Turbulence and Multiscaling in the Randomly Forced Navier-Stokes Equation

Anirban Sainl Manu?* and Rahul Pandit

'Department of Physics, Indian Institute of Science, Bangalore 560 012, India
2School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India

We present a pseudospectral study of the randomly forced Navier-Stokes equation (RFNSE) stirred
by a stochastic force with zero mean and a varianéé <>, with k the wave vector and the dimension
d = 3. We provide the first evidence for multiscaling of velocity structure functionsyfer 4. We
extract the multiscaling exponent ratigs/¢, by using extended self-similarity, examine their depen-
dence ony, and show that, ify = 4, they are in agreement with those obtained for the Navier-Stokes
equation forced at large spatial scales (3DNSE). Also well-defined vortex filaments, which appear
clearly in studies of the 3DNSE, are absent in the RFNSE. [S0031-9007(98)07657-1]

Kolmogorov's classic work (K41) on homogeneous,be used to develop a statistical theory of inertial-range
isotropic fluid turbulence focused on the scaling behaviomultiscaling in homogeneous, isotropic fluid turbulence.
of velocity v structure functionsS,(r) = (|vi(x + r) — We have carried out an extensive pseudospectral study
v;(x)|?), where the angular brackets denote an averagef the RFNSE and compared our results with earlier nu-
over the statistical steady state [1]. He suggested thamerical studies [3,9] of the 3DNSE and experiments [2].
for separations- = [r| in the inertial range, which is  We find several interesting and new results: We show
substantial at large Reynolds numbers Re and lies betweehat structure functions in the RFNSE display multiscaling
the forcing scaleL and the dissipation scale,, these fory = 4. We obtain/, from S,(k) (Fig. 1) and the ex-
structure functions scale aS, ~ r¢, with {, = p/3.  ponent ratios,/{, by using the extended-self-similarity
Subsequent experiments [2] have suggested instead th@&SS) procedure (Fig. 2a) [9,10]. We find that/ £ is
multiscaling obtains withp /3 > {,,, which turns out to close to the 3DNSE result (Fig. 2b) for = 4 at least
be a nonlinear, monotonically increasing functionaf for p = 7. Furthermore we show that the qualitative
this has also been borne out by numerical studies of thbehaviors of the probability distribution®(Sv.(r)),
three-dimensional Navier-Stokes equation forced at largevhere Sv,(r) = v,(x) — vo(x + r), are similar in the
spatial scales (3DNSE) [2,3]. The determination of thetwo models (Fig. 2c), but the shapes of constanit-
exponentg’, has been one of the central, but elusive, goals
of the theory of turbulence. One of the promising starting
points for such a theory is the randomly forced Navier-
Stokes equation (RFNSE) [4—6], driven by a Gaussian
random force whose spatial Fourier transfoffitk, r)
has zero mean and a covariané&(k, H)f;(k’,7')) = 107
Ak*4rP;(k)S(k + k')8(t — #');  here k,k’ are
wave numbers,t,t’ times, i,j Cartesian components SZ(k)
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in d dimensions, andP;;(k) the transverse projec-
tor which enforces the incompressibility condition.
One-loop renormalization-group (RG) studies of this 150

RFNSE vyield [4,5] a K41 energy spectrum, namely, Re, W

E(k) ~ k*Sy(k) = kX(|v(K)|*) ~ k>3, if we setd =3 10° | 100
and y = 4; this has also been verified numerically [6]. %
Nevertheless, these RG studies have been criticized for " n
a variety of reasons [7,8] such as using a large value for

—8 -
y in a smally expansion and neglecting an infinity of 10 0 10 20 30t/140 50
marginal operators (if = 4). These criticisms of thap- . . o . .
proximationsused in these studies might well be justified, 2 3 10 20 30 k

but they clearly cannot be used to argue that the RFNSIEIG. 1. Log-log plots (base 10) (k) versusk for different

is in itself inappropriate for a theory of turbulen_ce. I't IS | Jlues ofy. The line indicates the K41 resub(k) ~ k~1/3.
our purpose here to test whether structure functions in thg indicates the shell number, which is twice the wave number

