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We use the finite-size density-matrix-renormalization-group (FSDMRG) method to obtain the
phase diagram of the one-dimensional (d = 1) extended Bose-Hubbard model for density ρ = 1 in
the U − V plane, where U and V are, respectively, onsite and nearest-neighbor interactions. The
phase diagram comprises three phases: Superfluid (SF), Mott Insulator (MI) and Mass Density
Wave (MDW). For small values of U and V , we get a reentrant SF-MI-SF phase transition. For
intermediate values of interactions the SF phase is sandwiched between MI and MDW phases with
continuous SF-MI and SF-MDW transitions. We show, by a detailed finite-size scaling analysis, that
the MI-SF transition is of Kosterlitz-Thouless (KT) type whereas the MDW-SF transition has both
KT and two-dimensional-Ising characters. For large values of U and V we get a direct, first-order,
MI-MDW transition. The MI-SF, MDW-SF and MI-MDW phase boundaries join at a bicritical
point at (U, V ) = (8.5 ± 0.05, 4.75 ± 0.05).

PACS numbers: 05.30Jp,67.40Db,73.43Nq

I. INTRODUCTION

The study of quantum phase transitions in systems
of interacting bosons is an exciting area with a fruitful
interplay between theory1,2,3,4,5,6,7,8,9,10, numerical sim-
ulations11,12,13,14, and experiments. A variety of experi-
mental systems have been studied: liquid 4He in porous
media like vycor or aerogel15; microfabricated Josephson-
junction arrays16,17; the disorder-driven superconductor-
insulator transition in thin films of superconducting ma-
terials like bismuth18; flux lines in type-II superconduc-
tors pinned by columnar defects aligned with an exter-
nal magnetic field19; and best from the point of view of
comparing theory with experiments, atoms trapped in
optical-lattice potentials. In a system where the num-
ber of atoms per site is an integer, Greiner et al.20 have
observed a superfluid-Mott insulator transition for 87Rb
atoms, trapped in a three-dimensional optical-lattice po-
tential, by changing the strength of the onsite potential.
Experiments in such optical lattices have several advan-
tages over their condensed-matter counterparts, includ-
ing precise knowledge of the underlying microscopic mod-
els21, the possibility of controlling parameters in the ef-
fective lattice Hamiltonians, and the absence of disorder.
The recent probable observation of a supersolid helium
phase22 has given a further fillip to this area. Even in
the absence of disorder these systems can show a variety
of phases like Superfluid (SF), Mott Insulator (MI), and
Mass Density Wave (MDW) [or Charge Density Wave
(CDW) if the bosons are charged]. The simplest model
that can show these phases is the extended Bose-Hubbard

model whose Hamiltonian is

H = −t
∑

<i,j>

(a†iaj + h.c) +
U

2

∑

i

n̂i(n̂i − 1)

+V
∑

<i,j>

n̂in̂j . (1)

The first term in Eq. (1) represents the kinetic energy
associated with the hopping of bosons from site i to

its nearest-neighbor site j with amplitude t; a†i (ai) is
the boson creation (annihilation) operator at site i and

n̂i = a†iai is the associated number operator; onsite U
and nearest-neighbor V interactions are represented, re-
spectively, by the second and third terms and are pos-
itive since they are repulsive. We restrict ourselves to
the physically relevant region V ≤ U and set the scale of
energies by using t = 1.

Model (1) has been studied by a number of authors4,5

in the case V = 0, i.e., in the absence of nearest-
neighbor interactions; at zero temperature (T = 0) it
has been shown to have a superfluid phase if the mean
number of bosons per site ρ is not an integer; how-
ever, for integer densities, it shows a superfluid (SF) to
Mott insulator (MI) transition. This SF-MI transition
is of the Kosterlitz-Thouless (KT) type23 in one dimen-
sion2,7,8,9,10,11.

