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We present a detailed study of the statistical steady states of a model for CO oxidation on Pt~110! proposed
by Bär and co-workers. We show that the stability diagram of this model depends sensitively on the boundary
conditions. We elucidate several novel properties of a state with meandering spirals~M! briefly mentioned by
Bär and co-workers.~1! We show that, with periodic boundary conditions, M is the state MP, a binary mixture
displaying a coexistence of quasiperiodically rotating spirals and chaotically moving pointlike defects. We
show that the transition from MP to the turbulent state T1 is continuous; the transition line marks the locus
where the two phases cease to be distinct.~2! With Neumann boundary conditions M is the state MN, a single
quasiperiodically rotating spiral. We show that the MN-T1 transition is discontinuous or first order. We also
characterize the transitions from MP and MN to the state S, which has quasiperiodically rotating spirals. We
also propose qualitative mechanisms for these transitions.
bl
ng
-

im
en
s t
e

m
su

th

ls
s

de

n

es
n-

i-
on

of

m-
e-

at
ent

the

w:
om

in
ary-
ary
y
s,
N

a

;
ha-
,
eree
I. INTRODUCTION

Spiral waves are ubiquitous in two-dimensional excita
media: they occur in a wide variety of systems includi
some chemical reactions@1#, calcium waves in the cell cyto
plasm@2#, and cardiac arrhythmias@3#. Thus an elucidation
of the phenomena exhibited by them is of considerable
portance. A particularly interesting class of such phenom
are the transitions from states with steadily rotating spiral
ones with meandering spirals@4# and, sometimes, to thos
with spatiotemporal chaos. A few groups@1,5,6# have begun
to study these transitions in experimental and model syste
We extend these studies by a detailed analysis of one
sequence of transitions in a model proposed in Ref.@1# to
describe the oxidation of CO on Pt~110!. The possibility of
carrying out careful experiments on this system makes
model especially appealing. As a parameter« ~see below! is
varied, this model shows a sequence of transitions from
state with steadily rotating spirals~S!, to one with meander-
ing spirals~M!, and then to turbulent states~T1 and T2! in
which there is steady creation and annihilation of spira
Thus it is well suited for a systematic study of these tran
tions.

Before proceeding further it is useful to define the mo
of Ref. @1# for CO oxidation. It consists of the following two
coupled partial differential equations in two spatial dime
sionsx:

]u

]t
5¹2u2

1

«
u~u21!@u2~v1b!/a#,

~1!

]v
]t

5 f ~u!2v.
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Here the fieldsu and v are related to CO and O coverag
@1#, a, b, and « are control parameters related to rate co
stants, etc., for the chemical reactions involved,t denotes
time, and f (u)50 if u, 1

3 , f (u)5126.75u(u21)2 if 1
3

<u,1, and f (u)51 if u>1. We use dimensionless var
ables that are related to those describing CO oxidation
Pt~110! in Ref. @7#. The numerical studies of Ref.@1# have
yielded a stability diagram for the statistical steady states
Eq. ~1! in theb-« plane witha50.84: As« is increased from
0, say withb50.07, a transition occurs from a state S, co
prising rigidly rotating spirals, to another state M with m
andering spirals; on further increasing«, M evolves into
states T1 and T2 that exhibit spiral turbulence@1#. Other
recent studies@6,8# have tried to characterize the chaos th
obtains in the states M, T1, and T2. In this paper we pres
an extensive numerical study of model~1! that focuses on
elucidating the natures of the states S, M, T1, and T2 and
transitions between them.

Our principal qualitative results are summarized belo
The nature of the state M and, therefore, the transitions fr
it to the states T1 and S depend sensitively on both~a! the
initial conditions and ~b! the boundary conditions. The
initial-condition dependence has been noted in Ref.@6#; here
we restrict ourselves to initial conditions that yield spirals
the statistical steady state and concentrate on the bound
condition dependence. We study both periodic bound
conditions ~PBC’s! and Neumann , i.e., no-flux, boundar
conditions~NBC’s!; these yield distinct meandering state
which we denote MP and MN, respectively. The state M
comprises one large meandering spiral@Fig. 1~a!#. The state
MP consists of large meandering spirals coexisting with
finite concentration of point defects@Fig. 1~b!#; such coex-
istence has been noted in Ref.@1#. In MN the largest
Lyapunov exponentlm.0 so this state is barely chaotic
indeed, we suggest below that it is quasiperiodic. MP is c
otic sincelm.0 for it. The MN-T1 transition is first order
e.g., the defect number density jumps discontinuously h
@Fig. 2~a!# if « is moved sufficiently slowly through
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«.0.057; a hysteresis loop@Fig. 2~b!# is obtained if« is
changed rapidly enough that metastable states do not de

By contrast the MP-T1 transition is continuous. The tra
sition can be characterized by the order parameterS(k)
51/4p2^u*d2xeik"xu(x,t)u2&; in a state containing large sp
rals,S(k) displays a secondary peak atuku5kc , wherekc is
the wavelength of the spiral arm. If we defineakc

[1/2p*2p
p duS„kc cos(u),kc sin(u)…, we find that akc rises

continuously from 0 as the system moves from the state
to the state MP@9#.

