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We investigate the properties of the Kuramoto-Sivashinsky equation in two spatial dimensions. We
show by an explicit, numerical, coarse-graining procedure that its long-wavelength properties are de-
scribed by a stochastic, partial differential equation of the Kardar-Parisi-Zhang type. From the comput-
ed parameters in our effective, stochastic equation we argue that the length and time scales over which
the correlation functions cross over from linear diffusive to those of the full nonlinear equation are very
large. The behavior of the three-dimensional equation is also discussed.

In this paper we examine the relationship between the
long-wavelength properties of two systems—the deter-
ministic Kuramoto-Sivashinsky (KS) equation [1,2] and
the stochastic Kardar-Parisi-Zhang (KPZ) model [3,4].
The KS equation has been used to study diffusive insta-
bilities of wrinkled flame fronts and chemical waves; the
KPZ equation is a generic model for the morphology of
growing interfaces in a wide variety of physical and
chemical situations including thin film growth. The KS
equation also serves as an example of an extended, deter-
ministic, dynamical system that exhibits complex spa
tiotemporal phenomena: chaotic behavior characterized
by a nonvanishing density of positive Liapunov exponents
and long-wavelength properties that are scale invariant.
The general question of the extent to which the long-
wavelength properties of such systems can be described
by effective (coarse-grained), stochastic models such as
the KPZ equation, with the stochastic noise being gen-
erated by intrinsic, chaotic fluctuations, has been ad-
dressed in the context of the KS equation. The KS equa-
tion isgiven by

dh/dt = —V2h —V*h+(Vh)?, (1)
where A(x,t) can be interpreted as the height of a d-
dimensional interface (with no overhangs), embedded in
d+\ dimensions. In d=\ some workers [57] have
shown that, in the long-wavelength and long-time limit,
the KS equation exhibits scale-invariant behavior which
is the same as that of the one-dimensional KPZ equation

(31, thus confirming a suggestion due to Y akhot [8]. The
KPZ equation is given by

ah/d1 =vvzh+%(Wt)2+q(x,t). )

where 77 is an external white noise with correlations de-
scribed by

i, Onx', ') =2D8%(x —x")6(t —1') . ©)
However, in dimensions d= 2 little is known about the

©

scae invariance of the asymptotic behavior of the KS
equation. The identity of the nonlinear terms in the two
equations might lead one to suspect that the KS and KPZ
equations exhibit similar infrared behavior. Inthis Letter
we present the results of a coarse-graining procedure for
the KS equation in d=2, providing numerical evidence to
support the hypothesis that the long-wavelength behav-
iors of the KS and KPZ equations are the same. We
determine the effective parameters for the coarse-grained
equation and show that for the KS equation, the cross-
over length and time scales, at which the asymptotic KPZ
behavior sets in, are enormous. We also comment on the
behavior of the KS equation in three dimensions. Our re-
sults contradict work at =2 where the authors [9] claim
to give a proof that the KS and KPZ equations belong in
different universality classes. We compare our con-
clusions and aso comment on the differences with more
recent work by the same group [10] for d > 2.

Let us recapitulate some well-known features of the KS
equation: The only parameter in Eq. (1) is the length L,
which plays the role of the Reynolds nhumber in fluid tur-
bulence; all other coefficients have been fixed by appropri-
ate rescaling. At the linear level, the Fourier modes with
wave vector k evolve as e“*’, where the rate w; =k 2—k*
and k =|k|; thus long-wavelength disturbances are linear-
ly unstable. The nonlinear term stabilizes the system by
converting the growing, small-k modes into decaying,
large-k Ones.

We solve the KS equation (1) in d =2 numerically by a
Euler method for temporal updating (with a time discret-
ization of 0.02 and, for some checks, of 0.01), a sym-
metric discretization of spatial derivatives (with a mesh
of unit size) on a square lattice of side L, with L ranging
from 256 to 512. We have aso checked our results by us-
ing a spectral code [11] (which approximates the continu-
um KS equation better than the finite-difference scheme
but is computationally more expensive) on a 308x308
lattice with 384 x 384 modes.

