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We present a Landau-Ginzburg theory for oil-water-surfactant mixtures with a scalar order parame- 
ter ly for the oil-water subsystem and a vector T for the surfactant part. A physical interpretation of the 
parameters in terms of single-membrane energetics is given. .A detailed density-functional calculation 
yields three-phase coexistence between oil-rich, water-rich, and microemulsion phases, and modulated 
phases including lamellar, columnar, and cubic phases. The computed structure factor for water in the 
microemulsion phase shows a variety of trends i n  qualitative accord with experiments. 
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Oil-water-surfactant mixtures exhibit I - '  a variety of 
phases and phase equilibria. Surfactant molecules re- 
duce the bare oil-water interfacial tension and hence 
favor the formation of bulk phases with a large density 
of microscopic oil-water interfaces. Phase equilibria in  
such systems can be quite ~ o m p l e x ; ~  here we concentrate 
on some of the experimentally observed phenomena. 

Phenomenological6-" theories have been successful in  
accounting for some of these phases, their equilibria, and 
the correlation functions found therein. I n  this paper we 
present a simple Landau-Ginzburg theory for oil-water- 
surfactant mixtures with many appealing features. We 
discuss the results of a detailed, physically motivated 
density-wave-theory analysis for the free-energy func- 
tional obtained within a one-loop expansion. The phase 
diagram includes three-phase coexistence between oil- 
rich, water-rich, and microemulsion phases, and a 
variety of modulated phases including lamellar, hexago- , 

nal, and cubic phases. The structure factor of the disor- 
dered phase of the model is similar to that found in mi- 
croemulsions, permitting us to identify this regime with 
the microemulsion phase, in agreement with the predic- 
tion of a lattice model we had developed earlier." The 
dependence of various features of the structure factor on 
different parameters shows trends similar to experimen- 
tal systems. We provide a single-membrane interpreta- 
tion of some of the coupling constants in  terms of curva- 
ture energies and use this to correlate different structure 
factors with different microgeometries 

Our Landau-Ginzburg theory is based on two order 
parameters, w and T: w is large and positive (negative) 
in the water-rich (oil-rich) phase and 7 characterizes the 
surfactant part [ I  T I  is large in  surfactant-rich regions 
and d r )  points in the direction of the heads of surfac- 
tant molecules at rl .  We display the free-energy func- 
tional that is oil-water symmetric: I' 

The parameter c1 ( > 0) is a measure of the bare oil- 
water interfacial tension. Since the surfactant molecules 
can change the sign of CI, we include higher-order gra- 
dients for stability. a1 is proportional to the difference 
between the chemical potentials of water and oil. The 
parameters ro and K I  characterize the surfactant and are 
chosen positive so that the surfactant subsystem does not 
order on its own. The last three terms describe interac- 
tions between T and w. r2 is a measure of the miscibility 
of the surfactant in water and oil. The last two terms ac- 
count for the amphiphilicity of the surfactant molecules: 
J I  > 0 favors surfactant molecules residing at oil-water 
interfaces. The interpretation of the J2  term is discussed 
below; a continuum approximation to a microscopic 
model would naturally contain such higher-derivative 
terms. Only terms quadratic in T are considered because 
we will not address the ordering of surfactant molecules 
in the absence of oil and/or water in  this paper. 

An intuitive interpretation of the terms proportional to 
c ~ ,  c ? ,  J I ,  and J r  can be obtained in  the language ap- 
propriate to interfaces,I3 allowing us to make connec- 
tions between our bulk theory and the interface approach 
developed by others.l3-'' Assume that the interface 
thickness is of order I ,  the length of a surfactant mole- 
cule, and that the surfactant molecules are aligned ex- 
actly along the local interface normal I?, i.e., r=r& 
with TO the surfactant density at the interface. If +YO 
( - yo )  is the bulk value of w in water (oil), then the 
terms proportional to J I  and C I  clearly represent sur- 
face-tension effects. Using elementary differential geo- 
metry one can argue that the c2 term yields (2czw;/l)  
x S d s H 2  and the J ?  term, J ~ s o l y ~ s d s ( 4 H 2 - 2 K ) ,  where 
H is the local mean curvature, and K the local Gaussian 
curvature. Thus by tuning c ~ ,  L'?,  J I ,  and J2 the effective 
surface tension and the curvatures of the internal micro- 

I 

Administrator



scopic interfaces that constitute the microemulsion phase 
can be varied. I f  the effective surface tension is negligi- 
ble, then these interfaces are like the membranes en- 
visioned by de Gennes and Taupin’ and the term propor- 
tional to c ?  incorporates the physics pointed out by them 
for a single interface: When J I  reduces the effective 
coefficient of the (Vy)’ term to zero, the c2J-q2nids 
term leads to a logarithmic divergence for the appropri- 

ate correlation function.’ A term which favors spontane- 
ous curvature can be incorporated easily, e.g., by adding 
the term J d 3 r ( V 2 y ) t . V y a S H d s  to Eq. ( 1 ) .  The sign 
of this term can be chosen to agree with Bancroft’s rule: 
The best solvent of the amphiphile is “outside.” 