The MP-S transition is also continuous; in particular,lm
and the standard deviations of the interspike intervals~see

FIG. 1. Gray-scale plots of theu field in ~a! the single-spiral
state MN and ~b! the inhomogeneous state MP at«51/15.9
.0.0629. The gray intensity is proportional to the field amplitude
that point. The trajectories of the spiral cores or small-defect co
are shown superposed in white. Note the clear ‘‘phase separat
in the state MP.
ay.
-

1

below! go to zero as powers of («2«c), where «c is the
critical value at which the state S appears.

The remaining part of this paper is organized as follow
In Sec. II we describe the numerical methods we use and
quantities we measure in our study of model~1!. Section III
contains a discussion of our results for the states S, MP, M
T1, and T2 and the transitions between them. Section
contains concluding remarks.

II. NUMERICAL STUDIES

To our knowledge, we have carried out the most extens
numerical study of model~1! to date. Our numerical schem
is described below. In this section we define the quanti
we have calculated via our numerical solution of this mod
The study of Ref.@6# demonstrates that long transients
spatially and temporally irregular behavior occur in mod
~1! in the parameter ranges corresponding to the states
and T2 for systems with linear system sizeL.25 and run
times t.1000; Ref.@6# provides evidence for a divergenc
of the transient time with increasingL. We have studied the
system principally atL564 and have not seen the brea
down of these states for times as long as 53105 time units
~for comparision, the rotation time of one spiral is;425
time units!. On the time scale of our studies the system d
plays well-defined, nonequilibrium, statistical steady state

We study Eq.~1! numerically by discretizing it using the
method of lines on an evenly spaced square grid of sideL,
with 2L grid points per side, and the standard six-po

t
s

n’’
e
FIG. 2. Plots of~a! r vs « at the MN-T1 transition and~b! the hysteresis loop obtained on varying« across the transition at a finite rat
~see text!;o and1 indicate decreasing and increasing«, respectively.



FIG. 3. Local phase portraits with 1000 points each~a!–~d!, the temporal autocorrelation functionC(t) ~e!–~h! ~averaged over ten
representative grid points!, and the distributionP(u) ~averaged over ten representative grid points! of the interpulse intervalsu in the
regimes S («50.04), MP («50.0633), T1 («50.0782), and T2 («50.1178), respectively.
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finite-difference stencil for the Laplacian@14#. We normally
useL564, but we have checked in representative cases
our results are not modified ifL5128. We seta50.84, b
50.07, and vary«.

We use both PBC and NBC and, in each case, integ
the resulting system of coupled ordinary differential equ
tions by using a fourth–fifth-order Runge-Kutta scheme w
the Cash-Karp parameters and variable step size@14#, which
suffices for these stiff equations. For very long runs we h
used a method proposed by Barkley@5# for integrating these
equations; we have checked that both these nume
schemes give consistent results. Our runs with the Bark
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te
-
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integrator are the largest that we know of that have b
carried out for model~1! so far.

Local phase portraits, which are plots in theu-v plane of
„u(x,tn),v(x,tn)… for fixed spatial coordinatex and regularly
spaced timestn , provide a convenient qualitative way t
decide whether a state displays simple or complex temp
evolution. For example, with PBC, Figs. 3~a!–3~d! show
such phase portraits as« goes from 0.0420.1178, i.e., the
system goes from the state S to MP, T1, and then T2: cle
the evolution in S is periodic and increasingly irregular
MP, T1, and T2. We have already noted that MP is inhom
geneous so local phase portraits depend on whether the
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tial point x lies in the region dominated by a large spiral
the region in which clusters of small defects are present.
show representative local phase portraits@Figs. 4~a!–4~b#
that illustrate this for the well-separated state of Fig. 1~b!.
We will show below that the local phase portrait@Fig. 4~a!#
obtained from the region of the large spiral corresponds
quasiperiodic and not chaotic behavior. States of the t
shown in Fig. 1~b! evolve on very slow time scales (;104

time units! since the large spirals drift@10#.
We calculate autocorrelation functions such asC(t)

[^u(x,t0)u(x,t01t)& by computingu(x,t0)u(x,t01t) for a
range of time lagst and then averaging over sucessive o
gins of time t0. These oscillate without decaying in S, b
have more and more rapidly decaying envelopes in T1
T2 @Figs. 3~e!–3~h! for PBC#, which can be fit to the form
e2ct. A stretched exponential form exp(2ctg), g,1, obtains
in the state MP if one averages naively over the spatial or
x. However, a more careful average, which accounts for
inhomogeneous nature of MP@see Fig. 1~b!#, shows that
C(t) has an envelope that hardly decays@Fig. 4~c!# if data
are obtained from a point that lies in the region that is do
nated by a large spiral; otherwise the envelope ofC(t) de-
cays so slowly@Fig. 4~d!# that it can be fitted either to th
form ln(t) or to tg with g.0 given the precision of our data

Not surprisingly, then, the envelope ofC(t) hardly decays
in state MN, which contains one large spiral. Sincelm.0 in
state MP butlm.0 in state MN~see below!, we can asso-
ciate the presence of chaos with the decay ofC(t). Further-
more, becauseC(t) decays only in the regions of state MP
which contain clusters of small defects, we conclude that
chaos arises because of the disorderly motion of these s
defects. Given that the envelope of the autocorrelation fu
tion C(t) behaves as;exp(2ct) in states T1 and T2, we ca
extract a correlation timet5c21 which decreases as we g
from T1 to T2. The variation of this with« is shown in Fig.
7~d! for PBC. The increase int with decreasing« is clearly
visible, again confirming that the phases T1 and T2 disp
increasingly irregular behavior.

