Spatiotemporal chaos and nonequilibrium transitions in a model excitable medium
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We present a detailed study of the statistical steady states of a model for CO oxidatidd 16 prtoposed
by Ba and co-workers. We show that the stability diagram of this model depends sensitively on the boundary
conditions. We elucidate several novel properties of a state with meandering gigiyddsiefly mentioned by
Bar and co-workers(1) We show that, with periodic boundary conditions, M is the state MP, a binary mixture
displaying a coexistence of quasiperiodically rotating spirals and chaotically moving pointlike defects. We
show that the transition from MP to the turbulent state T1 is continuous; the transition line marks the locus
where the two phases cease to be distif®tWith Neumann boundary conditions M is the state MN, a single
quasiperiodically rotating spiral. We show that the MN-T1 transition is discontinuous or first order. We also
characterize the transitions from MP and MN to the state S, which has quasiperiodically rotating spirals. We
also propose qualitative mechanisms for these transitions.

I. INTRODUCTION Here the fieldau andv are related to CO and O coverages
[1], a, b, ande are control parameters related to rate con-
Spiral waves are ubiquitous in two-dimensional excitablestants, etc., for the chemical reactions involvedienotes
media: they occur in a wide variety of systems includingtime, andf(u)=0 if u<%, f(u)=1—6.75u(u—1) if %
some chemical reactioni4], calcium waves in the cell cyto- <y<1, andf(u)=1 if u=1. We use dimensionless vari-
plasm([2], and cardiac arrhythmig$]. Thus an elucidation gples that are related to those describing CO oxidation on
of the phenomena exhibited by them is of considerable impy(110) in Ref. [7]. The numerical studies of RefL] have
portance. A particularly interesting class of such phenomengie|geq a stability diagram for the statistical steady states of
are the transitions from states with steadily rotating spirals t%q. (1) in theb-¢ plane witha=0.84: As is increased from
ones with meandering spirald] and, sometimes, to those 0, say withb=0.07, a transition occurs from a state S, com-

with spatlotemporal_qhaog. A few_grouﬁES,G] have begun grising rigidly rotating spirals, to another state M with me-
to study these transitions in experimental and model systems. ; > ) . .
dering spirals; on further increasirg M evolves into

We extend these studies by a detailed analysis of one sudl . .
sequence of transitions in a model proposed in REf.to states T1 and T2 that exhibit spiral turbuleridd. Other

describe the oxidation of CO on ®10). The possibility of recent studie$6,8] have tried to characterize the chaos that

carrying out careful experiments on this system makes thi€Ptains in the states M, T1, and T2. In this paper we present
model especially appealing. As a parametdsee belowis ~ an extensive numerical study of modd) that focuses on
varied, this model shows a sequence of transitions from glucidating the natures of the states S, M, T1, and T2 and the
state with steadily rotating spiral§), to one with meander- transitions between them.
ing spirals(M), and then to turbulent staté$1 and T2 in Our principal qualitative results are summarized below:
which there is steady creation and annihilation of Spirals_The nature of the state M and, therefore, the transitions from
Thus it is well suited for a systematic study of these transiit to the states T1 and S depend sensitively on Haftthe
tions. initial conditions and(b) the boundary conditions. The
Before proceeding further it is useful to define the modelinitial-condition dependence has been noted in R&f.here
of Ref.[1] for CO oxidation. It consists of the following two we restrict ourselves to initial conditions that yield spirals in
coupled partial differential equations in two spatial dimen-the statistical steady state and concentrate on the boundary-
sionsx: condition dependence. We study both periodic boundary
conditions (PBC’s) and Neumann , i.e., no-flux, boundary
conditions(NBC's); these yield distinct meandering states,
=V2u—£u(u—1)[u—(v+b)/a], which we denote MP and MN, respectively. The state MN
€ comprises one large meandering spjfép. 1(a)]. The state
(1) MP consists of large meandering spirals coexisting with a
finite concentration of point defecf&ig. 1(b)]; such coex-
v istence has been noted in Rdfl]. In MN the largest
' Lyapunov exponenh,=0 so this state is barely chaotic;
indeed, we suggest below that it is quasiperiodic. MP is cha-
otic since\ ,>0 for it. The MN-T1 transition is first order,
*Also at Jawaharlal Nehru Center for Advanced Scientific Re-€.g., the defect number density jumps discontinuously here
search, Bangalore, India. [Fig. 2@] if e is moved sufficiently slowly through
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below) go to zero as powers ofe(-¢.), whereg, is the
critical value at which the state S appears.

The remaining part of this paper is organized as follows.
In Sec. Il we describe the numerical methods we use and the
quantities we measure in our study of modBl Section Ill
contains a discussion of our results for the states S, MP, MN,
T1, and T2 and the transitions between them. Section IV
contains concluding remarks.