For nonzero r2 we have calculated the one-loop correc- 
tion to the free-energy functional by integrating out the 
surfactant degrees of freedom. Neglecting the q-de- 
pendent corrections to the y4 term we obtain J 

where 

A is the upper cutoff on the momentum, and 

with x =A(Kl / ro )  The complete expression including 
odd terms will be reported elsewhere. 

The form of the free energy in  Eq. ( 2 )  has been used 
for the calculations reported in this paper. We identify 
the coefficient of the quadratic term as [ S - ’ ( q ) l  and 
relabel the coefficient of the y4 term u and that of the y 6  
term tq for convenience. We have investigated the stabili- 
ties of disordered and uniform oil-rich and water-rich 
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FIG. 1. The phase diagram i n  the uz-Jz plane. Parameters 
for this phase diagram are U I  -0, u = -0.8, r= l .O ,  J I  =0.39, 
r o = K ~  -0.16, C I  = c ~ = l .  and C J =  $ .  Microemulsion and 
lamellar phases are denoted, respectively, by M and L.  The re- 
gion marked 0 -W shows where the oil-rich and water-rich 
phases coexist (note U I  = O ) .  The solid lines indicate first-order 
phase boundaries which meet at  a triple point. The dashed line 
denotes the disorder line, to the left of which S ( q )  has only one 
peak at q = O  and to the right of which there is a peak at 
nonzero wave vector Q (see Fig. 2 ) .  The first-order transitions 
become continuous via tricritical points if u becomes positive. 

I phases relative to periodically modulated phases-one- 
dimensional (lamellar), two-dimensional (hexagonal), 
and three-dimensional (various cubic)- by using a 
density-wave theory of freezing. l 6  

The phase diagram that we have obtained using a 
density-wave theory (see below) is shown in Fig. 1 (for 
u=-O.8,  c=1.0, r0’0.16, and J1 -0.39). There are 
four phases: microemulsion, oil-rich, water-rich, and 
lamellar. For small negative values of J2 and at lower 
temperatures (or effective u2)  the oil-rich and water-rich 
phases coexist; as J2 becomes more negative, leading to a 
finite-q peak in the structure factor, they give way to the 
lamellar phase. At higher temperatures, a microemul- 
sion phase is obtained. All phase boundaries are first or- 
der which become continuous for positive u with a tri- 
critical point in between. Note the line of three-phase 
coexistence along which oil, water, and microemulsion 
phases coexist. The interfacial tensions between these 
coexisting phases is low for small u,  i.e., in the vicinity of 
a tricritical point. This mechanism for low interfacial 
tensions is common to many lattice models of mi- 
croemulsions. The dashed line in Fig. 1 is the disorder 
line (not a phase boundary). To the left of it, S ( q )  has a 
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FIG. 2 .  The structure factor S ( q )  in the microemulsion 

phase of Fig. 1. The lower curve (a2 -0.4, J2 = -0.2) is ob- 
tained in the region to the left of the disorder line of Fig. 1; the 
upper curve (a2 =0.4, J ?  = -0.4921, to the right of i t  and close 
to the microemulsion-lamellar phase boundary whose proximi- 
ty is signaled by the strong peak. 



peak only at zero (see lower curve in Fig. 2 ) ;  to the right 
of it, S(q )  has a peak at nonzero q with the extremum at 
q = O  either lower or higher than the peak at nonzero q. 
The upper curve in Fig. 2 shows a structure factor with a 
prominent peak at  nonzero q. While we cannot control 
the density variables explicitly, it is easy to argue that 
decreasing ro leads to an increase in the surfactant con- 
centration; when ro is decreased we find that the lamellar 
phase is favored, in  agreement with experimental 
trends.’ 

The density-wave-theory calculations were done by re- 
taining the order parameters wo=w(q=O)  and w(Q) .  , 

where Q=lGl.  The G’s belong to the first set of 
reciprocal-lattice vectors for the given periodic structure 
and S(q )  has a maximum at Q. A global maximum of 
S ( q )  at Q favors ordering into a periodically modulated 
phase at q =Q, whereas a maximum at q = O  leads to a 
uniform (oil- or water-rich) phase. For reasonable 
values of r ? ,  the one-loop corrections lead to a negative 
value of u .  This results in  three-phase coexistence be- 
tween the microemulsion, oil-rich, and water-rich phases; 
with increasing J I  and J2,  one expects to find coexistence 
between microemulsion and spatially modulated phases. 
A somewhat lengthy calculation leads to the following 
effective free energy within our density-wave theory: 

