Decay of magnetohydrodynamic turbulence from power-law initial conditions
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We derive relations for the decay of the kinetic and magnetic energies and the growth of the Taylor and
integral scales in unforced, incompressible, homogeneous, and isotropic three-dimensional magnetohydrody-
namic(3DMHD) turbulence with power-law initial energy spectra. We also derive bounds for the decay of the
cross and magnetic helicities. We then present results from systematic numerical studies of such decay both
within the context of a MHD shell model and direct numerical simulations of 3DMHD. We show explicitly that
our results about the power-law decay of the energies hold for tiragés wheret. is the time at which the
integral scales become comparable to the system sizé <Rer our numerical results are consistent with those
predicted by the principle of “permanence of large eddies.”

I. INTRODUCTION dimensional MHD(3DMHD) turbulence, expressions for the

. hiic decay of the kinetic and magnetic energies and the growth of
The decay of homogeneous and isotr turbulence the Taylor and integral scales, when we start with power-law

has been the subject of extensive theorefit#] and experi- . . " o )
mental[3-5] studies. These include wind-tunnel experiments!n't"':lI conditions E;(k) ~k? (q>-1), where the subscripa

downstream of a grigi3] and flow behind a towed grid in a 1S V for the kinetic energy ant for the magnetic energy.
stationary channel filled with Helium [4]. However, unam- Such initial conditions are of interest in the astrophysical
biguous statements can still not be made about the depefontext of the decay of power-law “primordial” energy spec-
dence of the decay of fluid turbulence on the initial condi-tra[8]. We also derive bounds for the decay of the cross and
tions. In experiments, these can be changed to some extefagnetic helicity. We then show by systematic numerical
by changing the grid geometry and choice of virtual originstudies of a shell model for MHD turbulen¢#1,12 and an

[5] but caution is advised in interpreting the results since ouB0® pseudospectral DNS of the 3DMHD equations that,
ability to choose initial conditions precisely is severely re-given power-law initial conditions, the kinetic and magnetic
stricted. In an earlier stud6], the energy-decay exponents energies and the Taylor and integral scales follow the decay
were predicted to be initial-condition dependent, but the preexpressions mentioned above within a regime governed by
cise nature of this dependence was not elucidated clearlyhe temporal evolution of the integral scales.

Direct numerical simulationéDNS) can control initial con- The unforced MHD equations are

ditions, but, to the best of our knowledge, have investigated

a very limited class of initial conditions. A recent exception v . (V- Vv=- Ve | (b-V)b Y

[7] is a study of the decay of fluid turbulence for the set of at p 47p '

initial conditions with a power-law initial energy spectrum

E%(k) ~ k9, where the superscript 0 denotes the choice of vir- ab

tual origin of timet=ty, k is the magnitude of the wave — =V X (vXb)+ 7V, (1)
vector, and the exponentdistinguishes different initial con- It

ditions in this set. wherev is the kinematic viscosityy is the magnetic viscos-

Results, both experimental and numerical, for the decayty, p*=p+b?/8x is the effective pressure, apds the pres-
of magnetohydrodynami@iHD) turbulence are even more sure. We enforce the incompressibility conditi®nv=0 and
scarce than their fluid-turbulence analogs. Different powereliminatep” in the usual manner. The invariants of inviscid,
law decays fha;]ve b%eﬂ suggesLed_in IH{QBStEQ?eS, but thel unforced 3DMHD are the total energfEr=E,+E,
sensitivity of these decays to the initial conditions or evolu-— 1 ¢, 2, 1,2 ‘o —
tion of thi/a relevant Iengt)k: scale has not been investigated iﬁ1 2/ .+b )dV] thegoss he“C'tyHC_f\{'b dV), and the

agnetic helicityHy, = A -b dV, whereA is the vector po-

any detail. — . _— _tential). We restrict ourselves to the case wilf)| close to
In this paper, we initiate such an investigation and obtainye,, g0 exclude any helical contributiofgs to the decay
the following interesting results: We show first how to gen-process due to the inverse cascadlgf Most of our results

grallze the _results of Ref$7,8] and deT'Ve’ for unforced, are obtained for initial equipartition of energy, namdﬂa
incompressible, homogeneous, and isotropi®] three- =E9 but we also present a few results E{}# =y
=B, 2.
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|1+h,, |y, 2 1"
v— 1"y, 7 n 2 Ea(t)zif dy ®,(y, 1172, 117). (11