In the long-time limit of our simulation, the system



shows a cellular structure (Fig. 1), with the side of a cell 1 P

given roughly by 2x/k max. Where kmax is the magnitude of % 1 . ,;;% My

the wave vector of the (linearly) most unstable modes. i oo R

We have explicitly computed the number of positive f A [T W

Liapunov exponents averaging over at least four initial ‘n.%_% ! e

conditions and evolving in time for up to 400 time units ‘1 "M ‘t\ M

for each initial condition. The number of positive ”

Liapunov exponents increases from 6 for L = 10, to 15 for g “ ; l

L =24, and up to 25 for L =32. Our results are con-

sistent with the system reaching a steady state with a

nonzero density of positive Liapunov exponents corre- ) )

sponding roughly to one positive exponent per cell. N FIG. 1. Ce!lulqr structu.resm.the gsym.ptotlc, steady s't'ate of
Next we address the issue of scale-invariant behavior. e KS equation in two dimensions; an instantaneous "snap-

The KPZ equation (2) displays dynamic scaling behavior ?ggtx 32; ;PZ ggez"?(hégi’ I(;t})i)c)evs x and y for a small section

in the asymptotic, long-wavelength properties of the '

correlations of h. This scaling behavior is governed by a

strong-coupling fixed point for d <2, for all A and, for  sych a procedure was explicitly carried out by Zaleski

d> 2, for sufficiently large (bare) values of ». Our focus  [5] in ¢=1. In other words, we determine the effective

will be on two-point correlators and linear response func-  equation at length scales such that one is still in the vicin-

tions, eg., the interface is rough with a width w(L,t) jty of the free-field fixed point and show that the effective

=K —(h)H]V2 that scales with system size L and  equation has terms that correspond to those in the KPZ

timet as equation. Since in the coarse-graining procedure we
— W/ L?) 4 remain in the vicinity of the freefle_zld f|xed_p0|nt, we can

Wil (t/L%) @ obtain good statistics on moderate-sized lattices.
Instead of determining such correlation functions directly The coarse-graining proceeds as follows: The space of

for the KS equation, we proceed indirectly: We obtain an Fourier modes is divided into a subset S of long-

effective, stochastic equation via a coarse-graining pro-  wavelength modes (k), with |k.|< A, |k,|< A, where A

cedure in which short-wavelength degrees of freedom are  is the cutoff wave vector, and a complementary subset

integrated out, renormalizing the diffusion constant to a S~. The latter is integrated out to obtain an effective

positive value, and generating an effective noise term. | equation for the long-wavelength modes which can be
written as follows:

Bh/81 = —vaUk’h(k,1) =X “q- (k—q@)h(q.0)h(k—q,1)+F (1), (5)

where X < denotes a sum over only those g's such that all the modes in the sum belong in S <;the additional term F(¢)
isgiven by

Fr@)=Iva()+ 1=k 21k *h(k,e) — 27 q- (k—q)h (g, )h(k—q,1) , (6)

where X, * denotes a sum over those g's such that at least one of the modes belongs in S . The cutoff A is chosen to be
less than k& max since we expect the effective diffusion constant to be positive only on larger length scales; moreover, we
have checked the independence of our results on A for a range of values. We now identify Fy(¢) as the noise term gen-
erated by the short-wavelength modes. In order that Fi(¢) be a genuine, stochastic noise we impose, following Zaleski
[5], the physical requirement that the height h at an earlier time (t —s) is not correlated with the noise F at a later time
t for small but nonzero k, i.e,