FIG. 1. Gray-scale plots of the field in (a) the single-spiral Il NUMERICAL STUDIES

state. MN and(b) the inhomogeneous state MP at=1/15.9 To our knowledge, we have carried out the most extensive
=0.0629. The gray intensity is proportional to the field amplitude atnymerical study of modell) to date. Our numerical scheme
that point. The trajectories of the spiral cores or small-defect coregs gescribed below. In this section we define the quantities
are shown superposed in white. Note the clear “phase separationjye have calculated via our numerical solution of this model.
in the state MP. The study of Ref[6] demonstrates that long transients of
spatially and temporally irregular behavior occur in model

£=0.057; a hysteresis loofFig. 2b)] is obtained ifs is (1) in the parameter ranges corresponding to the states T1
changed rapidly enough that metastable states do not decaghd T2 for systems with linear system size-25 and run

By contrast the MP-T1 transition is continuous. The tran-timest=1000; Ref.[6] provides evidence for a divergence
sition can be characterized by the order param&@«)  of the transient time with increasirg We have studied the
=1/47%(| [ d?xe'*™u(x,1)|?); in a state containing large spi- system principally al.=64 and have not seen the break-
rals, S(k) displays a secondary peak|&f=k., wherek; is  down of these states for times as long as 1 time units
the wavelength of the spiral arm. If we defing. (for comparision, the rotation time of one spiral4s4—5
=1/2mw [T _dOS(k. cos@)k.sin)), we find thata,. rises time unity. On the time scale of our studies the system dis-
continuously from 0 as the system moves from the state Thlays well-defined, nonequilibrium, statistical steady states.
to the state MH9]. We study Eq(1) numerically by discretizing it using the

The MP-S transition is also continuous; in particulay, = method of lines on an evenly spaced square grid of kide
and the standard deviatian of the interspike intervalésee  with 2L grid points per side, and the standard six-point
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FIG. 2. Plots of(a) p vs ¢ at the MN-T1 transition anéb) the hysteresis loop obtained on varyia@cross the transition at a finite rate
(see texto and + indicate decreasing and increasifngrespectively.
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FIG. 3. Local phase portraits with 1000 points edeh(d), the temporal autocorrelation functidd(t) (e)—(h) (averaged over ten
representative grid pointsand the distributiorP(#) (averaged over ten representative grid poimtsthe interpulse interval® in the
regimes S £€=0.04), MP £=0.0633), T1 £€=0.0782), and T24=0.1178), respectively.

finite-difference stencil for the Laplacidd4]. We normally

=0.07, and vank.

the Cash-Karp parameters and variable step[diZg which

used a method proposed by Bark[&} for integrating these

integrator are the largest that we know of that have been
uselL =64, but we have checked in representative cases tha@rried out for mode(1) so far.
our results are not modified If=128. We seta=0.84,b

Local phase portraits, which are plots in the plane of
(u(x,t,),v(x,t,)) for fixed spatial coordinate and regularly

We use both PBC and NBC and, in each case, integratspaced timed,, provide a convenient qualitative way to
the resulting system of coupled ordinary differential equa-decide whether a state displays simple or complex temporal
tions by using a fourth—fifth-order Runge-Kutta scheme withevolution. For example, with PBC, Figs(a3—3(d) show
such phase portraits asgoes from 0.040.1178, i.e., the
suffices for these stiff equations. For very long runs we haveystem goes from the state S to MP, T1, and then T2: clearly
the evolution in S is periodic and increasingly irregular in
equations; we have checked that both these numericéflP, T1, and T2. We have already noted that MP is inhomo-
schemes give consistent results. Our runs with the Barklegeneous so local phase portraits depend on whether the spa-



tial point x lies in the region dominated by a large spiral or thatP(6) is nearly bimodal if calculated in the region domi-
the region in which clusters of small defects are present. Weated by a large spiral; otherwise it is broad. Note fef)
show representative local phase portrdigsgs. 4a)—4(b]  in MN yields a similar bimodal distribution, which we asso-
that illustrate this for the well-separated state of Figh)1 Ciate with the presence of two frequencies in the rotating
We will show below that the local phase portrEfig. 4a)]  spiral, namely, the s_p|ral rotation frequency and the meander
obtained from the region of the large spiral corresponds tdréquency of the spiral core. We also calculate the standard
quasiperiodic and not chaotic behavior. States of the typgeviationa that follows fromP(6) [Fig. (@) for PBC]; it is
shown in Fig. 1b) evolve on very slow time scales-(10* ~ 2€r0 in S and increases in the phases MP, MN, T1, and T2.
time units since the large spirals driftL0]. Th|s conf|rms that the system displays increasing temporal
We calculate autocorrelation functions such @gt) irregularity in these four phases. However, again we must be

_ : careful while calculatingr in the inhomogeneous state MP.
=(u(x,to)u(x,tp+1)) by computingu(x,tp)u(x,ty+t) for a .
range of time lags and then averaging over sucessive ori- Figure Ga) shows the temporal power spectri$ft) ob-

ihge ot 9 : aging T tained from the time series ofin MN; Fig. 6(b) is its analog
gins of timety. These oscillate without decaying in S, but

; . : for data obtained from the large-spiral region in MP. In both
have more and more rapidly dgcaylng enve_lopes in T1 an ases, the peaks in the power spectrum are at sums of integer
T2 [Figs. 3e)—3(h) for PBC], which can be fit to the form

