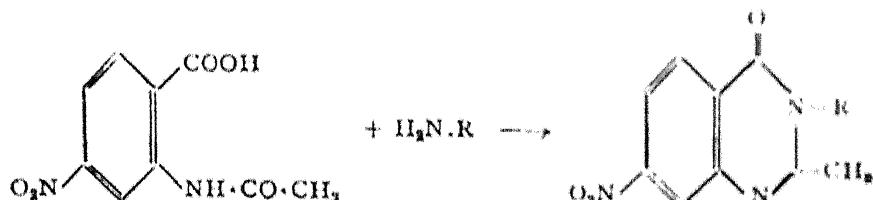


SEARCH FOR PHYSIOLOGICALLY ACTIVE COMPOUNDS


Part III. Synthesis of 7-nitro-2-methyl-3-aryl Quinazolones

BY S. K. V. SESHA VATARAM AND N. V. SUBBA RAO, F.A.Sc.

Received October 25, 1958

SEVERAL plant materials reported to have pharmacological action contain active principles possessing quinazolone structure.¹ The mature leaves of *Glycosmis arborea* Corr., which are extensively used in Ayurvedic medicine as febrifuge and antihelminitic, were found to contain the active principle 'arborin', which is a quinazolone derivative.² Further, one of the three alkaloids isolated from *Glycosmis pentaphylla* (Retz) DC. was proved to have a quinazolone skeleton.³ Since a nitro group is known to enhance the physiological properties of compounds, attempts have been made to prepare 2:3-disubstituted quinazolones containing a nitro group para to the carbonyl in position 7.

For the synthesis of these substances, condensation of 4-nitro-N-acetyl anthranilic acid with a primary aryl amine was found to be the best method.⁴

The anthranilic acid required was prepared from *o*-toluidine by nitration followed by acetylation and oxidation with neutral potassium permanganate. By varying the aryl amine components, eight new 7-nitro-2-methyl-3-aryl quinazolones have been prepared.

The physiological activity of these compounds has been tested against two common types of bacteria, *B. coli* and *Staphylococcus aureus*. The quinazolone obtained by the condensation with *p*-bromo aniline possessed activity against *B. coli* at a concentration of one part per million, whereas most other compounds showed activity against both types of bacteria at a concentration of one part per ten thousand.

EXPERIMENTAL

4-Nitro-N-acetyl anthranilic acid was condensed with eight aromatic amines in toluene medium using phosphorous trichloride as the condensing agent following the procedure of Grimmel, Guenther and Morgan,⁴ when

7-nitro-2-methyl-3-aryl quinazolones were obtained in good yields (above 80%). The analytical data and properties of the compounds so far not reported in literature are recorded in Table I.

TABLE I
7-Nitro-2-methyl-3-aryl quinazolones*

No.	Amine condensed	Quinazolone obtained R	m.p. (in °C.)	Found %			Required %		
				C	H	N	C	H	N
1.	<i>o</i> -Anisidine	<i>o</i> -Anisyl	152	61.5	4.4	13.2	61.7	4.2	13.5
2.	<i>o</i> -Toluidine	<i>o</i> -Tolyl	154	64.8	4.9	14.0	65.1	4.4	14.2
3.	<i>p</i> -Toluidine	<i>p</i> -Tolyl	223	64.8	4.7	14.0	65.1	4.4	14.2
4.	<i>m</i> -Chloro aniline	<i>m</i> -Chloro phenyl	192	57.2	3.3	13.4	57.0	3.2	13.0
5.	<i>p</i> -Bromo aniline	<i>p</i> -Bromo phenyl	2300	49.7	3.2	11.7	50.0	2.8	11.7
6.	<i>o</i> -Nitro aniline	<i>o</i> -Nitro phenyl	170	55.0	2.9	17.0	55.2	3.1	17.1
7.	<i>m</i> -Nitro aniline	<i>m</i> -Nitro phenyl	192	55.2	3.4	17.2	55.2	3.1	17.1
8.	<i>p</i> -Nitro aniline	<i>p</i> -Nitro phenyl	298	54.8	3.1	16.9	55.2	3.1	17.1

* Thanks are due to Sri. C. V. Ratnam for the analysis of the compounds.

SUMMARY

7-Nitro-2-methyl-3-aryl quinazolones have been prepared by condensation of 4-nitro-N-acetyl anthranilic acid with aryl amines. These nitro quinazolones have been tested against bacteria. The 3-(*p*-bromo phenyl) derivative is found to have the maximum activity.

REFERENCES

1. Koepfli, J. B., Mead, J. F., and Brockman, J. A. *J. Amer. Chem. Soc.*, 1949, **71**, 1048.
2. Hutchings, B. L., Gordon, S., Almond, E., Wolf, C. F., and Williams, J. H. *J. Org. Chem.*, 1952, **17**, 19.
3. Chakravarty, Mrs. D., Chakravarty, R. N., and Chakravarty, S. C. *J. Chem. Soc.*, 1953, 3337.
4. Grimmel, H. W., Guenther, A., and Morgan, J. F. *J. Amer. Chem. Soc.*, 1946, **68**, 542.