Probability distributionsP(u) of the time intervalsu be-
tween successive pulses in time series of the fast variabu
@Figs. 3~i!–3~l!, for PBC# are another useful measure of th
degree of irregularity of the temporal behavior of the sta
Note first that the excitability of the system yields pulses
the time series ofu(x,t); representative plots in states S a
T2 are shown in Figs. 5~a!–5~b!. Given such sequences o
pulses, we can obtain the time between successive pulse~or
spikes!.

This is easier to do in state S, where the spikes are sh
than in state T2, where they are broader. We define the
terspike interval to be the time between two success
crossings ofu(x,t) across a thresholdu0 ~from belowu0 to
above it!. We useu050.5 in most of our studies; howeve
we have checked that the distributions we get are insens
to the exact value ofu0 as long as it lies in the middle of th
range of values ofu(x,t). The probability distributionP(u)
is ad function ~DF! in state S and broadens in states T1 a
T2 @Figs. 3~i!–3~l!#. If one averages naı¨vely over the spatial
origin x in MP, the resulting PDF is similar to that in T
@Fig. 3~j!#. However, a more careful average, which accou
for the inhomogeneous nature of MP@see Fig. 1~b!#, shows
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that P(u) is nearly bimodal if calculated in the region dom
nated by a large spiral; otherwise it is broad. Note thatP(u)
in MN yields a similar bimodal distribution, which we asso
ciate with the presence of two frequencies in the rotat
spiral, namely, the spiral rotation frequency and the mean
frequency of the spiral core. We also calculate the stand
deviations that follows fromP(u) @Fig. 7~a! for PBC#; it is
zero in S and increases in the phases MP, MN, T1, and
This confirms that the system displays increasing temp
irregularity in these four phases. However, again we mus
careful while calculatings in the inhomogeneous state MP

Figure 6~a! shows the temporal power spectrumS(v) ob-
tained from the time series ofu in MN; Fig. 6~b! is its analog
for data obtained from the large-spiral region in MP. In bo
cases, the peaks in the power spectrum are at sums of in
multiples of two incommensurate frequencies~see Table I!.

The « dependences of the largest Lyapunov exponentlm
@Figs. 7~b!, 7~c! for PBC and Fig. 8~a! for NBC# are also
useful in characterizing the evolution from S to MP or MN
We obtainlm and the spectrum of Lyapunov exponents
using standard algorithms@11#; we have calculated thes
spectra only for small system sizes~linear sizesL516 and
32!. To obtain reliable estimates for the Lyapunov expone
we follow Ref. @12#: Since the approximationl t to a
Lyapunov exponentl is observed to converge as 1/t, where
t is the time over which the integration is done, we estim
lm from a fit to the forml t5lm1b/t. With PBC lm is
small and negative in S and becomes progressively m
positive as we move from MP to T1 and T2; its dependen
on boundary conditions is elucidated below. Since calcu
tions of lm require knowledge of the time evolution o
u(x,t) and v(x,t) for all x, it is not meaningful to try to
computelm for separate regions dominated by large spir
or clusters of small defects in MP without makingad hoc
assumptions. In MP we find thatlm.0.

We define the phase f(x,t)[tan21@(v(x,t)
2v* #/@u(x,t)2u* )#, with (u* ,v* )
.(0.66 . . . ,0.484 . . . ), theunstable fixed point of Eq.~1!
without the¹2u term. This phase winds by 2p around the
cores of spiral defects@1# and can be used to obtain th
defect densityr @8,13#. This defect density jumps at the firs
order MN-T1 boundary with NBC@Fig. 2~a!# and exhibits
hysteretic behavior@Fig. 2~b!# if we cycle through this tran-
sition at a finite rate.

The stability diagram of Ref.@1# is valid only for the class
of initial conditions that lead to spirals in the statistic
steady state that is finally obtained. This is implicit in earl
studies @1# but has not been emphasized sufficiently. W
find, e.g., that typical random initial conditions foru and v
decay to the uniform stateu5v50 at large« ~in MP, MN,
T1, and T2!. Care must be taken, therefore, to use init
conditions that do yield spirals in the S, MP, MN,T1, and T
states.

We find that a convenient way of doing this is to start
low « ~deep in state S! with random initial conditions; these
usually relax to states with rotating spirals. If we use the
relaxed states as initial conditions at larger values of«, then
we obtain a finite number of spiral defects in the steady st
This is true with both PBC and NBC; in the latter case w
can also begin with a broken wave front~this eventually
curls up into a big spiral!.



FIG. 4. Plots of~a! the local phase portrait,~c! temporal autocorrelation functionC(t), and~e! histogramP(u) of the interpulse-intervals
u with data from a large-spiral region in the inhomogenous state MP of Fig. 1~a!. Figures~b!, ~d!, and~f! are the analogs of~a!, ~c!, and~e!,
respectively, with data from the pointlike-defect region of MP forL564.

FIG. 5. Plots ofu(x,t) vs t for a representative pointx in ~a! the state S and~b! the state T2 forL564.