‘i d - multiples of two incommensurate frequencisse Table)l
e . A stretched exponential form exp€t”), y<1, obtains The & dependences of the largest Lyapunov expongnt

in the state MP if one averages naively over the spatial origirm:igs_ Ab), 7(c) for PBC and Fig. &) for NBC] are also
X. However, a more careful average, which accounts for thgiseful in characterizing the evolution from S to MP or MN.
inhomogeneous nature of MPee Fig. )], shows that e obtain\,, and the spectrum of Lyapunov exponents by
C(t) has an envelope that hardly decd¥ég. 4(c)] if data  using standard algorithmgl1]; we have calculated these
are obtained from a point that lies in the region that is domi-spectra only for small system sizésear sizesL =16 and
nated by a large spiral; otherwise the envelopeC¢f) de-  32). To obtain reliable estimates for the Lyapunov exponents
cays so slowly{Fig. 4(d)] that it can be fitted either to the we follow Ref. [12]: Since the approximatior\; to a
form In(t) or tot” with y=0 given the precision of our data. Lyapunov exponenk is observed to converge ag Wwhere
Not surprisingly, then, the envelope 6{t) hardly decays t is the time over which the integration is done, we estimate
in state MN, which contains one large spiral. Singg>0 in Am from a fit to the formi\;=\,,+b/t. With PBC A\, is
state MP butx ,=0 in state MN(see beloy;, we can asso- small and negative in S and becomes progressively more
ciate the presence of chaos with the decag(f). Further-  positive as we move from MP to T1 and T2; its dependence
more, becaus€(t) decays only in the regions of state MP, on boundary conditions is elucidated below. Since calcula-
which contain clusters of small defects, we conclude that théions of A, require knowledge of the time evolution of
chaos arises because of the disorderly motion of these smal(x,t) andv(x,t) for all x, it is not meaningful to try to
defects. Given that the envelope of the autocorrelation funceompute\ ,, for separate regions dominated by large spirals
tion C(t) behaves as-exp(—ct) in states T1 and T2, we can or clusters of small defects in MP without makiagl hoc
extract a correlation time=c~! which decreases as we go assumptions. In MP we find that,>0.

from T1 to T2. The variation of this witla is shown in Fig. We define the phase ¢(xt)=tan (v(x,t)
7(d) for PBC. The increase im with decreasing is clearly — —uv, J/[u(x,t)—u,)], with (uy, ,v,)
visible, again confirming that the phases T1 and T2 display=(0.66 ... 0.4& ...), theunstable fixed point of Eq1)
increasingly irregular behavior. without the V2u term. This phase winds by72 around the

Probability distributiondP () of the time intervalsd be-  cores of spiral defect§l] and can be used to obtain the
tween successive pulses in time series of the fast variable defect density [8,13]. This defect density jumps at the first-
[Figs. 3i)-3(), for PBC] are another useful measure of the order MN-T1 boundary with NBGFig. 2(@)] and exhibits
degree of irregularity of the temporal behavior of the statehysteretic behaviofFig. 2(b)] if we cycle through this tran-
Note first that the excitability of the system yields pulses insition at a finite rate.
the time series ofi(x,t); representative plots in states S and  The stability diagram of Refl1] is valid only for the class
T2 are shown in Figs. (8-5(b). Given such sequences of of initial conditions that lead to spirals in the statistical
pulses, we can obtain the time between successive plases steady state that is finally obtained. This is implicit in earlier
spikes. studies[1] but has not been emphasized sufficiently. We

This is easier to do in state S, where the spikes are sharfind, e.g., that typical random initial conditions farandv
than in state T2, where they are broader. We define the indecay to the uniform state=v=0 at larges (in MP, MN,
terspike interval to be the time between two successival, and T2. Care must be taken, therefore, to use initial
crossings olu(x,t) across a threshold, (from belowuy to  conditions that do yield spirals in the S, MP, MN,T1, and T2
above i}. We useuy=0.5 in most of our studies; however, states.
we have checked that the distributions we get are insensitive We find that a convenient way of doing this is to start at
to the exact value afiy as long as it lies in the middle of the low & (deep in state Bwith random initial conditions; these
range of values ofi(x,t). The probability distributior(0) usually relax to states with rotating spirals. If we use these
is a 6 function (DF) in state S and broadens in states T1 andelaxed states as initial conditions at larger values,a¢hen
T2 [Figs. 3i)—3(1)]. If one averages neely over the spatial we obtain a finite number of spiral defects in the steady state.
origin x in MP, the resulting PDF is similar to that in T1 This is true with both PBC and NBC; in the latter case we
[Fig. 3(j)]. However, a more careful average, which accountan also begin with a broken wave frofthis eventually
for the inhomogeneous nature of MBee Fig. 1b)], shows curls up into a big spiral
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FIG. 4. Plots of(a) the local phase portraifc) temporal autocorrelation functid®(t), and(e) histogramP( #) of the interpulse-intervals
6 with data from a large-spiral region in the inhomogenous state MP of Fay. Rigures(b), (d), and(f) are the analogs d#), (c), and(e),
respectively, with data from the pointlike-defect region of MP lfo+ 64.
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FIG. 6. The temporal power spectriBiw) of u(x,t) for (a) data from the large-spiral region of MP afig) for data from MN.

