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ABSTRACT A new technique is proposed for the
mathematical process of reconstruction of a three-dimen-
sional object from its transmission shadowgraphs; it uses
convolutions with functions defined in the real space of
the object, without using Fourier transforms. The object
is rotated about an axis at right angles to the direction of
a parallel beam of radiation, and sections of it normal to
the axis are reconstructed from data obtained by scanning
the corresponding linear strips in the shadowgraphs at
different angular settings.

Since the formulae in the convolution method involve
only summations over one variable at a time, while a two-
dimensional reconstruction with the Fourier transform
technique requires double summations, the convolution
method is much faster (typically by a factor of 30); the
relative increase in speed is larger where greater resolution
is required. Tests of the convolution method with com-
puter-simulated shadowgraphs show that it is also more
accurate than the Fourier transform method. It has good
potentialities for application in electron microscopy and
x-radiography. A new method of reconstructing helical
structures by this technique is also suggested.

The problem of reconstructing the three-dimensional distribu-
tion of the optical density of an object from electron micro-
graphs has been studied by several workers. The methods
previously suggested involve the use of Fourier transforms
[see ref. 1]. Recently, the senior author suggested in the first
paper of this series [2] that this method of reconstruction is
more generally applicable to various techniques of biophysical
interest, such as medical radiography, autoradiography, and
in industrial radiography. In that connection, a simplified
procedure of three-dimensional reconstruction via two-dimen-
sional sections was also proposed [21 that greatly reduces the
computational times involved, since only two-dimensional
Fourier sums are computed. In this paper, we present a still
further improvement of the technique, using convolutions
instead of Fourier transforms, in which all integrals or sums to
be evaluated are one-dimensional, involving only one variable
at a time. The resultant further reduction in computational
time is also accompanied by appreciable improvement in the
accuracy of reproduction. As a consequence, it appears possi-
ble to obtain reasonably good reproduction with only a small
number (about 3-12) of transmission photographs (or shadow-
graphs). The basic mathematics of the method is discussed in
the next section, followed by simulated examples that show
the power of the method.

MATHEMATICAL THEORY

The first step in the solution of the problem consists of replac-
ing the three-dimensional (optical) density distribution by a
set of two-dimensional density functions in a series of sections
perpendicular to, say, the z-axis, as shown in Fig. 1. The ob-
ject is placed in a parallel beam of radiation, incident normal
to the z-axis, and shadowgraphs (in two dimensions) are ob-
tained by rotating the object about the z-axis, which is also
equivalent to rotating the imaging system, consisting of the
source and the recorder, through different angles 0 (Fig. 1). As
shown in the figure, each shadowgraph may be considered to
be made up of linear strips, each strip corresponding to a
different section perpendicular to the z-axis. For such a strip,
corresponding to the section at z, the logarithm of the ratio of
the intensity at a point P(z, 1) to the incident intensity is a
measure of the integral of the (optical) density of the object
along a line through the point parallel to the direction of
incidence of the beam [2]. We shall call this function g(1; 0; z) *
for the shadowgraph of the section at the setting 0. The den-
sity distribution in the section at z [namely f(x, y; z) or f(r,
p; z)] can be expressed in terms of g(l; 0; z) by the following
Fourier transform (F.T.) relationships:

F+ GF(R; a) = g(l; a, exp(2-viRI) da (1)

fAr, A= 10) F(R, 0) exp [-2iriRr cos(p - 0) ]R dR d

(2)

for each section z. We thus obtain the data f(r, sp; z) using all
the linear strips at z in the different shadowgraphs taken at
various angles 0. The three-dimensional density distribution
f(r, sp, z) in the object is then obtained in cylindrical polar
coordinates by putting the above sections together. Thus, the
problem reduces to the reconstruction of a series of two-
dimensional (planar) sections from a set of one-dimensional
(linear) shadowgraphs. For this reason, we shall hereafter
restrict our discussion essentially to one section of the object
at right angles to the rotation axis.