FIG. 6. The temporal power spectrumS(v) of u(x,t) for ~a! data from the large-spiral region of MP and~b! for data from MN.
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Before collecting data for averages, we allow transient
die out fortT.50 000 time units.~For comparison we note
that the characteristic time scale for one spiral rotation
.426 time units.! We have checked in a few cases that o
results are unchanged if we increasetT by a factor of 4.
After these transients have died down and the statist
steady state has been obtained, we collect data fortav time
units. ForC(t) andP(u), we find thattav.50 000 suffices;
for lm we find good convergence fortav.5000 time units.
For other quantities, like the defect densityr with PBC, it is

TABLE I. The frequenciesv for the first eight most intense
peaks in the temporal power spectrum ofu(x,t) in the states MP
and MN. Data for the state MP are obtained from a pointx that lies
in the large-spiral region@Fig. 1~b!#. Both datasets were obtained
«50.0641. In both these states these intense peaks can be ind
as n1v11n2v2, wheren1 and n2 are integers andv1 /v2 is irra-
tional at the level of our numerical resolution. We obtainv1

.0.218 . . . andv2.0.249 . . . .

State MP State MN
v n1 n2 v n1 n2

0.218 1 0 0.218 1 0
0.249 0 1 0.249 0 1
0.0315 21 1 0.187 2 21
0.1865 2 21 0.280 3 21
0.2805 21 2 0.373 2 0
0.4045 3 21 0.405 1 1
0.4360 2 0 0.438 24 5
0.4670 1 1 0.467 21 2
o

s
r

al

necessary to obtain data for 200 000 time units for the sys
sizes we use. The reason for this is the divergence in c
acteristic times near the S-M boundary with PBC, whi
leads to a very slow temporal variation ofr with time.

III. NONEQUILIBRIUM STEADY STATES

We now turn to a detailed description of the properties
the nonequilibrium statistical steady states S, MP, MN, T
and T2, the transitions, if any, between them, and their
pendence on boundary conditions. We first consider
properties of the states S, MP, and MN and then the M
and MN-S transition. Next we describe the properties of
states T1 and T2 and then study the MP-T1 and MN-
transitions.

A. The S, MP, and MN states

As we will show below, the temporal behavior of S
simple @1,8#: the variablesu(x,t) andv(x,t) are periodic in
t. This arises because spirals rotate with a uniform frequen
However, the spatial organization of these spirals in S can
quite disordered. The precise organization depends on
initial condition we start with: If we start with a single larg
spiral and NBC the spiral core does not meander but
arms rotate rigidly at a fixed frequency; but if, say, w
quench to S from T1 with PBC, we get a spatially disorder
array of spirals whose number depends on the precise in
condition used. Our data for S below are obtained with PB
we have checked in representative cases that the temp
correlation functions and distributions are qualitatively u
changed with NBC.
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FIG. 7. The« dependence of~a! lm at b50.07; ~b! lm at b
50.04 on a ln-ln~base 10! plot with the data of~a! superposed;~c!
the widths of P(u); and~d! the inverse correlation timet21 from
the decay ofC(t) vs «. The lines indicate power-law fits in~a!, ~b!,
and ~c!; data in ~a!, ~b!, and ~c! are averaged over three initia
In the state S the spiral tips rotate on circular trajectori
The rigidly rotating spiral waves in the system cause
local phase portraits to be strictly periodic with all the poin
condensing onto a single curve@Fig. 3~a!#. Consequently the
temporal autocorrelation function of the fast variableC(t)
[^u(x,t0)u(x,t01t)& is oscillatory and does not decay@Fig.
3~e!#.

The time series of the fast variableu(x,t) consist of trains
of pulses@Fig. 5~a!#. These yield the distributionP(u) of
interspike intervals as described above. In the state S we
P(u);d(u2u0), with u0.4.17, which agrees with our es
timate for the inverse angular frequencyv0

21.4.13 that we
get from the Fourier transform ofC(t) here@Fig. 3~e!#. The
maximum Lyapunov exponentlm,0 in S (lm520.04
60.02 for «50.057), i.e., this state is not chaotic. On i
creasing« above«c50.057@15# the spirals start to meande
i.e., the tip of a single spiral no longer traces a circular p
but an epicyclic one. This phenomenon has been observe
several models of excitable media@4,16#.

The state MN consists of a single spiral. This is beca
the Neumann boundary condition acts as an absorb
boundary and all defects hitting the boundary are annihila
Eventually, this leaves at most one spiral within the syste
The temporal behavior of the state MN is quasiperiodic. T
is borne out by the following observations:~1! The maxi-
mum Lyapunov exponentlm.0. ~2! The temporal autocor-
relation functionC(t) does not decay but oscillates.~3! The
Fourier transform ofC(t); i.e., the power spectrumS(v)
5^1/2p*2`

` dteivtu(x,t)u2&, at a representative pointx,
shows peaks at frequencies of the formn1v11n2v2 with n1
andn2 integers andv1 andv2 irrational at the level of our
numerical simulation. We identifyv1 andv2 with the rota-
conditions.

FIG. 8. Plots of~a! lm and ~b! s vs « and ~c! the distributionP(u) for «50.063 for NBC. The linear system sizeL564.
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FIG. 9. Gray-scale plots of the
u field at ~a! «51/15.2.0.0657
and ~b! «51/15.6.0.0641. The
leftmost figures of each pane
show the initial configurations jus
before the quench from T1 to MP
In each panel, the second, third
and fourth figures are separated b
50 000 time units from each other
The first and second figures i
each panel are separated b
200 000 time units. In the secon
panel of ~b! we indicate roughly
by a solid line the interface be
tween the state dominated b
large spirals and the one dom
nated by pointlike defects.
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tion and meander frequencies of the spiral, respectively,@Fig.
6~b! and Table I#. ~4! The local phase portrait shows that
band gets filled densely.~5! Finally the distributionP(u) is
bimodal @Fig. 8~c!#.