RENSE display the same multiscaling as in the 3DNSE fof— 27 ;) The inset shows a representative plot of, Rersus
some value ofy; if so, then the RFNSE can, defensibly, time () for y = 4.
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(a) Log-log plots (base 10) d¥;(r) versusS,(r) illustrating the ESS procedure; full lines indicate fits to points in the

extended inertial range; (b) inertial-range exponent ragjg&, versusp for the RFNSE withy = 4 and 6 [extracted from plots
such as (a)]; the line indicates the SL formula; (c) semilog plots of the distrib#{éw,) [i.e., P(dv,(r)] averaged over for r
in the dissipation range and= 4 and6; a Gaussian distribution is shown for comparison.

surfaces, wher@ is the vorticity, are markedly different age statistical observables longer in the RFNSE than in
(Fig. 3); the stochastic force destroys well-defined filamenthe 3DNSE. In the latter case it normally suffices to aver-
tary structures that obtain in 3DNSE studies. This has image over a few box-size eddy turnover timesthis is not

plications for the She-Leveque (SL) [11] formula iy as

we discuss below.

enough for the RFNSE since (a) R#uctuates strongly
over time scales considerably larger thap (inset

We use a pseudospectral method [12] to solve thén Fig. 1) and (b) the length of thé(k, ) time series

RFNSE numerically on #4° grid with a cubic box of

required to obtain a specified variance for the stochastic

linear size L = 27 and periodic boundary conditions; force is quite large=€ 67, to achieve the given variance
we have checked in representative cases that our revithin 1%-2%). We have collected data for averages

sults are unchanged if we use &6° grid or aliasing.

over (25-33)7. (for different values ofy), after ini-

Aside from the stochastic forcing [13], our numerical tial transients have been allowed to decay [over times

scheme is the same as in Ref. [9]. Our dissipation terms= (10-20)7.].

Our 7, = 1074, the integral-scale time

(v + vgk?)k*v(k) in wave-vector k) space, includes used in some studies [12}; = L;/vm, Where the in-

both the viscosityry and the hyperviscosityvy; the
exponents, are unaffected by if » > 0[9,14]. For

tegral scaleL; = [ [ dk kE(k)/ [ dk E(k)]™" and vy, is
the root-mean-square velocity. We have checked explic-

a fixed grid size we can attain higher Taylor-microscaleitly that the RENSE captures the hierarchy of time scales

Reynolds numbers Ren the RFNSE, and hence a larger present in the 3DNSE.
inertial range, than in the 3DNSE (Re= 120 compared
to Re, = 22 in our study), as noted earlier [6] for = 4.

In spite of the delta-correlated
stochastic force in the RFNSE, the variationvwik) as
a function of time is similar in both the RFNSE and

This advantage is reduced somewhat by the need to avethe 3DNSE: There is a hierarchy of time scales which
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increase with decreasing = |k|. In the RFNSE, the
stochastic force puts a high-frequency ripplevgk) even
for small k, but this does not affect its overall variation
significantly, nor does it affect the multiscaling exponent
ratios ify = 4, as we show below.

We begin by investigating the inertial-range scaling of
the k-space structure functiofih (k) ~ k~%. Given this
power-law form, the exponeny is easily related to the
r-space exponenb by &, = &, — 3. Our data in Fig. 1
for 4 =y are consistent with’; = 11/3 [i.e., the K41
value sinceE (k) ~ k2S,(k) ~ k=5/3]. Fory = 4 this re-
sult has been reported earlier [6]. Theindependence
of £ above some criticap. [our data forS,(k) suggest
ye. = 4] is theoretically satisfying since the variance of
the stochastic force in the RFNSE rises rapidly at small
k, so we might expect that, for sufficiently large it

shots of the vorticity fields showing filaments for the 3DNSE @pproximates the conventional forcing of the 3DNSE at
(left) and no filaments for the RFNSE with= 4 (right).
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large spatial scales. This has been explored inMhe oo



limit of an N-component RFNSE [7]. This study suggests{,/, from the slopes of log-log plots of,(r) versus