Before collecting data for averages, we allow transients tamecessary to obtain data for 200 000 time units for the system
die out for =50 000 time units(For comparison we note sizes we use. The reason for this is the divergence in char-
that the characteristic time scale for one spiral rotation isacteristic times near the S-M boundary with PBC, which
=46 time units) We have checked in a few cases that ourleads to a very slow temporal variation pfwith time.
results are unchanged if we increasge by a factor of 4.

After these transients haV(_a died down and the s_tatistical lIl. NONEQUILIBRIUM STEADY STATES
steady state has been obtained, we collect data fptime
units. ForC(t) andP(#6), we find thatr,,=50 000 suffices; We now turn to a detailed description of the properties of

for A, we find good convergence for,,=5000 time units. the nonequilibrium statistical steady states S, MP, MN, T1,
For other quantities, like the defect densitwvith PBC, itis  and T2, the transitions, if any, between them, and their de-
pendence on boundary conditions. We first consider the
properties of the states S, MP, and MN and then the MP-S
peaks in the temporal power spectrumuk,t) in the states MP and MN-S transition. Next we describe the properties of the
and MN. Data for the state MP are obtained from a puittiat lies states T1 and T2 and then study the MP-T1 and MN-T1

in the large-spiral regiofFig. 1(b)]. Both datasets were obtained at ransitions.
£=0.0641. In both these states these intense peaks can be indexed

TABLE |. The frequenciesw for the first eight most intense

asn,w;+n,w,, Wheren, andn, are integers ana, /w, is irra- A. The S, MP, and MN states
tional at the level of our numerical resolution. We obtain i . .
~0.28... andw,=0.28 ... . _ As we will show_ below, the temporal behawqr qf S is
simple[1,8]: the variablesu(x,t) andv(x,t) are periodic in
State MP State MN t. This arises because spirals rotate with a uniform frequency.
w n, N, © n, N, However, the spatial organization of these spirals in S can be
quite disordered. The precise organization depends on the
0.218 1 0 0.218 1 0 initial condition we start with: If we start with a single large
0.249 0 1 0.249 0 1 spiral and NBC the spiral core does not meander but the
0.0315 -1 1 0.187 2 -1 arms rotate rigidly at a fixed frequency; but if, say, we
0.1865 2 -1 0.280 3 -1 quench to S from T1 with PBC, we get a spatially disordered
0.2805 -1 2 0.373 2 0 array of spirals whose number depends on the precise initial
0.4045 3 -1 0.405 1 1 condition used. Our data for S below are obtained with PBC;
0.4360 2 0 0.438 —4 5 we have checked in representative cases that the temporal
0.4670 1 1 0.467 -1 2 correlation functions and distributions are qualitatively un-

changed with NBC.
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In the state S the spiral tips rotate on circular trajectories.
The rigidly rotating spiral waves in the system cause the
local phase portraits to be strictly periodic with all the points
condensing onto a single cur{€ig. 3@]. Consequently the
temporal autocorrelation function of the fast variaklét)
=(u(x,to)u(x,ty+1t)) is oscillatory and does not declyig.
3(e)].

The time series of the fast variahléx,t) consist of trains
of pulses[Fig. 5a)]. These yield the distributiof?(#) of
interspike intervals as described above. In the state S we find
P(68)~ 6(6— 6y), with 6,=4.17, which agrees with our es-
timate for the inverse angular frequenog1:4.13 that we
get from the Fourier transform &(t) here[Fig. 3(e)]. The
maximum Lyapunov exponenk,<0 in S (A\,=—0.04
+0.02 for e=0.057), i.e., this state is not chaotic. On in-
creasings abovee .= 0.057[15] the spirals start to meander,
i.e., the tip of a single spiral no longer traces a circular path
but an epicyclic one. This phenomenon has been observed in
several models of excitable medi4,16].

The state MN consists of a single spiral. This is because
the Neumann boundary condition acts as an absorbing
boundary and all defects hitting the boundary are annihilated.
Eventually, this leaves at most one spiral within the system.
The temporal behavior of the state MN is quasiperiodic. This
is borne out by the following observation&t) The maxi-
mum Lyapunov exponent,,=0. (2) The temporal autocor-
relation functionC(t) does not decay but oscillatd8) The
Fourier transform ofC(t); i.e., the power spectrur(w)
=(1/2w[* dte“u(x,t)|?), at a representative point,
shows peaks at frequencies of the fangaw, + n,w, with n;
andn, integers andv; and w, irrational at the level of our
numerical simulation. We identifw; and w, with the rota-
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FIG. 9. Gray-scale plots of the
u field at (a) e=1/15.2=0.0657
and (b) £=1/15.6=0.0641. The
leftmost figures of each panel
show the initial configurations just
before the quench from T1 to MP.
In each panel, the second, third,
and fourth figures are separated by
v 50 000 time units from each other.
e=1/15.6 The first and second figures in
each panel are separated by
200000 time units. In the second
panel of (b) we indicate roughly
by a solid line the interface be-
tween the state dominated by
large spirals and the one domi-
nated by pointlike defects.