I n  the preceding, N denotes the number of reciprocal- 
lattice vectors and no and na  the number of distinct non- 
coplanar quadrilaterals and triangles that can be formed 
with the reciprocal-lattice vectors. We have minimized 
the free energy numerically among the various compet- 
ing phases. An aside on the calculation: When S ( q )  has 
only one maximum at q =O, then we use S ( Q )  =S(Q* 1, 
where Q* is the value of q at which a maximum appears 
first as some parameter, say, J2,  is varied. This simple 
idea provides a natural way of suppressing modulated 
phases when there is no peak in S(q )  at finite q without 
introducing any unphysical phase boundaries and 
without resorting to extensive numerics. We have 
checked the accessibility of the parameters used by solv- 
ing numerically the coupled Dyson equations for the 
self-energy to one-loop order. The details of these calcu- 
lations will be reported elsewhere. ’’ 

We have also obtained the phase diagram in the pres- 
ence of oil-water asymmetric terms. ’ *  The inclusion of 
the cubic term, i.e., the gty3 term, makes the hexagonal 
(columnar) and bcc phases stable in different parts of 
parameter space; thus a variety of phases that occur ex- 
perimentally are obtained within our density-functional 
theory. 

Experiments on microemulsions yield structure factors 
with one or two maxima. I n  our model, neglecting the 
asymmetry between oil and water, we have SWW =So0 
= -SOW, where SWW, SOO, and SOW are the water- 
water, oil-oil, and oil-water partial structure factors, re- 
spectively. We now correlate our predictions for SWW 
from our Landau theory and the microstructures they 
imply with the experimental data. 

Consider first the structure factor S W W ( q )  in the 
disordered phase for Jz -0 when there is no free-energy 
cost for configurations with large Gaussian curvature; 
the structure factor can have only one maximum either 
at q =O or at q =Q#O.  The coefficient of the q * term in  
[ S ( q ) l  - I  can become negative, thus favoring the forma- 

’ tion of a large density of oil-water interfaces. The value 
of Q, where S(q )  has a maximum, depends on c2. A 
peak at q # O  in  the disordered phase favors the forma- 
tion of periodically modulated phases as emphasized ear- 
lier (see Fig. 2 ) .  Thus when the disordered phase coex- 
ists with uniform phases (oil and water rich), then S ( q )  
has a peak at q = O  and there may or may not be a small- 
er peak at q =Q. The positive definiteness of c2 implies 
that the local curvature should be small. Therefore, 
when the fraction of oil (or water) is small, a mixed 
droplet phase occurs, whereas for nearly equal amounts 
of oil and water a bicontinuous phase with low mean cur- 
vature is favored. 

For Jz > 0, the energetics favor spherical droplets for 
given values of the mean curvature. I n  this case, de- 
pending on the value of Jl/&, one obtains a single 
peak which can occur away from q=O or two peaks. 
The width of the peak is approximately half the peak po- 
sition. This situation is similar to the experiments on 
sodium di-2-ethylhexylsulfosuccinate (AOT), water, and 
decane.’ We have checked that as ro decreases (i.e., as 
the surfactant concentration increases) the peaks 
broaden and move outward, reflecting the experimental 
trend (the increase in  a3“ when ro decreases due to one- 
loop effects is important for this”). 

In the case J z  < 0 we can also arrange to have two 
peaks in the structure factor in  the microemulsion phase, 
one at  q = O  and the other at  q =Q*O. (This is the case 
for parts of the phase diagram shown in Fig. 1.) The 
width of the peak at Q is of the same order as Q itself 
and is relatively insensitive to the parameter values. The 
peaks in  this case are slightly narrower than in the case 
when Jr =O. Our conclusion that two peaks in the struc- 
ture factor occur when the Gaussian curvature is large 
and negative is consistent with previous results. I *  As- 
suming a cutoff A of the order of 2x11, where 1 is the sur- 
factant length, we find that the peak occurs at length 

 



 

scales that correspond to 15-20 times longer than 1. For 
moderate values of Jz ,  as ro is decreased (or as the sur-  
factant concentration is increased), the second peak 
moves outward and becomes sharper,' Large and nega- 
tive values of J .  favor configurations with internal inter- 
faces that have large negative Gaussian curvature and 
low mean curvature (since c '>O) leading to a phase 
where the interface has many handles. This phase would 
correspond to the "plumber's-nightmare'' phase, I 5 . I 9  

without long-range order. This can undergo a transition 
into an ordered structure: We have checked by explicit 
computation in the presence of oil-water asymmetric 
terms that, as the value of J l  is tuned from negative to 
positive, the morphology evolves from a cubic phase (to 
be associated with a plumber's-nightmare phase with 
long-range bcc order), through a first-order transition 
into a tense bicontinuous structure (or a random. isotro- 
pic microemulsion phase depending on the parameters), 
and eventually into a cubic structure that can be associ- 
ated with a droplet crystal. Such a scenario is present in 
a schematic phase diagram of Ref. 15. Note that the in-  
clusion of Gaussian curvature which allows effectively 
for the formation of passages and fusion of membranes is 
crucial. 
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