The state MP is inhomogeneous, consisting of large
rals coexisting with pointlike defects@Fig. 1~a!#. This state
possesses a small but positivelm . Given the inhomogeneou
nature of the state MP, the local phase portraits change q
tatively with spatial locationx. If they are calculated in a
region dominated by a large spiral, they display a struct
similar to that in MN@Fig. 4~a!#; however, if they are calcu
lated in a region dominated by pointlike defects, they disp
a noisy structure. In MP, the globally averaged temporal
tocorrelation functionC(t);exp(2ctg)cos(vt1d) with g
,1. However, due to the inhomogeneous nature of state
this naive global average should not be performed. IfC(t) is
calculated with time series from a region dominated by la
spirals, it scarcely decays on the time scales of our sim
tions @Fig. 4~c!#. Its Fourier transform, i.e., the power spe
trum of this time series, has a peak structure similar to tha
state MN @see Fig. 6~a! and Table I#. If C(t) is calculated
with time series from a region containing pointlike defec
its envelope decays more rapidly@Fig. 4~d!#; however, the
decay is still too slow to allow us to fit it convincingly here

In state MP, the probability distributionP(u) depends on
the spatial locationx: If we calculateP(u) in a region con-
taining a large spiral, we find that it is bimodal; however,
we calculateP(u) in a region dominated by pointlike de
fects, we find that it is broad@Figs. 4~e!, 4~f!#. The qualita-
tive shape ofP(u) in a region dominated by pointlike de
fects differs from that calculated in T1: It displays
sequence of peaks with an exponentially decaying envel
Similar multimodal probability distributions with exponen
tially decaying envelopes are seen in periodically stimula
excitable media@17#. We believe the large spiral provide
such periodic~or quasiperiodic! stimulation to the pointlike
defect region leading to the multimodal PDF of Fig. 4~f!.

As noted above state MP displays coexistence of la
spirals and pointlike defects: It has been mentioned briefl
Ref. @1# that a sudden change of«, which takes the system
from T1 to MP, results in a binary mixture of spirals an
point defects; and the relaxation behavior has been likene
that of a ‘‘binary glass.’’ We explore this point of view in
detail below.
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In equilibrium statistical mechanics the analogs of no
equilibrium statistical steady states like S, MP, MN, T1, a
T2 are the equilibrium phases of a system. As parame
such as the temperature are changed, these phases ca
dergo transitions, the most common being a first-order ph
transition at which thermodynamic functions jump disco
tinuously. The MN-T1 transition is the nonequilibrium an
log of such a transition. If the phase diagram is depicted i
p-dimensional parameter space of ‘‘field-type’’ variable
such as the chemical potential, temperature, or magn
field, then first-order phase boundaries a
(p21)-dimensional hypersurfaces along which two equil
rium phases coexist. If, instead, the phase diagram is
picted using one or more ‘‘density-type’’ variables, such
the density of a liquid or the magnetization density, then
region of phase coexistence can bep dimensional. A simple
example is furnished by the Ising ferromagnet in spatial
mensionsd.1: In the magnetic fieldH and temperatureT
plane, the first-order phase boundary is the lineH50, 0
<T,Tc , where Tc is the Curie temperature; in theT-M
plane, whereM is the magnetization, this first-order boun
ary is replaced by a two-dimensional region of two-pha
coexistence that lies below the coexistence curve@18#.

If we pursue this analogy with equilibrium phase di
grams, thenb and« seem to be field-type variables~like the
temperature and magnetic field!, so we should expect first
order boundaries to be lines in theb-« plane~since we work
at a fixed value ofb, we should intersect these lines at poin
as we vary«). Indeed, the first-order MN-T1 transition wit
NBC satisfies this expectation. It is peculiar, therefore, th
with PBC, the state MP appears to be a binary mixture~a
region of two-phase coexistence in our equilibrium analo!
over a finite extent of the« line. However, such phase coex
istence over a finite extent of parameter space is not
known in nonequilibrium systems. The example that h
been studied most clearly from this perspective is the pro
bilistic cellular automaton known as the Toom-NEC mod
@19#. We now present some data to elucidate this view of
state MP. Figures 9~a!, 9~b! show gray-scale plots of theu
field at times separated by intervals of 50 000 time un
~approximately 12 500 spiral rotations! following a quench
from T1 to MP. The spontaneous nucleation of spirals fro
an initial condition consisting entirely of point defects can
seen. These large spirals do not grow beyond a point,
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simply drift. Visual observations of successive configu
tions show that these spirals are destroyed by collision w
pointlike defects and other large spirals, and spontaneo
nucleate when a given pointlike vortex is isolated from
neighbors for a sufficiently long time. The entire system
observed to be in a dynamic statistical steady state.