wherel is an arbitrary scale factor af< 0 a scaling expo- 0

nent. The local kinetic- and magnetic-energy densities iNThus bothE, and E, decay as 1t/ which generalizes the

three dimensions are given by result of Ref.[7] to the case of decaying MHD turbulence.
5 L For all g#1, the simple power-law dependence Bf(t)
5a(k,t,v,n,K,2w/L):iJ dBxdBy gk <y on t does not follow. The fluid and magnetic Taylor
2m)3L3) 2o scales, Na(t,v, 7, 27/K, L) =[[K _ dkE,(k,t, v, 7)
K 1/2 i
x(a(x.1) - aly.1). 3) 115, .0k RE(K,t, v, 7)]Y2 also show a simple power-law

dependence oh only for g=1. In the limits 27/L—0, K

whereL and 27/K are the large- and small-distance cutoffs, — %,
the subscript is v for the kinetic-energy density arta for

o0 1/2
the magnetic-energy density, afilis the solid angle. An- dyd,(y, 1172, 177
gular brackets denote an average over the initial conditions A1) = 1172 0 (12)
being considered@see below. Thus the kinetic and magnetic a »
energies in this range of length scales are fo dydq(y, 1107, 1/77)y
K
E,(t, v, 7,27/K,L) = dkE,(k,t, v, 7, K, 27/L).  (4) Similarly, the integral scales L,(t,v,7,27/K,L)
27l =[5 dk Eak,t, v, IKI/ [ dk ExK,t, v, 7) (where the
o subscripta is v for the fluid integral scale and for the
By combining Eqgs(2) and(3) we get magnetic integral scalealso grow as a power of with
exponent equal to 0.5 fog=1 in the limits 27/L—0, K

Ea(KI NN 11y, 110 K1, 2an/LI

=B e (kv 7K, 27/L). (5) A consequence of the positive definiteness of the energy
spectra is that the helicity spectra satisfy realizability con-
Henceforth the dependence &f on K and 27/L will be  straints [Hc(k,t, v, n)|<[E,(K,t, v, )E(K,t, v, n]*? and
suppressed for notational convenience. It is useful to defingy(k,t,v, n)|<&(Kk,t,v,n)/k, where Hc(k,t,v,7) and
the functions Hu(k,t,v, ) are the cross- and magnetic-helicity densities
defined as the energy densitigsys.(3)]. Hence, in the lim-
Dkt v, m) = KHPE (K, v, ) (6)  its 2w/L—0, K— o (with variables other thak andt sup-
pressed for notational conveniencéhe cross helicity(for
g=1) satisfies

— 00,

in terms of which Eq(5) becomes

D (K11, 140,110 ) = D (K t, v, 7); (7 ” 1(~
a a el = | akpenl = 3 [ ayianymni
when differentiated with respect tpthis yields, in the limit 0 0
|—1, (13)
X X0 9D gD and the magnetic helicitiffor g=1) satisfies
-—2+(1-h)—2+(1+h—=+(1+h—=>=0.
dln k adlnt dln v dln n f” 1 (™ Dy
: o= [ kol = [ a2 g
(8 0 2\tJo vy
The general solution of the above equation is The results obtained above apply for tintest., wheret. is
the crossover time at which,(t) becomes equal to the size
Dy(k,t, v, m) =F(1-h)nk+Int,(1+h)nt of the system(or the linear size of the simulation box in a
+(=1+h)in »,(L+h)In t+ (=1 +h)in 7). DNS). For t>t., finite-size effects, which might well be

nonuniversal, modify the decay &,(t).