* The semicolons are used to indicate that g is measured as a
function of 1 only, but depends also on the parameters 0, de-
scribing the angular setting, and z, defining the section perpen-
dicular to the rotation axis. When the parameters are considered
explicitly as variables, the semicolons are replaced by commas.
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We shall now show that the basic Eq. (1) and (2) can be
rewritten in a form not involving Fourier transforms, but
containing only integrals of functions defined in the real space
of observation. Eq(2) can be recast into the form,
fMR FAO< = JRJIi F(R, 0) exp[-2,iRr cos(.so-0) I dRd

o-

Suppose we define
( + !

9 (1; 0) = RI F(R; 0) exp(-2,riRo dR
_c.,o

(4)

Then Eq. (3) forf(r, so) becomes

f(r, (p) = Jg'[r cos(o- 6), 6] dO (5)

Eqs. (4) and (5) are the essentialb asis of our new formulation,
in which g'(1; 6) can be expressed in terms of the shadowgraph
data g(; 6) by the following procedure: Fourier-inverting
Eq. (1),

+c

g; 6) = F(R, 6) exp(-2iriRl) dR (6)
_co

Comparing Eq. (4) and Eq. (6), we see that the F.T. of g(l;
6) is F(R; 6), while the F.T. of g'(1; 6) is |RI F(R; 6), so that

F.T. of g'(1; 6) = [F.T. of g(l; 6)] X [F.T. of q(l)] (7)

where JR1 is the F.T. of the function q(l), or

IRI = q(l exp(2riRl) dl (8)

Using the well-known convolution theorem for the inverse of
the product of Fourier transforms, it follows from Eq. (7) that
g'(l; 6) is the convolution of g(l; 6) and q(l), or, explicitly,

9 '(; 6) = g(11; 6) q(l - l1) d11 (9)

Thus, to evaluate the modified function g'(1; 6), we require
the function q(l) explicitly. Inverting Eq. (8), we have, for-
mally,

+c

q(l) = RI exp(-2TiRl) dR (10)
cso

This integral cannot, however, be evaluated as the integrand
diverges. To overcome this difficulty, we may replace the
limits - o and + o in Eq. (10) by -A/2 and +A/2, where
A is some (large) finite number, when the integral exists for
all values of 1. Thus, define

+A/2

qA(o = jR exp(-2iriRO dR (11)
-A/2

Disregarding the difference between qA(na) and q(na) when
A is large enough, we have, evaluating the integral in Eq. (11),

q(na) = 1/4a2 for n = 0

= -1/72n2a2 for n odd (12)

=0 for n even

Hence, if we have data for g(l; 6) at a set of equally spaced

points 1 = ma (where m is a positive or negative integer), then
Eq. (9) can be expressed in the form of an infinite sum as

+ co

g'(na; 6) = a A g(ma; 6) q[(m - n)a], (13)
mn=-(

or, usingEq. (12),

(3) g'(na; 6) = g(na; 0)/4a - (1/72) E g[(n + p)a; 61/p2
p odd

(14)

We have assumed here that g(l; 6) is given at a set of points
separated by the interval a. This is, in fact, a great advantage,
since measurements on shadowgraphs are most conveniently
made by scanning the data at regular intervals along a line on
a photograph using a densitometer, or by using some suitable
device for direct measurement of intensity. This interval be-
comes an important parameter in the application of the
method. Summarizing the above arguments, we may describe
the convolution method as follows:
For a two-dimensional object (or section), linear shadow-

graphs at different angles 6 are scanned at intervals a and
these data are then convoluted with q(na) to obtain g'(na; 6)
[using Eq. (14) ], also at intervals a. These are then used for
calculating f(r, (p) using Eq. (5), which may also be written in
the form of a sum;

N
f(r, s) = f(jro, k~oo) = E g'[jro cos(kqo - too), too] [15)

t- 1

wherej, k, t, N are integers and ro and Vo are intervals of r and
so. The interval for 6 is Oo = w/N, where N is the number of
shadowgraphs recorded at regular intervals over the range
-r/2 to +7/2. In Eq. (15), the value of Jro cos(kpoo - too)
will not in general be a multiple of a; therefore we have to
interpolate between the calculated values of g'(na; 0), so that
the resolution of the final data obtained for f(r, so) will depend
on the fineness of the interval at which the shadowgraph data
are available and the consequent accuracy of the interpolation.