{ =17/2fory = y. = 4; given our error bars (Table I) S,(r) (see Fig. 2) since this extends the apparent iner-
it is difficult to distinguish this from theO(y) RG pre- tial range. We compare the resulting/{> in Fig. 2b
diction {3 = 11/3 though our data are closer to the latter. with the She-Leveque formula [11], which provides a con-
For0 < y = 3 both the one-loop RG [5] and theé — «  venient parametrization for the experimental values for
theory [7] predictl; ~ 1 + 2y/3 + O(y?), in fair agree-  ¢,. Figure 2b shows that, with = 4, our RFNSE ex-
ment with our numerical results, especially for small ponent ratios lie very close to those for the 3DNSE and,
(Table I). Note that, fop < y < 4, there is ndnvariant  to this extent, these two models are in the sam@er-
energy cascade as in conventional K41: The dominancsality class We obtained/,/{, by a regression fit. We

of dissipation at largé& does lead to an energy cascade,have also checked that a local-slope analysis of ESS plots
but the energy flux depends on the length sealspecifi- like Fig. 2a yields exponent ratios nearly indistinguishable
cally ITI(r) = Ar>~*, with A the scale-independent part of from those shown in Fig. 2b. The error bars in Fig. 2b
the variance of the stochastic force. A K4l-type argu-give a rough estimate of the systematic error associated

ment [15] now yields an energy-transfer raté5v?)/r ~  with the choice of the precise range of points which fall
r(=% whenceS;(r) ~ r(?=3 and, if we assume simple in the extended inertial range; they were obtained by vary-
scaling as in K41S5,(r) ~ r0=323 e,z =1 + 2y/3,  ing the number of points used in our regression fits. The

as in theO(y) RG prediction. This formula breaks down exponent ratios fop < 4 lie away from the 3DNSE val-
for y < 0; however, the RG predicts correctly that the ues. One might expect naively that, at very large values
linear-hydrodynamics result obtains in this regime. of y, the inertial-range behaviors of structure functions of
We ensure that systematic errors do not affgctas  all orders should be the same as in the 3DNSE. How-
follows. If kmax is the largest wave-vector magnitude ever, strictly speaking, this is not obvioaspriori, nei-
in our numerical scheme, we find thatkn.x decreases ther from renormalization-group calculations [4,5,8] nor
with decreasingy; this shortens the inertial range which from N — < calculations [7]. The former are not very
can be used to obtaig;. The lower the value ofy  helpful for largey since an infinity of marginal operators
the more difficult it is to obtain a dissipation range appears ay = 4; all these become relevant fgr > 4.
free of finite-resolution errors. Foy < 4, we define The N — « studies have been restricted po= 2. For
kg = ngl to be the inverse length scale at which thep > 3, our data for{,/{>(y = 6) fall systematically be-
energy-transfer time, ~ (r/v,) ~ [Ar0~9]'/3 equals low those for(,/s(y = 4) or the SL line. Also the
the diffusion time tp ~ [vk> + vyk*]™'; this yields probability distributions ofP(5v,) (Fig. 2c) have non-
vok3 + vk = [Akg’y]l/3, which when solved numeri- Gaussian tails for in the dissipation range, and for> 4
cally shows that, for fixedi, k, increases as decreases the deviations from a Gaussian distribution increase sys-
(in Table | A is not fixed). Statistical steady states, tematically withy. Thus, at the resolution of our calcula-
with ill-resolved dissipation ranges that do not have afion, the RENSEs witty = 4 andy = 6 are in different
decaying tail [9], can be obtained by adjustidg In  universality classes. However, we point out that our data
such cases, > kmax and we get spurious results fgf. ~ for y = 6 are more noisy and yield a smaller inertial range
We find that, if we increase the hyperviscosity;, k;, (ks = 20) than those foy = 4 (Table I). So longer runs
is sufficiently close tokmax SO that we can resolve both With fingr grids might well be required to settle this issue
inertial and dissipation ranges and obtain reliable valuegonclusively.
for /3. Table | shows the range over which we fit our Strictly speaking the RFNSE with = 4 falls in the
data forS,(k). Since our data fof; indicate thaty, = 4, same universality class as the 3DNSE only in the ESS
we investigate mu|tisca|ing 0n|y fgr = 4. sense. For arbitrary the energy flux through théth
Our data for{; in Table | suggest that naive estimatesshell is IT; = II(r = k') ~ f’f/L<|f(k)|2>d3k, where
for the ¢, require longer inertial ranges than are avail-r is in the inertial range and we have used Novikov's
able in our studies. However, we find that, as in thetheorem [15], i.e.{f(k) - v(—k))/ ~ (|f(k)|?). Fory >
3DNSE, the extended-self-similarity procedure [3,9,104, II; saturates to a constant fal > 1, but fory =
can be used fruitfully here to extract the exponent ratiog, II; ~ log(kL) in the RFNSE [16]. This is to be