(9)

This solution corresponds to
I1l. NUMERICAL RESULTS

Ealkt, v, 1) = KID,(KE V2, 17072, 7312 (17012, a)2), We now report on the numerical studies we have carried
(10) out to check the results given above. In most of our runs, we
concentrate on the region<(t<t.. We use double-precision

whereq=-1-2h (q>-1) [13]. arithmetic, but have checked in representative cases that our

For q=1, Egs.(4) and (10) lead to especially simple results are unaffected if we use quadruple-precision arith-
forms for the temporal decay of the kinetic and magneticmetic.

energies. We are interested in the limitg/2 —0 andK Shell models comprise a set of ordinary differential equa-
— o0, of relevance to high-Reynolds-number turbulence, so tions containing suitable nonlinear coupling terms that re-
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FIG. 1. (a) Plot of & /k, vs kﬁTS for shellsn=9 andn=12 withg=1, illustrating the data collapse implied by the scaling form of @@).
(b) The analog forg=0 illustrating the lack of data collapse.

spect the analogs of the conservation laws of the 3DMHD=-7/12, ag=1/12, andv,.=v+ 5. Shell-model analogs of
equations in the inviscid, unforced limit. They exhibit an the total energy[ES—E5+E5—(1/2)En(|vn|2+|bn|2)] the
energy cascade in the presence of viscosities. We confine oaross helicity [H: = (1/2)=(v,b,+v:by)], and the mag-
study to a shell model proposed in Reff$1,12, which en-  netic helicity [Hy,=X,(-1)"b, |2/k] are conserved ify,
forces all the ideal 3DMHD invariants in the inviscid, un- =0. Here and in the following, the superscrigpstands for
forced case, reduces to the well-known Gledzer-Ohkitanishell model. We solve Eqs(15) numerically by an
Yamada [14] model for fluid turbulence when magnetic Adams-Bashforth schemgl6] (step S|ze5t5-1(TZ) and
terms are suppressed, has no adjustable parameters apageN=22 shells withk,=1/16 andv=7,=10"*.

from the fluid and magnetic Reynolds numbers, and exhibits In decaying turbulence, it is convenient to measure time

the same multiscalingwithin error barg as the 3DMHD  in units of the initial Iarge eddy-turnover times. For our shell
model these are,=1/(a%5ky) with als.=[(=,|aZ»]*?, the

root-mean-square values of the initial velocities and mag-
netic fields. Sincer, are calculated at the start of the simu-
lation runs, when the velocity and magnetic fields differ only
in phasesee below, herer, =7, equal 18.7 fog=1 and 7.8
for g=0. Our runs are reported in terms &=t/ r, (t is the
product of the number of iterations aatf) and are ensemble
averaged over 100 independent initial conditions with vary-
ing phases. We define R&=0)5/(k;») and R@®
b%2/ (k) to be the values of the initial fluid and magnetic
Reynolds numberghere R&° and R@® equal 34 246 for
=1 and 81 920 foig=0). The initial velocity and magnetic

equations.
The unforced shell-model equations §ié&)

dz

at (15

= ich - vz - vkizy
with the complex, scalar Elsasser variabgs= (v, b,), i
=y~1, and the discrete wave numbégsk,2" (ko sets the

scale for wave numbeysfor shell indexn (n=1, ... N, for
N shellg with

+ T o+ + ¥ T o+
Ch= [alanrT+1Zr_1+2 + azknzﬁ+1zr41—+2 + a3kn—lzr-:—1zﬁ+l

0s —

fields are taken to bel=k,*2g% and b=k, (192 #n,
with 6, and ¢, being independent random variables distrib-
uted uniformly between 0 and72(our shell-model energy

+ 8yKn-1Z0-17041 + BsKn-2Zn-1Z0-2 + BeKn-2Zn-1Zn-2] -
Here a,=7/12, a,=5/12, az=-1/12, a,=-5/12, &

100 5

T T

FIG. 2. (a) Log-log plots of the decay of the magnetic enefgyas a function of time~. The observed slope is —=1.000+0.001 &pr
=1 in agreement with E¢11). A nominal slope of —0.66+0.01 can be fit to the curve der0 in the ranger®=1.28x 1072 and °=7.70
X 1(%. (b) Log-log plots of the decay of the kinetic and magnetic energisand E}, respectively, without initial equipartition of energy
(E?=10°Ep") for g=0.
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FIG. 3. Log-log plots of the growth of the magnetic integral
scaleL; (for g=0 and J as a function of time wittE®*=E2*. The
observed slope is 0.500+0.002 fpr 1 in agreement with the mag-
netic integral-scale analog of E(L2).

densities being defined a&=(|a,|?/ky). In all our runs,
[HY/ H*®< 1076, whereH = E9/k;.