Crn(s) =CF(0) —(F DR (—k,t —5) —<h(—k,t —s D) 7)

vanishes for large s (the angular brackets denote an aver- |
age over 1). If va(k)can be chosen so that this condition and three-point functions mentioned above decay in the
is satisfied for large s then Fy(s) is a stochastic noise same manner for large s. We have checked that this is
term. We can define an s-dependent, effective, diffusion indeed the case for the KS equation numerically and via
constant va(k,s) tin terms of <(A(k,)h{k,t.—s)) and perturbation theory for the KPZ equation. We choose
Y >q (k—q)h(g,0)h(k—q,1)h(—k,s —s)from Eqgs.  valk) to be VB in our effective equation [Eq. (5)1. With
(6) and (7) by setting Crn(s}=0. We find in our numer- this choice of the diffusion constant we then verify that
ical simulations (see below) that va(k,s) saturates at a the noise-noise correlation function decays exponentially
constant, positive value vg, for large s, and all small k. in time establishing that Eq. (5) is a KPZ equation with
This saturation of wva(k,s) is essential to obtain an a positive diffusion constant whose bare value is vg and
effective stochastic equation; it is guaranteed if the two- with a noise term which has the appropriate behavior.
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FIG. 2. Plot of valk,s) vss for a lattice of side L =384
showing saturation to a constant value vg for k values (1,1)
(circles), (2,1) (triangles), and (2,2) (crosses) in units of 2x/L.
The data were obtained by averaging over 20000 time units
with A =0.30.

Most of our computations were performed on a
384x384 system, averaging over 20000 to 30000 time
units corresponding to over 1000000 updates. We ob-
tained data for ten different initial conditions. Figure 2
shows how wvx(k,s) saturates to a constant value vp=11
+ 1.5, with A =0.30. An independent check of this value
was obtained as follows: The decay time z(k) for the
height-height correlation function Cps(k,s) diverges as
k—0 as 7(k) = 1/vgk?, since we are in the vicinity of
the free-field fixed point. We computed Cps(k,s) numer-
icaly and estimated the value of vg; this value agrees
with the one we obtained above by imposing the require-
ment that Crr(s)— 0 for larges.

Having fixed VB, we can determine the decay charac-
teristics of the noise-noise correlation function

Crr(s) = {[Fi(t) = (F(e))]
X[F_y(t+5) —(F_ (t +5)1) . (8)

Figure 3 shows the decay of Crr(k,s)as a function of s.
We estimate the decay time to be roughly 3.5 for small
values of k; this value agrees with the inverse of the max-
imum Liapunov exponent of =0.23, which characterizes
the chaotic decorrelations, consistent with the noise being
generated by the short-wavelength chaotic fluctuations.
We have aso verified numerically that the probability
distribution of Fy is consistent with the assumption of a
Gaussian distribution for the external noise in the KPZ
equation and the irrelevance of higher moments.

We can now determine the remaining "bare" coeffi-
cients (labeled with a subscript B) for our effective KPZ
equation. We use the k— 0 limit of Crr(k,z)to obtain
Dp=12=%0.5 [cf. Eq. (8)]. Note that, because the corre-
lation function decays exponentially with a decay time T,
Dg=21Dg. Furthermore, Egs. (2) and (5) yield ag=2
for this effective equation. We recal [3] that the (cross-
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FIG. 3. A plot of the noise-noise correlation function
Crrlk,s)see Egs. (6) and (8)] showing its decay as a function
of times for the same k values as in Fig. 2. The decay time is
roughly 3.5.