This evolution should be viewed as the coarsening o
two-state~or two-phase! mixture in which one of the states i
dominated by one or a few macroscopic spirals and the o
state comprises a collection of small pointlike defects. As
the growth of domains of two coexisting phases~after a
quench from a one-phase regime to a two-phase region!, the
sizes of islands of a given state grow in time@20# up to a
crossover time fixed by the system size. Small systems c
pletely phase separate into regions with large spirals
point defects within the time scale of our simulations. S
tems with larger sizes take longer to reach a comple
phase-separated state and it is difficult to reach it forL.64
in our simulations. A completely phase-separated state
be seen clearly in Fig. 9~b!, where« is not too close to the
MP-T1 boundary. Visual observation of the states over
time interval covered by the panels in Fig. 9~b! show the
following: ~1! The interface between the large-spiral sta
and the point-defect state fluctuates;~2! occasionally the
large spiral becomes two or three times smaller, but s
macroscopically large, spirals;~3! in the point-defect region
the cores move in an irregular fashion@see, e.g., Fig. 1~b!#.
Not surprisingly, as« approaches the MP-T1 boundary, fro
the MP side@Fig. 9~a!#, fluctuations increase, reduce th
sizes of large spirals, and so the distinction between
large-spiral state and the point-defect state becomes
clear. Note that the first figure in each panel in Figs. 9~a!,
9~b! shows the initial states used in both cases; clearly, r
tive to these initial states, the subsequent patterns in Fig.~a!
and 9~b! have coarsened. The clear phase separation vis
in Fig. 9~b! becomes less clear in Fig. 9~a!, which is obtained
with parameters nearer the MP-T1 boundary, where we
pect more fluctuations. These fluctuations, evident from e
a cursory comparision of successive panels in Fig. 9~a!, are
analogous to those in, say, the two-dimensional Ising mo
in the two-phase region slightly below the critical tempe
ture Tc . Proximity to Tc results in large fluctuations an
contorted interfaces that are often hard to pinpoint confi
ration by configuration; also, there can be droplets of ma
sizes, each with an interface separating it from a region
the other coexisting phase; these interfaces form and b
dynamically. In Sec. III D below we introduce an order p
rameter that helps us to find the MP-T1 boundary.

As discussed above, all the observables that we have m
sured indicate that the large spirals in MP meander while
point defects execute irregular motion. Sincelm.0 in MP,
but not in MN, we conjecture that the chaos in this st
arises because of the motion of the pointlike defects.

It is instructive to contrast the state MP with PBC with
similar state obtained in oscillatory media just below t
transition to spiral breakup. In such media it has been c
jectured @21# that the convective instability of travelling
waves in this system causes the growth of large spirals
quenching the system below the defect–chaos-trans
boundary. These large spirals eventually dominate the
tem at long times resulting in glassy states. It has been
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gued@22# that there is no convective instability of waves
Eq. ~1!, but instead a direct transition to an absolute insta
ity at their M-T1 transition boundary@23#. Thus, the MN-T1
boundary at«.0.0699 follows the stability line of a single
large spiral. Since the large spirals in MP coexist with poi
like defects, one might think that interactions between th
should change the transition point obtained from the sing
spiral stability analysis. We find, however, that the MP-T
transition boundary is almost unchanged«.0.0689. Thus
we conjecture that this line also marks the stability limit
large spirals embedded in a sea of pointlike defects as in
Below this line, in MP, nucleated large spirals will not gro
because of the absence of a convective instability in the
tem. We feel that this accounts for the coexistence of la
spirals and point defects in MP. In MN, drifting point defec
hit the system boundary and annihilate with their virtual m
ror images, leading to a decay of the vortex number w
time, till only a single large spiral remains in the system.

B. The S-MP and S-MN transitions

Spirals in excitable media display a phenomenon term
meander: In a certain region of the stability diagram, t
spiral tips no longer move on circular trajectories but
epicyclic ones. Model~1! displays a second meandering r
gime ~the states MP or MN! at higher values of« compared
to the standard FitzHugh-Nagumo model.

We observe a continuous transition from S to MP. At t
S-MP transition in model~1! we find that as« increases
across the S-MP boundary, the time series foru(x,t) be-
comes irregular, and the globally averagedP(u) broadens.
Its width scales ass;(«2«cs)Ds, with «cs50.057
60.002,Ds50.8060.02, and«↓«cs . We find that the state
MP is chaotic. The maximum Lyapunov exponent decreas
smoothly to zero as«↓«c . At the S-MP transition, we ob-
serve thatlm;(«2«cl)Dl for «↓«cl @Fig. 7~a!#, with «cl

50.05660.002 for b50.07 ~note that«cl5«cs[«c) and
«cl50.05760.001 forb50.04. Given the resolution of ou
calculation@24# the exponentsDl seems nonuniversal:Dl

51.5960.2 for b50.07 andDl50.860.1 for b50.04 @Fig.
7~b!#. We note thatDs;2Dl thus implying that near the
S-MP boundary,s;Almax. We have already noted that th
state MP is inhomogeneous. The vortex cores in the po
defect regions drift at a slower rate as the S-MP transition
approached, eventually freezing in the state S. The large
ral meanders and we conjecture that it behaves like on
MN.

We have already noted that the state MP is inhomo
neous. The vortex cores in the point-defect regions drift a
slower rate as the S-MP transition is approached, eventu
freezing in the state S. The large spirals meander and
conjecture that they undergo a transition similar to the S-M
transition. If we quench the system from T1 to« values near
the S-MP boundary, many small spirals are seen to nucl
whereas, in a similar quench near the MP-T1 boundary, o
a few spirals are seen@1#. This may be explained by assum
ing that a pointlike defect grows a spiral arm if it becom
isolated from its neighbors by more than a certain distancR.
Assuming that point defects move with a mean velocityV
and a point defect needs a timeDt to form a spiral arm, then
the typical radius needed to nucleate a spiral will beVDt.