TABLE I. The dissipation-scale wave numbkr (see text), the integral-scale wave numbgke= L; ', the apparent inertial range
over which we fit our data foiS,(k), the hyperviscosities’;;, the exponent; that we compute, and it®(y) RG value, for
1 =y = 4. The viscosityr is 5 X 107* in all these runs which use&@ grid.

y kg k; Fitting range vy £ (This study) & from O(y) RG
4 49.0 1.16 (0.1-0.5)ky 1076 3.6+ 0.1 ~3.67

3 38.7 1.90 (0.16—0.52)k, 3 X 107° 3.0 0.1 =3

2 35.0 5.90 (0.17-0.63)ky 8 X 1076 23+ 0.1 =233

1 354 10.3 (0.2-0.7)ky 8 X 107° 1.6 £ 0.15 =1.67




contrasted with the 3DNSE whel&;, = const. Thus the mapping, if it exists, is far more subtle than the KSKPZ
inertial-range behaviors of all correlation functions in themapping as we discuss elsewhere [17].

two models are not the same. A K41l-type dimensional We thank C. Das, A. Pande, S. Ramaswamy, and H. R.
analysis suggests that fgr= 4 the energy fluxIl, ~  Krishnamurthy for discussions, CSIR (India) for support,
(8v3)/r ~ log(r/L); if we assume that there is no and SERC (lISc, Bangalore) for computational resources.
multiscaling, thenS, (r) ~ [r log(r/L)]?/3. Multiscaling

will clearly modify this simple prediction, but some weak

deviation from the von Karman—Howarth forf(r) ~ r *Presgnt qddress: Indian Institute of Foreign Trade, New
must remain, since the standard derivation of this relation ~ Delhi, India. o
[15] does not go through [17] with the RENSE result for éfgegzcﬂaggzzg%rgemjife”tre for Advanced Scientific
IT,. Since our data show that the ESS procedure works ’ ’ ; .

for the RFNSE, these weak deviations must cancel in[l] A-N. Kolmogorov, C.R. Acad. Sci. USSBO, 301 (1941),

h . f f . f [2] For recent reviews, see K.R. Sreenivasan and R. Antonia,
the ratios of structure functions, and, as noted above, for Annu. Rev. Fluid Mech.29, 435 (1997); S.K. Dhar

y = 4the(,/{; agree with the SL result for the 3DNSE. et al., Special issue on Nonlinearity and Chaos in Physical
Filamentary structures (Fig. 3) [18] in ida»| plots are Sciences [Pramana J. Phyi§, 325 (1997)].

important in phenomenological models for multiscaling [3] N. Cao, S. Chen, and K.R. Sreenivasan, Phys. Rev. Lett.
in fluid turbulence. For example, the SL formula [11] 77, 3799 (1996).
is obtained by postulating a hierarchical relation among[4] C. DeDominicis and P.C. Martin, Phys. Rev. ¥9, 419
the moments of the scale-dependent energy dissipation; (1979); D. Forster, D.R. Nelson, and M. J. Stephen, Phys.
this yields a difference equation for the exponens Rev. A16, 732 (1977).
which are simply related to the exponeds one of the [ V. Yakhot and S.A. Orszag, Phys. Rev. Lefiz, 1722
crucial boundary conditions used to solve this equation ., (1986); J.K. Bhattacharjee, J. Phys24, L551 (1988).