over) length scde L. at which the (long-wavelength)
properties of the KPZ equation cross over from the (in-
termediate) free-field scaling behavior to that of the
(asymptotic) strong-coupling fixed point is governed by
the KPZ coupling constant g =A3Dz/v3 which is dimen-
sionless in d =2. From our bare phenomenological pa-
rameters we estimate the value of g for the effective KPZ
equation to be roughly 0.26. We found comparable re-
sults, g = 0.4+ 0.2, on lattices with L =256 and L = 512.
The value estimated from our spectral code is approxi-
mately g=0.40. Since d =2 is the marginal dimension
[3,12], the crossover length scale L. displays an exponen-
tial dependence on g: L.~e®"¢. For the KS equation
the small value of g leads to an extraordinarily large
crossover length scale and similarly a large crossover time
scde. This renders it well-nigh impossible to establish
the nature of the asymptotic, scaling behavior of the pris-
tine KS equation by direct numerical simulations. How-
ever, the result of our coarse-graining procedure allows us
to conclude that the long-wavelength behaviors of the KS
and KPZ equations are the same [13]. If one considers
the KS equation in the presence of external noise, we [14]
can perform a dynamic, renormalization-group analysis
and obtain a similar result: One can argue, for a restrict-
ed range of initial parameter values, that the equation
scales to a stochastic KPZ equation. Note that short-
distance properties such as local probability distribution
functions will not be the same for the two equations.

We believe that an identical coarse-graining procedure
can be carried out inrf=3, with the same result, namely,
that the coarse-grained KS equation is the same as the
KPZ equation at long length scaes. For sufficiently
small values of the corresponding (dimensionless) cou-
pling constant g in d= 3, the KPZ equation exhibits free-
field behavior [3,4]. Therefore, the asymptotic behavior
of the KS equation will be determined by the precise
values of the phenomenological parameters in the effec-



tive, stochastic equation.

We now compare our results with those of Procaccia
and co-workers [9,10]. They identify a "nonlocal" theory
whose asymptotic behavior differs from that of the
strong-coupling KPZ theory. They then proceed to show
that both the KS and KPZ equations cannot simultane-
ously exhibit this behavior. We point out that the in-
frared behavior of the "nonlocal" theory [10] in d > 2 is
that of free-field theory that describes a smooth interface
in that both the two-point correlation and response func-
tions are the same for both theories.

d=3—In Ref. [10] different behaviors are suggested
for the two models in d—3. However, it is known [3/4]
that the KPZ equation can exhibit either free-field or
strong-coupling behavior depending on the bare value of
the KPZ parameter in d =3. Therefore, we believe that
the long-wavelength behavior of the KS equation in d =3
is determined by the value of the nonlinear coupling con-
stant in the effective equation; the method proposed by
Zaleski in d—1 and implemented here in d =2 provides a
scheme for determining this value and thus deciding
whether free-field or strong-coupling behavior obtains.

d=2.— Reference [9] claims to give "a computer-
assisted proof that the long-wavelength behavior of the
KS equation is different from that of KPZ in two spatial
dimensions, in contrast to our results. We note, however,
that in Ref. [10] the numerical results of Ref. [9] are
used only to suggest this conclusion. The result of Ref.
[9] is based on an analytic argument that in the steady
state the squared width depends on system size L as
w2(L)~In[In(L)] in the nonloca theory combined with
numerical evidence for such a behavior in the KS equa-
tion. This dependence is in contrast to free-field behav-
ior: w2(L)~In(L). We believe that the numerical evi-
dence is insufficient to distinguish between these two
forms: We studied the temporal behavior of w2(L,t), for
lattices of sizes up to 1024x 1024, and found, not surpris-
ingly, that w2(L,t) can be fitted equally well by Inz and
Inlln(z)]. Let us, however, ignore the fact that the
asymptotic behavior of the KS equation is numerically
inaccessible, and accept the numerical result (w(L)
~Inlin(2)]1) of Ref. [9]. It should then be noted that
precisely this behavior has been shown to emerge from a
one-loop calculation for the KPZ equation by Tang, Nat-
termann, and Forrest [12]; moreover, they have observed
this behavior in numerical simulations of w2(¢) at inter-
mediate times [15]. Thus the numerical results of Ref.
[9] are actually consistent with the intermediate-time be-
havior of the KPZ equation.

In conclusion, the coarse graining that we have per-
formed provides persuasive numerical support for the
claim that, in the long-wavelength limit, the KS equation
(1) in two spatial dimensions behaves effectively like the
stochastic, KPZ equation (2).
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