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Turbulence and Multiscaling in the Randomly Forced Navier-Stokes Equation

Anirban Sain,1 Manu,2,* and Rahul Pandit1,†

1Department of Physics, Indian Institute of Science, Bangalore 560 012, India
2School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India

We present a pseudospectral study of the randomly forced Navier-Stokes equation (RFNSE) stirre
by a stochastic force with zero mean and a variance,k42d2y , with k the wave vector and the dimension
d ­ 3. We provide the first evidence for multiscaling of velocity structure functions fory $ 4. We
extract the multiscaling exponent ratioszpyz2 by using extended self-similarity, examine their depen-
dence ony, and show that, ify ­ 4, they are in agreement with those obtained for the Navier-Stokes
equation forced at large spatial scales (3DNSE). Also well-defined vortex filaments, which appea
clearly in studies of the 3DNSE, are absent in the RFNSE. [S0031-9007(98)07657-1]
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Kolmogorov’s classic work (K41) on homogeneous
isotropic fluid turbulence focused on the scaling behavi
of velocity v structure functionsSpsrd ­ kjvisx 1 rd 2

visxdjpl, where the angular brackets denote an avera
over the statistical steady state [1]. He suggested th
for separationsr ; jrj in the inertial range, which is
substantial at large Reynolds numbers Re and lies betw
the forcing scaleL and the dissipation scalehd, these
structure functions scale asSp , rzp , with zp ­ py3.
Subsequent experiments [2] have suggested instead
multiscaling obtains withpy3 . zp, which turns out to
be a nonlinear, monotonically increasing function ofp;
this has also been borne out by numerical studies of
three-dimensional Navier-Stokes equation forced at lar
spatial scales (3DNSE) [2,3]. The determination of th
exponentszp has been one of the central, but elusive, goa
of the theory of turbulence. One of the promising startin
points for such a theory is the randomly forced Navie
Stokes equation (RFNSE) [4–6], driven by a Gaussi
random force whose spatial Fourier transformfsk, td
has zero mean and a covariancekfisk, tdfjsk0, t0dl ­
Ak42d2yPijskddsk 1 k0ddst 2 t0d; here k, k0 are
wave numbers,t, t0 times, i, j Cartesian components
in d dimensions, andPijskd the transverse projec-
tor which enforces the incompressibility condition
One-loop renormalization-group (RG) studies of th
RFNSE yield [4,5] a K41 energy spectrum, namel
Eskd , k2S2skd ; k2kjvskdj2l , k25y3, if we setd ­ 3
and y ­ 4; this has also been verified numerically [6]
Nevertheless, these RG studies have been criticized
a variety of reasons [7,8] such as using a large value
y in a small-y expansion and neglecting an infinity o
marginal operators (ify ­ 4). These criticisms of theap-
proximationsused in these studies might well be justified
but they clearly cannot be used to argue that the RFN
is in itself inappropriate for a theory of turbulence. It is
our purpose here to test whether structure functions in
RFNSE display the same multiscaling as in the 3DNSE f
some value ofy; if so, then the RFNSE can, defensibly
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be used to develop a statistical theory of inertial-rang
multiscaling in homogeneous, isotropic fluid turbulence.

We have carried out an extensive pseudospectral stu
of the RFNSE and compared our results with earlier n
merical studies [3,9] of the 3DNSE and experiments [2
We find several interesting and new results: We sho
that structure functions in the RFNSE display multiscalin
for y $ 4. We obtainz2 from S2skd (Fig. 1) and the ex-
ponent ratioszpyz2 by using the extended-self-similarity
(ESS) procedure (Fig. 2a) [9,10]. We find thatzpyz2 is
close to the 3DNSE result (Fig. 2b) fory ­ 4 at least
for p # 7. Furthermore we show that the qualitative
behaviors of the probability distributionsPsssdyasrdddd,
wheredyasrd ; yasxd 2 yasx 1 rd, are similar in the
two models (Fig. 2c), but the shapes of constant-jvj

FIG. 1. Log-log plots (base 10) ofS2skd versusk for different
values ofy. The line indicates the K41 resultS2skd , k211y3.
k indicates the shell number, which is twice the wave numb
s­ 2p