tion and meander frequencies of the spiral, respectiyElg, In equilibrium statistical mechanics the analogs of non-
6(b) and Table ]. (4) The local phase portrait shows that a equilibrium statistical steady states like S, MP, MN, T1, and
band gets filled densely5) Finally the distributionP(6) is T2 are the equilibrium phases of a system. As parameters
bimodal[Fig. 8c)]. such as the temperature are changed, these phases can un-
The state MP is inhomogeneous, consisting of large spidergo transitions, the most common being a first-order phase
rals coexisting with pointlike defect{gmig. 1(a)]. This state transition at which thermodynamic functions jump discon-
possesses a small but positivg. Given the inhomogeneous tinuously. The MN-T1 transition is the nonequilibrium ana-
nature of the state MP, the local phase portraits change qualieg of such a transition. If the phase diagram is depicted in a
tatively with spatial locationx. If they are calculated in a p-dimensional parameter space of “field-type” variables,
region dominated by a large spiral, they display a structuresuch as the chemical potential, temperature, or magnetic
similar to that in MN[Fig. 4@)]; however, if they are calcu- field, then first-order  phase boundaries  are
lated in a region dominated by pointlike defects, they display(p— 1)-dimensional hypersurfaces along which two equilib-
a noisy structure. In MP, the globally averaged temporal aurium phases coexist. If, instead, the phase diagram is de-
tocorrelation functionC(t) ~exp(—ct’)coswt+5) with y  picted using one or more “density-type” variables, such as
<1. However, due to the inhomogeneous nature of state MRhe density of a liquid or the magnetization density, then the
this naive global average should not be performe@ (k) is  region of phase coexistence canpdimensional. A simple
calculated with time series from a region dominated by largeexample is furnished by the Ising ferromagnet in spatial di-
spirals, it scarcely decays on the time scales of our simulamensionsd>1: In the magnetic fieldd and temperaturd
tions [Fig. 4(c)]. Its Fourier transform, i.e., the power spec- plane, the first-order phase boundary is the Ie 0, 0
trum of this time series, has a peak structure similar to that irsT<T_, whereT, is the Curie temperature; in thE-M
state MN[see Fig. 6a) and Table ]. If C(t) is calculated plane, whereM is the magnetization, this first-order bound-
with time series from a region containing pointlike defects,ary is replaced by a two-dimensional region of two-phase
its envelope decays more rapidlifig. 4(d)]; however, the coexistence that lies below the coexistence clih\&}.
decay is still too slow to allow us to fit it convincingly here.  If we pursue this analogy with equilibrium phase dia-
In state MP, the probability distributioR(#) depends on grams, therb ande seem to be field-type variablélke the
the spatial locatiorx: If we calculateP(#) in a region con- temperature and magnetic figldso we should expect first-
taining a large spiral, we find that it is bimodal; however, if order boundaries to be lines in thes plane(since we work
we calculateP(#) in a region dominated by pointlike de- at a fixed value ob, we should intersect these lines at points
fects, we find that it is broafFigs. 4e), 4(f)]. The qualita- as we varye). Indeed, the first-order MN-T1 transition with
tive shape ofP(6) in a region dominated by pointlike de- NBC satisfies this expectation. It is peculiar, therefore, that,
fects differs from that calculated in T1: It displays a with PBC, the state MP appears to be a binary mixtiae
sequence of peaks with an exponentially decaying envelopeegion of two-phase coexistence in our equilibrium analogy
Similar multimodal probability distributions with exponen- over a finite extent of the line. However, such phase coex-
tially decaying envelopes are seen in periodically stimulatedstence over a finite extent of parameter space is not un-
excitable medid17]. We believe the large spiral provides known in nonequilibrium systems. The example that has
such periodidlor quasiperiodir stimulation to the pointlike been studied most clearly from this perspective is the proba-
defect region leading to the multimodal PDF of Figf)4 bilistic cellular automaton known as the Toom-NEC model
As noted above state MP displays coexistence of largél9]. We now present some data to elucidate this view of the
spirals and pointlike defects: It has been mentioned briefly irstate MP. Figures (@), 9(b) show gray-scale plots of the
Ref.[1] that a sudden change ef which takes the system field at times separated by intervals of 50000 time units
from T1 to MP, results in a binary mixture of spirals and (approximately 12 500 spiral rotationfollowing a quench
point defects; and the relaxation behavior has been likened toom T1 to MP. The spontaneous nucleation of spirals from
that of a “binary glass.” We explore this point of view in an initial condition consisting entirely of point defects can be
detail below. seen. These large spirals do not grow beyond a point, but