,y-Oxis
2-dimensional axis of rotation
section at a Pi 1 GS<I/shadowgraph for

linear shadowgraph

z{= for the
~~~~~shadowgroph ofscinaz

linear shadowgraph

FIG. 1. Diagram illustrating the formation of shadowgraphs
with incident beam at angle 6 to the zero setting normal to the xz
plane. The section at right angles to the axis of rotation at z
(shown shaded) yields the linear strip in the oval shadowgraph on
the right. Measurement of the intensity at the point P gives the
values of g(l;0;z).
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TEST OF THE CONVOLUTION METHOD

The convolution method has been applied to a number of
simple, as well as more complicated, hypothetical-object
density distributions. In each example, the density function
f(x, y), or f(r, <p), was assumed, and the corresponding simu-
lated shadowgraph function g(l; 0) was evaluated at suitable
steps a for 1 and 0o for the angle 0 varying from -90° to +900
(on a computer) by integration of f(x, y) along appropriate
lines. The shadowgraphs thus obtained were used for the com-

puter reconstruction of the objects, using Eq. (14) and (15).
The data are presented as f(x; y) on a square grid of suitable
spacing b, and the results are denoted by the symbol CON
(standing for the 'convolution' method). From a detailed
comparison of the original and the reconstructed objects for
different values of a and 0o, the validity, accuracy, and other
features of the new method have been examined. For compari-
son, the F.T. method was also used in some cases, either by
using Eq. (1) and (2), or by obtaining F(X, Y) at points on a

square grid in Fourier space from F(R, 0) by interpolation and
reconstructing f(x, y) from F(X, Y) using standard formulae.
The two methods are denoted by the symbols FTP (Fourier
transform using polar coordinates) and FTC (Fourier trans-
form using Cartesian coordinates).

Circular disk of uniform density

The three methods, CON, FTP, and FTC, were applied to the
reconstruction of a disk having uniform density f(r, so) = 1
for r < 1 and zero for r > 1. The results are given in Fig. 2, in
which the density variations along a radius are shown. Re-
construction was made with 12 shadowgraphs (G0 = 150)
scanned at intervals of a = 0.1. Correspondingly, the F.T. of
g(1; 0) was calculated for -A/2 < R < A/2 with A = 1/a =
10, at intervals of Ro = 0.25 for R. For the FTC method, X
and Y were also varied over the same range as R, at intervals
of Ro. It will be seen from Fig. 2 that the reconstruction from
the CON method is much closer to the true density distribu-
tion than that from either the FTP or the FTC method, par-
ticularly in the region of uniform density for r < 0.8. The
accuracy of reconstruction may be quantitatively represented
by the value of the mean relative error, (R, defined by

6R = [2 If(reconstructed) - f(true) | ]/2:| f(true) (16)

I
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FIG. 2. Original and reconstructed density distribution along
a radius for circular disk of uniform density of radius of 1. The
calculated values are at intervals b = 0.1 for r. The region near

the boundary, namely between r = 0.8 and 1.2, where the den-
sity rapidly falls from 1.0 to 0.0, is shown separately to the right
on a different scale for f. Note the very small deviations from the
true value of the CON data in the uniform region inside the disk
for r < 0.8.

(The term (R-value is adopted from x-ray crystallography; a
curly (R is used to distinguish this from the polar coordinate
R in Fourier space). The (R-values for the three different
methods, corresponding to Oo = 300 and 150 and a = 0.2 and
0.1 are given in Table 1. [The values of f(jb, kb) were obtained
in all cases with b = 0.1]. It can be seen from this table that
the error is least for the CON method in all cases. However,
in the region beyond r = 0.8, errors are quite large for all
three methods. This is to be expected, since it is well known
that the Fourier sum always leads to values larger than the
