactant mixtures.

(3) Since oil and water molecules occupy sites and sur-
factant molecules, links in our model, it assumes implicit-
ly that these molecules are of comparable sizes. This as-
sumption is clearly false. This could account for the



large density of surfactant molecules in the microemul-
sion phase of our model near 0-HW-ue coexistence. Also
the structures and lattice spacings of periodic phases are
determined primarily by the sizes and shapes of constitu-
ent molecules, and hence we cannot expect our model to
describe accurately the details of periodic phases of oil-
water-surfactant mixtures (Sec. I). Further, we do not in-
clude longer-ranged interactions, which must be present
in oil-water-surfactant mixtures. Our neglect of these in-
teractions may be responsible for the absence of long-
period lamellar phases in our model. The presence of
competing interactions as in the three-dimensional axial
next-nearest-neighbor Ising (ANNNI) model leads to
long-period lamellar phases. In Refs. 55 and 59, such
phases occur precisely by this mechanism. Whether this
is indeed the cause in real microemulsions is not clear.
Finally, since we assume that surfactant molecules are
structureless (they have neither heads nor tails), it is un-
likely that our model can display lower consolute points
of the sort seen in oil-water-surfactant mixtures (Sec. II).

We are studying a generalization of model (1) that does
not suffer from the limitations described above. In par-
ticular, this generalized model displays a lower consolute
point in the pure water-surfactant limit.

All lattice models of oil-water-surfactant mixtures
suffer from most, if not all, the limitations of our model
(1). However, out study of model (1) is far more detailed
than the studies of all these lattice models with the excep-
tion of that of Larson et al.** None of these lattice mod-
els has, again with the exception of Ref. 44, been studied
via Monte Carlo simulations like those we use to study
model (1); in our mean-field study, we make no assump-
tions about how the order parameters vary in space.
Thus, in spite of the limitations of our model (1), we be-
lieve our detailed study of it brings out certain points of
principle that contrast with the results of some other
studies: (1) A microemulsion phase is most naturally in-

terpreted as a disordered phase (like a paramagnet). No
simple ansatz can be made for the spatial variations of
the oil, water, and surfactant densities in this phase. (2)
In the microemulsion phase of our model, droplets of oil
and water have neither a well-defined shape nor a well-
defined size. It is possible that droplets with compact
sizes and well-defined shapes may obtain in the mi-
croemulsion phases of models in which molecular struc-
tures and interactions are treated more accurately than in
our model. Nevertheless, we find it hard to justify the use
of the droplet size as an order parameter for a mi-
croemulsion phase. Also, we believe it is very unlikely
that the free energy exhibits any nonanalytic behavior
(such as discontinuous first derivatives) when droplets in
a microemulsion phase change from roughly spherical to
roughly cylindrical shapes; thermodynamic functions
might show rapid crossover behavior, but not a thermo-
dynamic phase transition. Controversies about the points
of principle that we have raised in this paper can only be
settled by studying models of oil-water-surfactant mix-
tures via detailed calculations like ours and by systematic
experimental investigations.
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FIG. 2. Schematic phase diagram for an oil-water-surfactant
(0-W-8) mixture in the composition triangle at fixed tempera-
ture. Unshaded areas represent single-phase regimes, areas
hatched with tie lines indicate regions of two-phase coexistence,
and dotted areas denote three-phase coexistence regions. Qil-
rich, water-rich, microemulsion (ue), lamellar (L), hexagonal
(H), and cubic (C) phases are shown. In laboratory mixtures all
these phases might not coexist as shown at one temperature;
furthermore, different types of cubic, hexagonal, and lamellar
phases might occur. The microstructure of the p.¢ phase varies
from the oil-in-water type [Fig. 1(c)] near the water-rich comer,
through the bicontinuous type [Fig. 1(e)] in the middle of the
triangle, to the water-in-oil type [Fig. 1(d)] near the oil-rich
comer.



FIG. 5. Schematic phase diagram in two dimensionsin ¥, J,,
and T space for />0, V>0,J, <0, ¥,=0, and #=0. Points
O, A, B, and Dare as in Fig. 9(a). There is a sheet of first-order
transitions between the F and AF phases bounded by AB and
the line of triple points (A ). Two sheets of first-order transi-
tions branch off from the line ( &) and become sheets of critical
phase transitions at the tricritical lines (#). These sheets
separate the AS and F regions from the paramagnetic or mi-
croemulsion phase Pat higher T, they drop to T =0 on the line
AD. Finally, there is a sheet of first-order transitions between
the Fand FS phases [see Fig. 9(a)] and bounded by the line OA
and the line of critical points (M). The latter lies below the
phase Peverywhere except at A.