simply drift. Visual observations of successive configura-gued[22] that there is no convective instability of waves in
tions show that these spirals are destroyed by collision withEq. (1), but instead a direct transition to an absolute instabil-
pointlike defects and other large spirals, and spontaneouslyy at their M-T1 transition boundar§23]. Thus, the MN-T1
nucleate when a given pointlike vortex is isolated from itsboundary ats=0.0699 follows the stability line of a single
neighbors for a sufficiently long time. The entire system islarge spiral. Since the large spirals in MP coexist with point-
observed to be in a dynamic statistical steady state. like defects, one might think that interactions between them
This evolution should be viewed as the coarsening of ashould change the transition point obtained from the single-
two-state(or two-phasgmixture in which one of the states is spiral stability analysis. We find, however, that the MP-T1
dominated by one or a few macroscopic spirals and the othéransition boundary is almost unchanged-0.0689. Thus
state comprises a collection of small pointlike defects. As inwe conjecture that this line also marks the stability limit of
the growth of domains of two coexisting phasgdter a |arge spirals embedded in a sea of pointlike defects as in MP.
quench from a one-phase regime to a two-phase rgdibd  Below this line, in MP, nucleated large spirals will not grow
sizes of islands of a given state grow in tiff20] up to @  pecause of the absence of a convective instability in the sys-
crossover time fixed by the system size. Small systems comem. We feel that this accounts for the coexistence of large
pletely phase separate into regions with large spirals andpirals and point defects in MP. In MN, drifting point defects
point defects within the time scale of our simulations. Sys-it the system boundary and annihilate with their virtual mir-
tems with larger sizes take longer to reach a completelyor images, leading to a decay of the vortex number with

phase-separated state and it is difficult to reach itLfor64  time, till only a single large spiral remains in the system.
in our simulations. A completely phase-separated state can

be seen clearly in Fig.(B), wheree is not too close to the B. The S-MP and S-MN transitions
MP-T1 boundary. Visual observation of the states over the ) ) ] o
time interval covered by the panels in Fighp show the Spirals in excitable media display a phenomenon termed

following: (1) The interface between the large-spiral statemeander: In a certain region of the stability diagram, the
and the point-defect state fluctuatg®) occasionally the spl_ral tips no longer move on circular trajectories _but on
large spiral becomes two or three times smaller, but stilePicyclic ones. Mode(1) displays a second meandering re-
macroscopically large, spiralé3) in the point-defect region 9ime (the states MP or MMNat higher values of compared
the cores move in an irreqular fashifsee, e.g., Fig. (b)].  to the standard FitzHugh-Nagumo model.
Not surprisingly, ag approaches the MP-T1 boundary, from We obse_r\_/e a.contmuous trans_|t|on from S tq MP. At the
the MP side[Fig. 9a)], fluctuations increase, reduce the S-MP transition in model1) we find that ase increases
sizes of large spirals, and so the distinction between th@cross the S-MP boundary, the time series i¢x,t) be-
large-spiral state and the point-defect state becomes le§§Mes irregular, and the globally average(l¢) broadens.
clear. Note that the first figure in each panel in Figg)9 Its Wwidth scales aso~(e—gc,)", with &,,=0.057
9(b) shows the initial states used in both cases; clearly, rela®0.002,A,=0.80+0.02, ancke | e, . We find that the state
tive to these initial states, the subsequent patterns in Fay. 9 MP is chaotic The maximum Lyapunov exponent decreases
and 9b) have coarsened. The clear phase separation visib@moothly to zero as |&.. At the S-MP transition, we ob-
in Fig. 9(b) becomes less clear in Fig(@, which is obtained  serve that\y,~ (e —&¢,)** for &|eq, [Fig. 7(@)], with £,
with parameters nearer the MP-T1 boundary, where we ex=0.056-0.002 for b=0.07 (note thate., =&.,=&.) and
pect more fluctuations. These fluctuations, evident from everc, =0.057+0.001 forb=0.04. Given the resolution of our
a cursory comparision of successive panels in Fig),@re  calculation[24] the exponents\, seems nonuniversall,
analogous to those in, say, the two-dimensional Ising modet 1.59+0.2 forb=0.07 andA, =0.8+0.1 for b=0.04[Fig.
in the two-phase region slightly below the critical tempera-7(b)]. We note thatA ,~2A, thus implying that near the
ture T.. Proximity to T, results in large fluctuations and S-MP boundaryp~ y\ .y We have already noted that the
contorted interfaces that are often hard to pinpoint configustate MP is inhomogeneous. The vortex cores in the point-
ration by configuration; also, there can be droplets of manylefect regions drift at a slower rate as the S-MP transition is
sizes, each with an interface separating it from a region ofipproached, eventually freezing in the state S. The large spi-
the other coexisting phase; these interfaces form and breakl meanders and we conjecture that it behaves like one in
dynamically. In Sec. 1l D below we introduce an order pa- MN.
rameter that helps us to find the MP-T1 boundary. We have already noted that the state MP is inhomoge-
As discussed above, all the observables that we have meaeous. The vortex cores in the point-defect regions drift at a
sured indicate that the large spirals in MP meander while thslower rate as the S-MP transition is approached, eventually
point defects execute irregular motion. Sincg>0 in MP,  freezing in the state S. The large spirals meander and we
but not in MN, we conjecture that the chaos in this stateconjecture that they undergo a transition similar to the S-MN
arises because of the motion of the pointlike defects. transition. If we quench the system from T1dwalues near
It is instructive to contrast the state MP with PBC with a the S-MP boundary, many small spirals are seen to nucleate
similar state obtained in oscillatory media just below thewhereas, in a similar quench near the MP-T1 boundary, only
transition to spiral breakup. In such media it has been cona few spirals are sedr]. This may be explained by assum-
jectured [21] that the convective instability of travelling ing that a pointlike defect grows a spiral arm if it becomes
waves in this system causes the growth of large spirals ofsolated from its neighbors by more than a certain distdce
qguenching the system below the defect—chaos-transitioAssuming that point defects move with a mean velodity
boundary. These large spirals eventually dominate the sysnd a point defect needs a timé to form a spiral arm, then
tem at long times resulting in glassy states. It has been athe typical radius needed to nucleate a spiral will\h&t.
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FIG. 10. The decay time,, of C,,(t) as a function ofe near the MP-T1 boundary. Data far=128 andL =64 with PBC andL
=64 with NBC are plotted.