For g=1, Eq. (100 has the form &i(k,,7)
=k, ®,(k37%,1/v2,1/77). In Fig. A& we show on a log-log

wherein the viscous terms are negligible at snkaih Eqg.
(10) leading to a decay law of —0.667. The hypothesis of
permanence of large eddies implies thaEffk) ~ k9, for k
—0, then the total energy decaysBs~ (t—tg) 219/3+) g5
discussed in the fluid turbulence context in Réf7].

So far we have used initial conditions with initial equipar-
tition, i.e., E>*=E2°. We find that this is maintained during
the decay, which is why we have shown plots of only the
magnetic energy. Fog=1 and E>®# Ep®, both ES and Ej,
decay ag™! for 0<t<t. and maintain their initial ratio. In
Fig. 2(b) we plot the temporal evolution of the kinetic and
magnetic energies without initial equipartition, by setting
E%=10°Ep® (here R@°=1C°Re)*) for q=0. Unlike the case
g=1, the kinetic and magnetic parts exchange energy here,
but the dominant onéhe kinetic energy in our plptdecays
with a slope —0.490+0.002.

In Fig. 3, we plot(for q=0 and } the shell-model analog
of the magnetic integral scalg=[((Z,|b,>/k,)/=,|b,|?] as
a function of time. The observed slope is 0.500+0.002 for
g=1. In Figs. 4a) and 4b), we plot a temporal sequence
(with separation in units of® indicated in the legendf the
magnetic-energy densitif as a function of wave number for
g=0 and 1. The kinetic-energy density evolves in a similar
manner for the case of initial equipartition. Note that the
evolution of these energy spectra illustrates quantitatively the
qualitative notion of permanence of large eddies: As time
progresses, the lardepart of the spectra gets modified by

plot that a data collapse occurs for representative shells, hexéscous effects; however, the power-law part at stkatlain-

n=9 andn=12, when&i(k,, 7)/k, is plotted againsk>7>. In
Fig. 1(b) we show the analog fay=0 illustrating the lack of

tains its initial form for t<t.. We have also explicitly
checked that the bound4&3) and (14) are respected in our

data collapse. Note, however, that the collapse improves ehell-model simulations.
k—0; as we show below this leads to a power-law decay of For our DNS study of the 3DMHD equations, we use a

Ej, over a limited range of and is related to the “permanence
of large eddies.”

In Fig. 2a) we show the decayfor q=0 and ) of the
magnetic energ§;, with an observed slope of ~1.000+0.001
(with errors from least-square fjitfor g=1. The final point
on this graph forg=1 exhibits the beginnings of the cross-
over att=t. where L3(t) becomes comparable t®, the
analog of the system size in the shell model.

pseudospectral meth¢dl8] to solve Eqs(1) in a cubical box

of side 2r with periodic boundary conditions and 8Bou-

rier modes. For the temporal evolution, we use an Adams-
Bashforth scheméstep sizest=0.02 and v=7%=1072 (we
exclude any hyperviscositigsNe define the initial fluid and
magnetic Reynolds numbers to be)Re2mv?, /v and R¢
=27b° /7 (here R& and R equal 34 forg=1 and 17 for

q=0) with a2, =[(Z;/a(k)[?]*? the root mean squares of

For =0, a nominal slope of -0.66+0.01 may be fitted the velocities and magnetic fields and initial large-eddy turn-

over a portion of the curve betweefi=1.28x 1072 and 7°
=7.70x 10%. This slope is in agreement with the law ob-

over times to ber,=27/a% . As in the shell-model case,

7,=7, (here they equal 115.4 fag=1 and 228.2 forg=0)

tained from a hypothesis of permanence of large eddiesndr=t/r, (t is the product of the number of iterations and

10°
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FIG. 4. Log-log plots of the MHD shell-model magnetic-energy den&jyas a function of wave numbgtemporal sequence witt?

values indicated in the legentbr (a) =0 and(b) q=1.
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FIG. 5. Log-log plots of the magnetic enerBy as a function of .
: _ FIG. 6. Log-log plots of the magnetic integral scdlg as a
f = 1 f DMHD fi DNS.
time forg=0 and 1 for 3 rom our 80 function of time forq=0 and 1 for 3DMHD from our 89DNS.