L nd. The inset shows a representative plot of Rel versus
time (t) for y ­ 4.
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FIG. 2. (a) Log-log plots (base 10) ofS5srd versusS2srd illustrating the ESS procedure; full lines indicate fits to points in th
extended inertial range; (b) inertial-range exponent ratioszpyz2 versusp for the RFNSE withy ­ 4 and 6 [extracted from plots
such as (a)]; the line indicates the SL formula; (c) semilog plots of the distributionPsdyrd [i.e., Psdyasrd] averaged overa for r
in the dissipation range andy ­ 4 and6; a Gaussian distribution is shown for comparison.
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surfaces, wherev is the vorticity, are markedly different
(Fig. 3); the stochastic force destroys well-defined filame
tary structures that obtain in 3DNSE studies. This has im
plications for the She-Leveque (SL) [11] formula forzp as
we discuss below.

We use a pseudospectral method [12] to solve t
RFNSE numerically on a643 grid with a cubic box of
linear size L ­ 2p and periodic boundary conditions;
we have checked in representative cases that our
sults are unchanged if we use an803 grid or aliasing.
Aside from the stochastic forcing [13], our numerica
scheme is the same as in Ref. [9]. Our dissipation ter
sn 1 nHk2dk2vskd in wave-vector (k) space, includes
both the viscosityn and the hyperviscositynH ; the
exponentszp are unaffected bynH if n . 0 [9,14]. For
a fixed grid size we can attain higher Taylor-microsca
Reynolds numbers Rel in the RFNSE, and hence a large
inertial range, than in the 3DNSE (Rel . 120 compared
to Rel . 22 in our study), as noted earlier [6] fory ­ 4.
This advantage is reduced somewhat by the need to av

FIG. 3. Iso-jvj surfaces obtained from instantaneous sna
shots of the vorticity fields showing filaments for the 3DNSE
(left) and no filaments for the RFNSE withy ­ 4 (right).
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age statistical observables longer in the RFNSE than
the 3DNSE. In the latter case it normally suffices to ave
age over a few box-size eddy turnover timestL; this is not
enough for the RFNSE since (a) Rel fluctuates strongly
over time scales considerably larger thantL (inset
in Fig. 1) and (b) the length of thefsk, td time series
required to obtain a specified variance for the stochas
force is quite large (. 6tL to achieve the given variance
within 1% 2%). We have collected data for average
over s25 33dtL (for different values ofy), after ini-
tial transients have been allowed to decay [over tim
. s10 20dtL]. Our tL . 10tI , the integral-scale time
used in some studies [12];tI ; LIyyrms, where the in-
tegral scaleLI ; f

R
dk kEskdy

R
dk Eskdg21 and yrms is

the root-mean-square velocity. We have checked exp
itly that the RFNSE captures the hierarchy of time scal
present in the 3DNSE. In spite of the delta-correlate
stochastic force in the RFNSE, the variation ofvskd as
a function of time is similar in both the RFNSE and
the 3DNSE: There is a hierarchy of time scales whic
increase with decreasingk ; jkj. In the RFNSE, the
stochastic force puts a high-frequency ripple onvskd even
for small k, but this does not affect its overall variation
significantly, nor does it affect the multiscaling expone
ratios if y ­ 4, as we show below.

We begin by investigating the inertial-range scaling o
the k-space structure functionS2skd , k2z

0
2 . Given this

power-law form, the exponentz 0
2 is easily related to the

r-space exponentz2 by z2 ­ z
0
2 2 3. Our data in Fig. 1

for 4 # y are consistent withz 0
2 ­ 11y3 [i.e., the K41

value sinceEskd , k2S2skd , k25y3]. For y ­ 4 this re-
sult has been reported earlier [6]. They independence
of z

0
2 above some criticalyc [our data forS2skd suggest

yc . 4] is theoretically satisfying since the variance o
the stochastic force in the RFNSE rises rapidly at sm
k, so we might expect that, for sufficiently largey, it
approximates the conventional forcing of the 3DNSE
large spatial scales. This has been explored in theN ! `
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limit of an N-component RFNSE [7]. This study suggest
z