Since the mean velocity of the point defects goes to zero &fig. 3(i), the points spread out further than in Fidge3 but
the S-MP boundary, the radius needed to nucleate a spiral imain more-or-less bounded in the region enclosed by the
a sea of point defects should also shrink. Note that thesglosed loop in Fig. ). This spreading out is even more

small spirals near t_he S-MP boundary arise because of i%ronounced in the state TEig. 2d)]. In the states T1 and
proper annealing, since they are prevented from aggregating,

motion here. We expect that at very long times they will __
aggregate into large spirals, and the true asymptotic state wilf 19- /(@1 The plot ofo- vs & flattens out as we move from
T1 to T2. We do not see any sign of nonanalytic behavior at

be a phase-separated one. DL
With Neumann boundary conditions, the asymptotic statdhe T1-T2 transition in plots ok, vs e. The work of[6]

is a single spiral that meanders in MN and moves on andicates that the states T1 and T2 are spatiotemporally cha-

simple closed trajectory in S; in this MN statg,=0 and the otic and possess similar Lyapunov dimension densities in the

disribution P( ) is bimodal because of the quasiperiodicity thermodynamic limit irrespective of the boundary conditions.

elucidated abovéTable ). Since quantities likex,=0 in In both T1 and T2, the results for the quantities we measure

MN, it is difficult to decide numerically whether the S-MN are not affected qualitatively if we go from PBC to NBC;

transition is continuous or not. We conjecture that it is, sincdhowever, the precise numerical values are changed.,

work on the standard FitzHugh-Nagumo equafiéh[model ~ A,=0.079 ate=0.074 with NBC and\,,=0.107 at the

(1) with f(u) replaced byu] has shown that the transition of same point with PBE In the states T1 and T2, the temporal

a single spiral to meander is a Hopf bifurcation in a frame ofautcorrelation function of the defect numb@y,,(t) decays

reference rotating with the spiral core. This has also beeasC,,(t)~exp(-t/7,,). We find thatr,, becomes very large

seen in free-boundary models of excitable media and is exn MP as we move away from the MP-T1 boundary. We

pected to be a generic phenomer&s]. conjecture that this is due to the slowing down of motions as
Since\ ,=0 in MN but\ ,>0 in MP, we conjecture that the S-MP transition is approachéske Fig. 19 7,, becomes

it is the motion of the pointlike defects that is responsible forso large in MP that we cannot compute it reliably deep in

the chaotic nature of MP. We also conjecture that the gradudhis state in our numerical studies.

freezing of the motion of these defects at the S-MP transition

is responsible for the continuous nature of the S-MP transi-

tion. D. The MN-T1 and MP-T1 transitions

The breakdown of a single well-formed spiral occurs as

C. States T1 and T2 we move from MN to T1. It can be empirically explained as

The state T1 is characterized by the steady creation anfllows [1]: In T1 the Doppler effect caused by the meander-
annihilation of spiral defects. In the local phase portrait ofing of the spiral core causes the propagation velocity of some
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region of the arm to fall below the minimum speed of a planeally drives all the other spirals out of the system. We have

wave in the medium. Since the spiral arm is nearly a planehecked this by doubling the system size. On crossing the

wave far from the spiral core, that region of the spiral armMN-T1 boundary, this single spiral disintergrates into many

cannot propagate and is destroyed, resulting in the formatiospirals, leading to discontinuities in the variationspoffFig.

of a broken-wave segment. Each of these pieces in turn cud(a], \,, ando [Figs. §a), 8(b)] with €. We observe hys-

up into spirals and the process of breakdown repeats. Finallieresis inp on crossing from MN to T1 by changing at a

a statistical steady state is reached in which there is dynamfinite rate[Fig. 2(b)].

creation and annihilation of defects. As we have stated earlier, the state MP is inhomogeneous,
The MN-TL1 transition is discontinuous. With typical ini- consisting of large spirals coexisting with pointlike defects.