. . . - [6] V. Yakhot, S.A. Orszag, and R. Panda, J. Sci. ComBut.
requires the codimension of t_hg most intense structures.™ a9 (1988).
If thefs,e are taken to be vorticity filaments, thglr codi- 7] C.Y. Mou and P.B. Weichman, Phys. Rev. L&te, 1101
mension is2 and one gets the SL formula. Filaments (1993).
have been observed in experiments also [19]. We havgg] G. L. Eyink, Phys. Fluids, 3063 (1994).
shown above that the exponent ratig {> that we obtain ~ [9] S.K. Dhar, A. Sain, and R. Pandit, Phys. Rev. L&®,
from the RFNSE withy = 4 agree with the SL formula. 2964 (1997).
One might expect, therefore, that filamentary structure§l0] R. Benziet al., Phys. Rev. E48, R29 (1993).
should appear in istw| plots for the RFNSE. However, [11] Z.S. She and E. Leveque, Phys. Rev. LER. 336 (1994).
this is not the case as can be seen from the representd?] M. Meneguzzi and A. Vincent, ifdvances in Turbu-
tive plot shown in Fig. 3. The stochastic forcing seems ~ 'ence 3.edited by A.V. Johansson and P.H. Alfredsson
fo_destroy the well-defined filaments observed in the, (Springer, Berlin, 1991), pp. 211-220.

? . ) . For analogous studies of the randomly forced Burger's
3DNSE without changing the multiscaling exponent ra- equation, see A. Chekhlov and V. Yakhot, Phys. Rev. E

tios. _ Therefore,_ the existence of vorticity fil_amgnts is not 51, 2739 (1995); F. Hayot and C. Jayaprakash, Phys. Rev.
crucial for obtaining these exponents, which is perhaps 54 4681 (1996).

why simple shell models [9,20] also yield good estimate§14] N. Cao, S. Chen, and Z.S. She, Phys. Rev. #6t.3711

for ¢,. (1996).

In summary, then, we have shown that the RFNSH15] U. Frish, Turbulence: The Legacy of A.N. Kolmogorov
with y = 4 exhibits the same multiscaling behavior as the ~ (Cambridge University Press, Cambridge, England, 1995).
3DNSE, at least in the ESS sense. Probability distributionkL6] Thus at the level ofl, it seems that. = 4, but, as noted
like P(8v,) (Fig. 2c) are also qualitatively similar in the above, this value of. = 4 does not emerge from our data
two models, in so far as they show deviations from Gauss[-17] fgrsggi/ngérﬁ)diSI)DZQSifESrlljétblished)
ian dlstr_lbutlons fo_rr in the dissipation range. Itwoul_d bea[slg] E.D. Siggia, J. Fluid Mech107, 375 (1981): Z.S. She,
interesting to see if the RFNSE model can be obtained

. . . . . E. Jackson, and S.A. Orszag, Nature (LondB4)} 226
an effective, inertial-range equation for fluid turbulence. (1990).

We have tried to do this by a coarse-graining procedur@ig] s. pouady, Y. Couder, and M. E. Brachet, Phys. Rev. Lett.

that has been used [21] to map the Kuramoto-Sivashinsky ~ 67, 983 (1991).

(KS) equation onto the Kardar-Parisi-Zhang (KPZ) equa{20] D. Pisarenkaet al., Phys. Fluids A5, 2533 (1993).

tion; however, it turns out that thBDNSE — RFNSE [21] C. Jayaprakash, F. Hayot, and R. Pandit, Phys. Rev. Lett.
71, 12 (1993).