FIG. 10. The decay timetrr of Crr(t) as a function of« near the MP-T1 boundary. Data forL5128 andL564 with PBC andL
564 with NBC are plotted.
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Since the mean velocity of the point defects goes to zer
the S-MP boundary, the radius needed to nucleate a spir
a sea of point defects should also shrink. Note that th
small spirals near the S-MP boundary arise because of
proper annealing, since they are prevented from aggrega
on observable time scales due to the slowing down of
motion here. We expect that at very long times they w
aggregate into large spirals, and the true asymptotic state
be a phase-separated one.

With Neumann boundary conditions, the asymptotic st
is a single spiral that meanders in MN and moves on
simple closed trajectory in S; in this MN statelm.0 and the
disribution P(u) is bimodal because of the quasiperiodic
elucidated above~Table I!. Since quantities likelm.0 in
MN, it is difficult to decide numerically whether the S-MN
transition is continuous or not. We conjecture that it is, sin
work on the standard FitzHugh-Nagumo equation@4# @model
~1! with f (u) replaced byu# has shown that the transition o
a single spiral to meander is a Hopf bifurcation in a frame
reference rotating with the spiral core. This has also b
seen in free-boundary models of excitable media and is
pected to be a generic phenomenon@16#.

Sincelm.0 in MN but lm.0 in MP, we conjecture tha
it is the motion of the pointlike defects that is responsible
the chaotic nature of MP. We also conjecture that the grad
freezing of the motion of these defects at the S-MP transi
is responsible for the continuous nature of the S-MP tra
tion.

C. States T1 and T2

The state T1 is characterized by the steady creation
annihilation of spiral defects. In the local phase portrait
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Fig. 3~i!, the points spread out further than in Fig. 3~e!, but
remain more-or-less bounded in the region enclosed by
closed loop in Fig. 3~a!. This spreading out is even mor
pronounced in the state T2@Fig. 2~d!#. In the states T1 and
T2, the envelope ofC(t) decays as exp(2t/t) but the deco-
herence increases~i.e., t falls! as we move from to T1 to T2
@Fig. 7~d!#. The plot ofs vs « flattens out as we move from
T1 to T2. We do not see any sign of nonanalytic behavio
the T1-T2 transition in plots oflm vs «. The work of @6#
indicates that the states T1 and T2 are spatiotemporally
otic and possess similar Lyapunov dimension densities in
thermodynamic limit irrespective of the boundary condition
In both T1 and T2, the results for the quantities we meas
are not affected qualitatively if we go from PBC to NBC
however, the precise numerical values are changed~e.g.,
lm.0.079 at «.0.074 with NBC andlm.0.107 at the
same point with PBC!. In the states T1 and T2, the tempor
autcorrelation function of the defect numberCrr(t) decays
asCrr(t);exp(2t/trr). We find thattrr becomes very large
in MP as we move away from the MP-T1 boundary. W
conjecture that this is due to the slowing down of motions
the S-MP transition is approached~see Fig. 10!; trr becomes
so large in MP that we cannot compute it reliably deep
this state in our numerical studies.

D. The MN-T1 and MP-T1 transitions

The breakdown of a single well-formed spiral occurs
we move from MN to T1. It can be empirically explained a
follows @1#: In T1 the Doppler effect caused by the meand
ing of the spiral core causes the propagation velocity of so
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FIG. 11. The spatial power
spectrumS(k) ~see text! vs k for
values of« in ~a! T1, ~b! near the
MP-T1 boundary in MP, and~c!
deep in MP.~d!–~f! The data of
~a!–~c! with the Lorentzian back-
ground ~see text! subtracted off
@denoted byD(k)# to display the
formation of the secondary pea
in S(k), which signals the forma-
tion of MP.
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region of the arm to fall below the minimum speed of a pla
wave in the medium. Since the spiral arm is nearly a pla
wave far from the spiral core, that region of the spiral a
cannot propagate and is destroyed, resulting in the forma
of a broken-wave segment. Each of these pieces in turn
up into spirals and the process of breakdown repeats. Fin
a statistical steady state is reached in which there is dyna
creation and annihilation of defects.

The MN-T1 transition is discontinuous. With typical in
tial conditions in MN one spiral starts growing and even
e
e

n
rl

lly
ic

-

ally drives all the other spirals out of the system. We ha
checked this by doubling the system size. On crossing
MN-T1 boundary, this single spiral disintergrates into ma
spirals, leading to discontinuities in the variations ofr @Fig.
2~a!#, lm , ands @Figs. 8~a!, 8~b!# with «. We observe hys-
teresis inr on crossing from MN to T1 by changing« at a
finite rate@Fig. 2~b!#.