tial conditions in MN one spiral starts growing and eventu-Thus we may identify the MP-T1 transition by visually not-
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ing the locus in the parameter space where such an inhomaependence on boundary conditions and initial conditions.
geneous mixture ceases to exist. Since the time-scale fdrhis is not unknown in systems with nonequilibrium steady
which large spirals survive is visually observed to go to zerostates[25]; however, to the best of our knowledge, such
as the MP-T1 boundary is approached from the MP side, thisoundary-condition dependence of stability diagrams has not
method does not give the exact boundary; we obtgig  been studied systematically for any set of deterministic par-
=(.0689. It is useful, therefore, to define an order parametetjal differential equations that exhibit spatiotemporal chaos.
as is done in statistical mechanics, to characterize the pre®ur detailed study is a first step in this direction. Our study
ence of large spirals. The presence of the periodic spiral armeveals that the state with meandering spirals depends most
gives a sharp peak in the structure factor oftteeld in MP.  sensitively on the boundary conditions: With NBC we get
Figure 11 shows, respectively, plots of the circularly aver-MN, which has one large quasiperiodically rotating spiral. If,
aged spatial power spectrum  S(k) instead, we use PBC, MP obtains with large, quasiperiodi-
=1/2w[d6S(k cos(@) ksin(f)) vs k. A secondary peak cally rotating spirals coexisting with small pointlike defects
shows up in MP[Fig. 11(a)]; its size decreases as we nearthat move irregularly(As we have explained above, such
the MP-T1 transition boundarjfFig. 11(b)] and it is not  coexistence is quite remarkablét is not surprising, then,
present in TYFig. 11(a)]. This peak shows up more clearly that the MP-T1 and MN-T1 transitions are qualitatively dif-
if we subtract off the backgroun@vhich we fit to a Lorent-  ferent: The former is continuous and is characterized by the
zian since the spatial correlation functionuti,t) decays as  grger parametes, ., which we have defined above; the latter
an oscillatory exponential these peaks are shown in Figs. js giscontinuous or first-order with a jump in the defect den-
;1(d)—1](f). Our visual observauon_s show that in M.P,las ity p or the maximun Lyapunov exponekt, at the transi-
Lﬂcerree";‘jf trg";gsi‘:geﬂﬁ;et 'f‘hrgfeSig'rg'iir?i‘:ec'%fﬁéi'tt 'S ][‘?t“ral on. Nevertheless, both MP-T1 and MN-T1 lie quite close to

: ’ . Y OF 1af9%4ch other and also to the point at which the field configu-
sp|ra_ls. As a re_sult, the peak in the_ structure factor shoul ation of a single spiral becomes linearly unstalg]. We
also increase with the system size giving a true order para conjecture that this instability precipitates both MP-T1 and

eter in the thermodynamic limit —. A plot of a,., the MN-T1 t itions: h th i £ th ¢ ii
peak height normalized biy?, is shown as a function af in -1 transitions, however, the natures of these transitions

Fig. 12. The order parameter plotted in Fig. 12 goes fronfir€ dictated by the properties of MP and MN, which in turn
~3.51t0=0.5. We have tried to obtaiay from the second- depgnd se.nsmvgliy. on the boundary conditions. Thus, _though
ary peak that clearly develops in Fig. 11 as we go from T1 tghe linear instabilities of reference states may determine the
MP. This entails fitting the background peak §¢k), sub- ~ rough stability diagram of the systefiz6], the boundary
tracting it from our data, and then numerically integrating theconditions are equally important.
remainder to estimate,.. This procedure is quite noisy,  The MP-Sand MP-N transitions are also qualitatively dif-
principally because of the subtraction of the fitted back-ferent. At the former the irregular motion of the small, point-
ground peak. We have tried the forn®&k)=[(k—ky)? like defects becomes slower and slower and the meander
+B%] ! and s(k):fg’fdg[k2+ k§—2kk0 cos@)+ 3%t for frequency of the large spirals tends to zero. At the MN-S
the background peak in Fig. 1(the data shown in Fig. 12 transition there are no small pointlike defects; all that hap-
are obtained with a background peak parametrize@(&$  pens here is that the single large spiral stops meandering. It
=[(k—ko)2+ B?]"1). Both forms give reasonable fits, but is natural to conjecture, therefore, that the MN-S boundary is
a,.=0.5 is essentially our noise level, e.g., we have tried tgorecisely the locus of points at which a Hopf bifurcati@m
use our fitting procedure in T1, where the secondary peak ad frame rotating with the spiral agnsignals the onset of the
Fig. 11 is clearly absent; and there too we fiagk=0.5. meander transition.
Thus we believe that the data of Fig. 12 are consistent with Our study has direct implications for the CO oxidation
ay vanishing at the MP-T1 boundary; of course, conclusiveexperiments on Pt10) [1]: The parametes is related to the
proof for this can only be obtained by studies of much largeratio of two rate constants that depend on the temperature
systems tha}n are possiblg with our computational resourcefy an Arrhenius fashion. Thus, by changifigne can change
Note that Fig. 12 is consistent with an MP-T1 boundary of; ang study the transitions elucidated in our study. In addi-
£=0.0699, which agrees with our visually observed MP-T1ijon 1o suggesting such quantitative tests, our study shows
boundary ofe,is=0.0689. that local phase portraits, temporal autocorrelation functions,
and the distributiorP(6) should provide effective ways of
IV. CONCLUSIONS characterizing the CO oxidation reaction on(1R0). It

We have carried out the most extensive numerical study’ould be interesting to see if experiments could be per-
of model(1) especially with a view to elucidating the nature formed with boundary conditions that yield a regime like
of its statistical steady states and transitions between ther!P-

Our work is guided by studies of phase diagrams and phase

transtions in equilibrium statistical mechanics. Since non-
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