true value by about 10% at a sharp discontinuity, and that
the sharp discontinuity is blurred because of termination
errors in the sum. One may, therefore, conclude that in re-
gions of nearly uniform density, the CON method is capable
of an accuracy 5- to 10-times better than that attainable using
the F.T. method.

Disk with nondiscontinuous boundary and an off-center
hump

In order to study the efficiency of the method without the
complication of a sharp boundary with discontinuous changes
in density, and also to test if the method is capable of revealing
a fairly localized, small density change in a flat region, the
object represented in Fig. 3(a) and (b) was chosen, which has a
uniform density from the center up to r = 0.8, except for an
off-center hump, beyond which it trails off smoothly to zero at
r = 1.2. Fig. 3(c) shows the results of applying the convolu-
tion method using a = 0.1, and Oo = 30°. The reconstruction
is seen to be quite good, even with six shadowgraphs, although
there is an error of more than 2% near the peak of the hump
H, and somewhat larger errors in the varying region, V. When
the same shadowgraphs are scanned at a finer interval, with
a = 0.05, the errors become much smaller, as is shown by Fig.
4, for the region around H.

In order to obtain a comparison with the F.T. methods of
reconstruction, the (R-values for the different regions of the
object are collected together in Table 2 for densities recon-
structed at b = 0.1 in all cases. It will be seen that the CON
method is distinctly superior when the density does not vary
rapidly, and even when it does, scanning at Oo = 150 and a =
0.1 improves the accuracy of this method much more than for
the F.T. methods with Ro = 0.25. However, the accuracy of
the FTP method is influenced by the fact that, in obtaining f
from F(R, 0) by Eq. (3), the integral is approximated by a
sum using data at intervals Ro = 0.25. Since the accuracy of
the integration can be improved by reducing Ro, other condi-
tions remaining the same, a new calculation was made using
Ro = 0.125 for 0 = 150 and a = 0.1. As is seen from Table 2,
the accuracy of both the FTP and FTC methods improved

TABLE 1. Values of the mean relative errors ((R) for the circular
disk for r < 0.8 using the CON, FTP, and FTC methods

R(in %) for

o0(O) a CON FTP FTC

30 0.2 1.5 9.4 7.7
30 0.1 0.6 7.6 5.3
15 0.2 1.2 8.0 7.6
15 0.1 0.3 5.3 5.2
15 0.1 0.3 2.9* 3.9*

* R0 = 0.125; for other values, R0 = 0.25.

Proc. Nat. Acad. 8ci. USA 68 (1971)
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appreciably and became comparable with that of the CON
method, particularly in the regions H and V of varying density
The data in Fourier space for the FTC method were, however,
taken only at intervals of 0.25 for X and Y, since this cor-
responds to the reconstruction of a unit cell with edge equal
to 4 units in real space, definitely larger than the size of 2.4
units of the object studied. Nevertheless, the accuracy of FTC
improves because the data for F(X, Y) are now obtained by
interpolation from values of F(R, 0) given on a finer grid of
points. In the uniform region U also, the accuracy of recon-
struction of the F.T. methods increases appreciably when Ro
is reduced from 0.25 to 0.125 (see Table 2), but the CON
method is still more accurate. This effect, namely that CON
is superior in accuracy to both FTP and FTC, is also observed
for the uniform region (r < 0.8) of the circular disk (last line of
Table 1). It should be mentioned, however, that halving the
interval for R doubles the computation time for FTP (see
Table 3, next section).

In view of the advantages of the CON method, the effect of
changing the intervals a and 6o over a wide range (0o = 30, 60,
150, 300, 600; a = 0.05, 0.1, 0.2) was studied using this method
alone. The general conclusion was that, although the accuracy

4
0

44 38 21 6
50 35 20 0

100 98 83 44 11
105 96 81 49 27

100 100 100 95 44 6
106 96 98 98 44 0

100 100 100 100 83 21
105 95 102 99 81 20

100 100 100 100 98 38
103 97 102 96 99 42