As we have stated earlier, the state MP is inhomogene
consisting of large spirals coexisting with pointlike defec
Thus we may identify the MP-T1 transition by visually no
FIG. 12. The amplitudeakc of
the secondary peak ofS(k) ~see
text! as a function of«. The am-
plitude is normalized byL2 with
L564.
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ing the locus in the parameter space where such an inho
geneous mixture ceases to exist. Since the time-scale
which large spirals survive is visually observed to go to z
as the MP-T1 boundary is approached from the MP side,
method does not give the exact boundary; we obtain«v is

.0.0689. It is useful, therefore, to define an order parame
as is done in statistical mechanics, to characterize the p
ence of large spirals. The presence of the periodic spiral a
gives a sharp peak in the structure factor of theu field in MP.
Figure 11 shows, respectively, plots of the circularly av
aged spatial power spectrum S(k)
51/2p*duS„k cos(u),ksin(u)… vs k. A secondary peak
shows up in MP@Fig. 11~a!#; its size decreases as we ne
the MP-T1 transition boundary@Fig. 11~b!# and it is not
present in T1@Fig. 11~a!#. This peak shows up more clear
if we subtract off the background„which we fit to a Lorent-
zian since the spatial correlation function ofu(x,t) decays as
an oscillatory exponential…; these peaks are shown in Fig
11~d!–11~f!. Our visual observations show that in MP, asL
increases, more and more large spirals nucleate. It is nat
therefore, to assume that there is a finite density of la
spirals. As a result, the peak in the structure factor sho
also increase with the system size giving a true order par
eter in the thermodynamic limitL→`. A plot of akc , the
peak height normalized byL2, is shown as a function of« in
Fig. 12. The order parameter plotted in Fig. 12 goes fr
.3.5 to.0.5. We have tried to obtainakc from the second-
ary peak that clearly develops in Fig. 11 as we go from T1
MP. This entails fitting the background peak inS(k), sub-
tracting it from our data, and then numerically integrating t
remainder to estimateakc . This procedure is quite noisy
principally because of the subtraction of the fitted ba
ground peak. We have tried the formsS(k)5@(k2k0)2

1b2#21 and S(k)5*0
2pdu@k21k0

222kk0 cos(u)1b2#21 for
the background peak in Fig. 11„the data shown in Fig. 12
are obtained with a background peak parametrized asS(k)
5@(k2k0)21b2#21

…. Both forms give reasonable fits, bu
akc.0.5 is essentially our noise level, e.g., we have tried
use our fitting procedure in T1, where the secondary pea
Fig. 11 is clearly absent; and there too we findakc.0.5.
Thus we believe that the data of Fig. 12 are consistent w
akc vanishing at the MP-T1 boundary; of course, conclus
proof for this can only be obtained by studies of much lar
systems than are possible with our computational resour
Note that Fig. 12 is consistent with an MP-T1 boundary
«.0.0699, which agrees with our visually observed MP-
boundary of«v is.0.0689.

IV. CONCLUSIONS

We have carried out the most extensive numerical st
of model~1! especially with a view to elucidating the natu
of its statistical steady states and transitions between th
Our work is guided by studies of phase diagrams and ph
transtions in equilibrium statistical mechanics. Since n
equilibrium systems like model~1! do not have any free
energy, we define transitions between its statistical ste
states as the loci of points in parameter space at which on
more densities or correlation functions show nonanalytic
havior. Unlike the bulk phase diagrams of equilibrium sy
tems, the stability diagram of model~1! shows a sensitive
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dependence on boundary conditions and initial conditio
This is not unknown in systems with nonequilibrium stea
states@25#; however, to the best of our knowledge, su
boundary-condition dependence of stability diagrams has
been studied systematically for any set of deterministic p
tial differential equations that exhibit spatiotemporal cha
Our detailed study is a first step in this direction. Our stu
reveals that the state with meandering spirals depends m
sensitively on the boundary conditions: With NBC we g
MN, which has one large quasiperiodically rotating spiral.
instead, we use PBC, MP obtains with large, quasiperio
cally rotating spirals coexisting with small pointlike defec
that move irregularly.~As we have explained above, suc
coexistence is quite remarkable.! It is not surprising, then,
that the MP-T1 and MN-T1 transitions are qualitatively d
ferent: The former is continuous and is characterized by
order parameterakc , which we have defined above; the latt
is discontinuous or first-order with a jump in the defect de
sity r or the maximun Lyapunov exponentlm at the transi-
tion. Nevertheless, both MP-T1 and MN-T1 lie quite close
each other and also to the point at which the field confi
ration of a single spiral becomes linearly unstable@22#. We
conjecture that this instability precipitates both MP-T1 a
MN-T1 transitions; however, the natures of these transitio
are dictated by the properties of MP and MN, which in tu
depend sensitively on the boundary conditions. Thus, tho
the linear instabilities of reference states may determine
rough stability diagram of the system@26#, the boundary
conditions are equally important.

The MP-S and MP-N transitions are also qualitatively d
ferent. At the former the irregular motion of the small, poin
like defects becomes slower and slower and the mean
frequency of the large spirals tends to zero. At the MN
transition there are no small pointlike defects; all that ha
pens here is that the single large spiral stops meanderin
is natural to conjecture, therefore, that the MN-S boundar
precisely the locus of points at which a Hopf bifurcation~in
a frame rotating with the spiral arm! signals the onset of the
meander transition.

Our study has direct implications for the CO oxidatio
experiments on Pt~110! @1#: The parameter« is related to the
ratio of two rate constants that depend on the temperatuT
in an Arrhenius fashion. Thus, by changingT one can change
« and study the transitions elucidated in our study. In ad
tion to suggesting such quantitative tests, our study sh
that local phase portraits, temporal autocorrelation functio
and the distributionP(u) should provide effective ways o
characterizing the CO oxidation reaction on Pt~110!. It
would be interesting to see if experiments could be p
formed with boundary conditions that yield a regime lik
MP.
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