8t). The initial velocity and magnetic fields are taken to be

v(k) ~ k92d% and b(k) ~ K92di ok with 6, and ¢, being ran- IV. DISCUSSION AND CONCLUSION

dom variables distributed uniformly between 0 and Dur To summarize, we have derived relations for the decay of

DNS results are restricted to initial equipartition of energythe kinetic and magnetic energy, the growth of the Taylor and

between the velocity and the magnetic field. integral scales, and bounds for the cross and magnetic helic-

In Fig 5 we plot the magnetic enerds, as a function of ity in unforced, incompressible, homogeneous, and isotropic
time forq=0 and 1. A slope of -1.057+0.004 is observed for3SDMHD turbulence. We have confirmed our results numeri-
q=1 betweenr=8.7x 107 and7=8.7x 102 in a reasonable cally via shell-model and DNS studies. We show explicitly
agreement with Eq(11). In Fig. 6 we plot the magnetic that our results about the power-law decay of the energies
integral scald, as a function of time fog=0 and 1. Aslope hold for timest <t., wheret. is the time at which the integral
of 0.401+0.003 is observed fg=1 betweenr=8.7x10°  scales become comparable to the system sizet €or, our
and 7=8.7x 102 We believe that the slight discrepancy numerical results are consistent with those predicted by the
with the magnetic integral-scale analog of KG2) arises principle of permanence of large eddies. Our study also has
because of the limited spatial resolution of the DNS. In Figssome implications for suggestions of “strong universality” in
7(a) and {b), we plot a temporal sequendé steps of decaying turbulence as we discuss below.
0.02r (q=0) and 0.05 (q=1)] of the magnetic-energy den-  In an early study[19], an expression for the kinetic-
sity &, as a function of wave numbérfor =0 and 1. The energy density was hypothesized by assuming the existence
smallk part of the energy spectra in Figs(ay and {b)  of an “eddy viscosity.” An energy decay similar to what we
changes somewhat more than their shell-model counterpartget for g=1 was then considered in the context of decaying
in Fig. 4. We believe this is because of the low spatial resofluid turbulence. However, this study did not consider the
lution of our DNS for 3DMHD. Our DNS results are pre- initial-condition dependence of the decay laws or the effect
sented here to complement our shell-model results and tof the growth of the relevant length scales.
show, in particular, that our general conclusions are not shell- In a recent study{20], arguments have been given for
model artifacts. strong universality in forced and decaying fluid turbulence in

FIG. 7. Log-log plots of the magnetic-energy densityas a function of wave numbér (temporal sequence in steps of O02r g
=0 and 0.05 for q=1) for 3DMHD from our 8¢ DNS.



a shell model. For decaying turbulence, this means that scalvhich the time-dependent integral schlgt) becomes com-

ing exponents of theth-order velocity structure functions parable to the size of the system. Given the parameters, such
and their coefficients in the isotropic sector, normalized byas » and 7, that we have used, by time, the Reynolds

the mean energy flux, are universal and the same as those feiimber is sufficiently low that a fresh energy cascade to
structure functions that are obtained for forced turbulence'.argek iS not estab"shed again' ThUS, suggestions Of Strong
For the purpose of our discussion here, this would implyyniversality should be made with caution, for they apply
that, irrespective of the initial condition used, after an initial only to a class of initial conditions that does not include the

period of decay, the energy spectrum should evolve toward§,er-jaw initial conditions used here for the decay of
one with a part that goes 4s°° (aside from multiscaling 3DMHD turbulence

corrections which we are not concerned with hevge have
been able to get results similar to those of R2€] by using
the MHD shell mode[Egs.(15)] and initial conditions as in

The initial conditions used in Ref9] are also qualita-
tively different from those that we use here in so far as they

Ref. [20]. In particular, if we start with equal initial kinetic (l:;eglr; with a large energy In a;e\:jv Fourier mlodes.hThus theyf
and magnetic energies in the first two shells, the MHD-shelld€Velop energy cascades and do not explore the types o

model simulations exhibit an energy cascade to higher shelld€cay that are associated with the permanence of large ed-

Once this cascade process is complete, the energy densiti@§S We concentrate on here.

display a part that can be fitted toka®® form and the inte-

gral scale moves towards small wave numbers. The point we

would like to highlight here is that the evolution to a ACKNOWLEDGMENTS
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