100 100 100 100 100 44
101 100 98 103 103 42

1051 100 100 100 98 38
106w 100 100 97 95 34

L---
140 105 100 100 83 21
138 107 101 103 89 28

I---
1051 100 100 95 44 6
106' 100 99 90 42 0

100 98 83 44 11
100 99 81 49 29

44 38 21 6
47 35 24 0

(a)

4
0

-1.2 -0. 4 0.0

(c)

V

U

TABLE 2. 61-values for a disk with varying density and non-
discontinuous boundary for the three regions, H, U, and V

shown in Fig. S.

6t(in %) for

0(o(°) a CON FTP FTC

Region H
30 0.2 2.9 5.5 4.8
30 0.1 0.9 3.7 3.3
15 0.2 3.5 4.0 5.0
15 0.1 0.9 3.7 3.0
15 0.1 0.9 1.1* 1.3*

Region U
30 0.2 2.0 4.9 5.3
30 0.1 1.8 4.2 4.2
15 0.2 1.4 4.3 5.3
15 0.1 0.4 4.1 4.1
15 0.1 0.4 1.3* 1.8*

Region V
30 0.2 10.0 12.9 10.7
30 0.1 9.2 11.5 9.7
15 0.2 7.0 6.4 10.7
15 0.1 3.0 6.8 9.7
15 0.1 3.0 3.2* 3.2*

* Ro = 0.125 for these values; R0 = 0.25 for others.

improved with making either interval smaller, there was no
appreciable gain in accuracy by taking a larger number of
shadowgraphs (i.e. decreasing Go.) beyond the range at which
(r) Oo -' a (where (r) is the mean r for the object, and Oo is
in radians). Thus, taking region U of the object in Table 2,
r)0o is about 0.2 for 30° and 0.1 for 15°, and there is only a
small reduction in (Pt-values, from 2.0 to 1.4% for a = 0.2, on
going from 0o = 30 to 150, while it drops from 1.8 to 0.4 for
a = 0.1. Conversely, for a given number of shadowgraphs, no
great gain in overall accuracy is obtained by scanning at an
interval finer than <r>o0. For example, if a is changed from
0.2 to 0.1, 61 drops only from 2.0 to 1.8 for 0o = 300, while it
decreases from 1.4 to 0.4 for G0 = 15°.

Reconstruction using only three shadowgraphs
In order to show how a reasonable idea of the gross density
variations in the interior of an object may be obtained using
just three shadowgraph data, the elliptical object with vary-
ing density shown in Fig. 5(a) was reconstructed using shad-
owgraphs at 0 = -60°, 00, and +600, the value 0 = 00

1.2

(b)

FIG. 3. (a) Schematic diagram of three regions of density
variations in reconstructed object: V-"varying" portion, with f
increasing from 0 at r = 1.2 to 100 at r = 0.8; U = "uniform"
region for r < 0.8, except for the small region H (enclosed by
broken lines), which has a "hump" of higher density than U, with
a maximum of 140. (b) Profile of the density variation along the
marked vertical line, passing through all three regions. (c) True
(above) and reconstructed density (below) obtained using the CON
method, for 0o = 300, a = 0.1. Values are given at intervals of
b = 0.2 for x and y, for x = 0.0 to 1.2 and y = -1.2 to + 1.2.

-3: 6 10 6 1 -3

1 -4 -11 -4 11
I I
120 -8 -27 -8 201
iO -7 -10 -7 O0
I---% I,---

-:5 5 10 51 -5

(a)

r- - -- - -

-1: 6 10 6 :-i
r--J a

7 0 1 0 7

4 0 5 0 4

'2 -2 -1 -2 2.

-3 00 9 0 :-3

(b)
FIG. 4. The values of [f(reconstructed) - f(true)] X 10,

at intervals of b = 0.1 for x and y, around the region H of the
object shown in Fig. 3, for O0 = 300 (a) a = 0.1 and (b) a =
0.05. The location of the hump is shown by the dashed lines.
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111 123 129 123 111 103 100
98 112 122 122 113 106 104

108 120 129 127 118 110 107
107 118 129 128 121 115 113

103 110 120 128 129 128 126
1.25 136 140 142 140 135 132

73 100 107 112 118 122 123
93 112 110 115 117 115 114

34 55 75 91 103 104 105
63 79 85 87 94 97 97

0 9 25 38 47 53 55
-25 -13 2 4 12 20 23

(b)(a)

111 123 129 123 111 103 100
110 122 127 123 112 104 101

108 120 129 127 118 110 107
107 119 128 126 118 111 108

193 110 120 128 129 128 126
100 112 121 126 127 127 126

73 100 107 112 118 122 123
71 94 105 114 118 120 120

34 55 75 91 103 104 105
37 57 76 87 96 103 104
0 9 25 38 47 53 55
0 11 25 39 47 51 53

(c)
FIG. 5. (a) Contours indicating the shape and density variation of the reconstructed object. (b) True (above) and reconstructed (below)

densities in the region marked by the rectangle in (a), obtained with just three shadowgraphs. (c) Same as (b), but using data from 12
shadowgraphs at 15' intervals.