0
2 ­ 7y2 for y $ yc ­ 4; given our error bars (Table I)

it is difficult to distinguish this from theOsyd RG pre-
diction z

0
2 ­ 11y3 though our data are closer to the latte

For 0 , y # 3 both the one-loop RG [5] and theN ! `

theory [7] predictz 0
2 , 1 1 2yy3 1 Osy2d, in fair agree-

ment with our numerical results, especially for smally
(Table I). Note that, for0 , y , 4, there is noinvariant
energy cascade as in conventional K41: The dominan
of dissipation at largek does lead to an energy cascade
but the energy flux depends on the length scaler; specifi-
cally Psrd ø Ary24, with A the scale-independent part o
the variance of the stochastic force. A K41-type argu
ment [15] now yields an energy-transfer rate,kdy3

r lyr ,
r s y24d, whenceS3srd , r s y23d and, if we assume simple
scaling as in K41,S2srd , r s y23d2y3, i.e.,z 0

2 ­ 1 1 2yy3,
as in theOsyd RG prediction. This formula breaks down
for y , 0; however, the RG predicts correctly that th
linear-hydrodynamics result obtains in this regime.

We ensure that systematic errors do not affectz
0
2 as

follows. If kmax is the largest wave-vector magnitude
in our numerical scheme, we find thatLIkmax decreases
with decreasingy; this shortens the inertial range which
can be used to obtainz 0

2. The lower the value ofy
the more difficult it is to obtain a dissipation range
free of finite-resolution errors. Fory , 4, we define
kd ; h

21
d to be the inverse length scale at which th

energy-transfer timetr , sryyr d , fAr s y26dg1y3 equals
the diffusion time tD , fnk2 1 nHk4g21; this yields
n0k2

d 1 nhk4
d ­ fAk

62y
d g1y3, which when solved numeri-

cally shows that, for fixedA, kd increases asy decreases
(in Table I A is not fixed). Statistical steady states
with ill-resolved dissipation ranges that do not have
decaying tail [9], can be obtained by adjustingA. In
such caseskd ¿ kmax and we get spurious results forz

0
2.

We find that, if we increase the hyperviscositynH , kd

is sufficiently close tokmax so that we can resolve both
inertial and dissipation ranges and obtain reliable valu
for z

0
2. Table I shows the range over which we fit ou

data forS2skd. Since our data forz 0
2 indicate thatyc . 4,

we investigate multiscaling only fory $ 4.
Our data forz 0

2 in Table I suggest that naive estimate
for the zp require longer inertial ranges than are avai
able in our studies. However, we find that, as in th
3DNSE, the extended-self-similarity procedure [3,9,10
can be used fruitfully here to extract the exponent ratio
TABLE I. The dissipation-scale wave numberkd (see text), the integral-scale wave numberkI ; L21
I , the apparent inertial range

over which we fit our data forS2skd, the hyperviscositiesnH , the exponentz 0
2 that we compute, and itsOsyd RG value, for

1 # y # 4. The viscosityn is 5 3 1024 in all these runs which use a643 grid.

y kd kI Fitting range nH z
0
2 (This study) z

0
2 from Osyd RG

4 49.0 1.16 s0.1 0.5dkd 1026 3.6 6 0.1 .3.67
3 38.7 1.90 s0.16 0.52dkd 3 3 1026 3.0 6 0.1 .3
2 35.0 5.90 s0.17 0.63dkd 8 3 1026 2.3 6 0.1 .2.33
1 35.4 10.3 s0.2 0.7dkd 8 3 1026 1.6 6 0.15 .1.67
s

r.