corresponding to the projection on the major axis. The scan-
ning interval was a = 0.1. The reconstructed density distribu-
tion showed a reasonable approximation to the original, as
shown in Fig. 5(b). Fig. 5(c) shows how good the reproduction
becomes when 12 shadowgraphs are used, scanned at a =
0.1; the error, in general, does not exceed 2%.

ADVANTAGES OVER THE FOURIER METHOD
The above examples clearly show that the convolution method
has great potentialities for reconstruction of the density dis-
tribution of objects from transmission photographs, such as
electron micrographs or x-radiographs. Apart from the in-
creased accuracy of the CON method over the F.T. methods,
perhaps its most important merit is the speed of computation.
This speed arises principally because the computations are all
one-dimensional summations in this method, and no double
summations are needed as in the F.T. technique. With in-
creasing resolution leading to more numbers of terms in each
sum, the relative advantage of the convolution process would
even be larger. This is shown clearly in Table 3, where FTP is
seen to be 30-times slower than CON for 0o = 15°and a 0.1
for approximately equivalent accuracy. FTC is comparatively
very slow, but gives slightly better reconstructions than FTP
with a smaller number of shadowgraphs, although the FTC
method is still less accurate than CON; the FTC method ap-
pears to have no advantage over FTP for small enough io
and a. The very large computing times for FTC could be re-
duced by using fast algorithms such as those due to Cooley
and Tukey [3], but the CON method is also capable of being

TABLE 3. Computing times (t) required using the different
methods for a typical object used in the study

t in seconds

O0(°) a CON FTP FTC

30 0.2 2.0 30.2 130
30 0.1 2.6 48.6 480
15 0.2 3.6 41.5 130
15 0.1 4.8 83.0 480
15 0.1 4.8 158.5* 487*

* Ro = 0.125 for these values; Re = 0.25 for others.

made much faster, for instance, by storing values of I/p2 and
a table of cosines.

In general, the CON method seems to be the best, both
from the point of view of speed and of accuracy. Since the
computing times in standard FORTRAN are only a few
seconds for the two-dimensional section in the CON method
described here (a '-.' 0.1), much larger resolution could be ob-
tained for three-dimensional objects with reasonable com-
puting times by improved programming methods.

APPLICATION TO ELECTRON MICROGRAPHS
An important feature of the CON method is that it is com-
pletely operative in real space, and there is no problem analo-
gous to the so-called "phase problem" in crystallography.
In view of this, various ways of treating the data obtained
from shadowgraphs of helical structures can be worked out
using techniques analogous to those described in this paper.
Thus, if we have a single shadowgraph (say electron micro-
graph) at right angles to the helical axis, over a complete
repeat c along the helical axis with N repeating units, each
of height h = c/N, then we have effectively JNT shadowgraphs
at angles jOo (O0 = 2r/N, j = 1 to N) of the unit lying be-
tween the sections z = 0 and z = h. If sections are taken at
right angles to the axis at suitable intervals 2o (h = Mzo, Sf =
an integer), each such section can be reconstructed from the
corresponding data in the N shadowgraphs, and thus the full
three-dimensional picture of the repeating unit of the helical
structure can be obtained by the technique described above.
As we have recently shown (unpublished data), it seems to

be possible to reconstruct objects of arbitrary size and shape
when only partial data over a restricted range of angles is
available. This possibility is of great importance to the
problem of three-dimensional reconstruction from electron
micrographs when it is not possible to rotate the stage by a
full 1800 without obstructing the beam, or in radiography
where, for some reason, shadowgraphs cannot be obtained
for certain orientations of the object.
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