ce
,

f
-

e

e

,
a

es
r

s
l-
e
]
s

zpyzq from the slopes of log-log plots ofSpsrd versus
Sqsrd (see Fig. 2) since this extends the apparent ine
tial range. We compare the resultingzpyz2 in Fig. 2b
with the She-Leveque formula [11], which provides a con
venient parametrization for the experimental values fo
zp. Figure 2b shows that, withy ­ 4, our RFNSE ex-
ponent ratios lie very close to those for the 3DNSE an
to this extent, these two models are in the sameuniver-
sality class. We obtainedzpyz2 by a regression fit. We
have also checked that a local-slope analysis of ESS pl
like Fig. 2a yields exponent ratios nearly indistinguishab
from those shown in Fig. 2b. The error bars in Fig. 2
give a rough estimate of the systematic error associat
with the choice of the precise range of points which fa
in the extended inertial range; they were obtained by var
ing the number of points used in our regression fits. Th
exponent ratios fory , 4 lie away from the 3DNSE val-
ues. One might expect naively that, at very large valu
of y, the inertial-range behaviors of structure functions o
all orders should be the same as in the 3DNSE. How
ever, strictly speaking, this is not obviousa priori, nei-
ther from renormalization-group calculations [4,5,8] no
from N ! ` calculations [7]. The former are not very
helpful for largey since an infinity of marginal operators
appears aty ­ 4; all these become relevant fory . 4.
The N ! ` studies have been restricted top ­ 2. For
p . 3, our data forzpyz2sy ­ 6d fall systematically be-
low those for zpyz2sy ­ 4d or the SL line. Also the
probability distributions ofPsdyrd (Fig. 2c) have non-
Gaussian tails forr in the dissipation range, and fory . 4
the deviations from a Gaussian distribution increase sy
tematically withy. Thus, at the resolution of our calcula-
tion, the RFNSEs withy ­ 4 andy ­ 6 are in different
universality classes. However, we point out that our da
for y ­ 6 are more noisy and yield a smaller inertial rang
(kd . 20) than those fory ­ 4 (Table I). So longer runs
with finer grids might well be required to settle this issu
conclusively.

Strictly speaking the RFNSE withy ­ 4 falls in the
same universality class as the 3DNSE only in the ES
sense. For arbitraryy the energy flux through thekth
shell is Pk ; Psr ­ k21d ,

Rk
1yLkjfskdj2l d3k, where

r is in the inertial range and we have used Novikov’
theorem [15], i.e.,kfskd ? vs2kdly , kjfskdj2l. For y .

4, Pk saturates to a constant forkL ¿ 1, but for y ­
4, Pk , logskLd in the RFNSE [16]. This is to be
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contrasted with the 3DNSE wherePk ­ const. Thus the
inertial-range behaviors of all correlation functions in th
two models are not the same. A K41-type dimension
analysis suggests that fory ­ 4 the energy fluxPk ,
kdy3

r lyr , logsryLd; if we assume that there is no
multiscaling, thenSpsrd , fr logsryLdgpy3. Multiscaling
will clearly modify this simple prediction, but some weak
deviation from the von Karman–Howarth formS3srd , r
must remain, since the standard derivation of this relati
[15] does not go through [17] with the RFNSE result fo
Pk . Since our data show that the ESS procedure wor
for the RFNSE, these weak deviations must cancel
the ratios of structure functions, and, as noted above,
y ­ 4 thezpyz2 agree with the SL result for the 3DNSE.

Filamentary structures (Fig. 3) [18] in iso-jvj plots are
important in phenomenological models for multiscalin
in fluid turbulence. For example, the SL formula [11
is obtained by postulating a hierarchical relation amon
the moments of the scale-dependent energy dissipati
this yields a difference equation for the exponentstp ,
which are simply related to the exponentszp; one of the
crucial boundary conditions used to solve this equatio
requires the codimension of the most intense structur
If these are taken to be vorticity filaments, their cod
mension is2 and one gets the SL formula. Filament
have been observed in experiments also [19]. We ha
shown above that the exponent ratioszpyz2 that we obtain
from the RFNSE withy ­ 4 agree with the SL formula.
One might expect, therefore, that filamentary structur
should appear in iso-jvj plots for the RFNSE. However,
this is not the case as can be seen from the represe
tive plot shown in Fig. 3. The stochastic forcing seem
to destroy the well-defined filaments observed in th
3DNSE without changing the multiscaling exponent ra
tios. Therefore, the existence of vorticity filaments is no
crucial for obtaining these exponents, which is perha
why simple shell models [9,20] also yield good estimate
for zp.

In summary, then, we have shown that the RFNS
with y ­ 4 exhibits the same multiscaling behavior as th
3DNSE, at least in the ESS sense. Probability distributio
like Psdyrd (Fig. 2c) are also qualitatively similar in the
two models, in so far as they show deviations from Gaus
ian distributions forr in the dissipation range. It would be
interesting to see if the RFNSE model can be obtained
an effective, inertial-range equation for fluid turbulence
We have tried to do this by a coarse-graining procedu
that has been used [21] to map the Kuramoto-Sivashins
(KS) equation onto the Kardar-Parisi-Zhang (KPZ) equ
tion; however, it turns out that the3DNSE ! RFNSE
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mapping, if it exists, is far more subtle than the KS! KPZ
mapping as we discuss elsewhere [17].
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