In the limit U → ∞ model (1) maps onto the spin-
1
2

XXZ model if the mean number of bosons per site
ρ = 1/2. Every site can now have only two possible
states, namely, a state with no boson and another with
one boson. We represent these as | 0〉 and | 1〉, re-
spectively, and make the identification | 0〉 → |↓〉 and
| 1〉 → |↑〉, where |↓〉 and |↑〉 are, respectively, spin- 1

2

down and up states. Now, by using the transformations
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a†i ≡ S+
i , ai ≡ S−

i , and n̂i ≡ (Sz
i − 1

2
), the model (1)

maps onto the spin- 1
2

XXZ model with the Hamiltonian

HXXZ = −2t
∑

<i,j>

(Sx
i S

x
j + Sy

i S
y
j ) + V

∑

<i,j>

Sz
i S

z
j , (2)

where we have suppressed constant terms. This model
has been solved exactly24 and shows a KT-type transi-
tion from XY to Ising ordering at V = 2t. The bosonic
analogs of XY and Ising phases are, respectively, SF and
MDW phases.

If ρ = 1 and t = 0, it is easy to see that model (1)
has a first-order, MI-MDW transition at U = 2V . Large
values of U favor the MI phase whereas large values of V
favor the MDW phase.

Recently Kühner et al9 studied model (1) in one di-
mension by the using a finite-size, density-matrix renor-
malization group25 (FSDMRG) and showed that, for
V = 0.4, it has a continuous SF-MDW transition for den-
sity ρ = 1

2
and a continuous SF-MI transition for ρ = 1.

Niyaz et al26 have studied this model in one dimension by
a Monte-Carlo method and obtained its phase diagram
in the (U, V ) plane for ρ = 1. They obtain SF, MI and
MDW phases in model (1) and continuous SF-MI, SF-
MDW, and MI-MDW transitions but conjecture that, at
large U , the MI-MDW transition should be first order.
The study of Ref. [26] has obtained a phase diagram for
model (1); however, they have not investigated the uni-
versality classes of the transitions in detail. We obtain
the phase diagram here for density ρ = 1 by using the
FSDMRG method which, as we show below, gives very
accurate results for the nature of ordering in the differ-
ent phases and the types and universality classes of the
transitions. We restrict ourselves to the case of integer
density (ρ = 1) since we want to explore the competition
between SF, MDW, and MI phases. We note in passing
that, even for V = 0, the Bose-Hubbard model (1) can-
not be solved exactly unlike its fermionic counterpart;
and for the fermionic case too there has been renewed
interest in the phase diagram of the extended Hubbard
model27.

Before proceeding further we give a brief summary of
our results. Our FSDMRG phase diagram for model (1),
with d = 1 and ρ = 1, is given in the (U, V ) plane of
Fig. (1). It consists of three phases; Superfluid (SF),
Mott Insulator (MI) and Mass Density Wave (MDW).
For small values of the interactions U and V , the SF
phase dominates as is to be expected since the bosons in-
teract weakly here. However, as the interaction strengths
increase, either MI or MDW phases get stabilized. The
former dominates when U is much larger than V , whereas
the latter dominates if U and V are both large and com-
parable: A large, repulsive V disfavors a phase with a
uniform density of bosons on nearest-neighbor sites; in-
stead, an MDW phase, with a periodic variation of the
boson density, is stabilized. The lattice we consider is
bipartite and has two sublattices A and B (say odd-
numbered and even-numbered sites); the ground state in
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FIG. 1: The FSDMRG phase diagram of the one-dimensional,
extended Bose-Hubbard model for density ρ = 1 showing SF,
MI, and MDW phases. The two full lines indicate continuous
transitions whereas the dashed line is a first-order bound-
ary; these meet at a bicritical point. We do not consider the
shaded region V > U .

the MDW phase is, therefore, doubly degenerate since
the peaks in the mass-density wave can lie either on
the A or the B sublattice. If the bosons are charged
this MDW phase is a charge-density-wave (CDW) phase.
By using the FSDMRG method we have determined
the phase boundaries between these phases. The MI-
SF phase boundary in Fig. (1) lies in the Kosterlitz-
Thouless (KT) universality class, whereas the MDW-SF
phase boundary has both KT and two-dimensional-Ising
characters. For large values of U and V , the MI-MDW
transition occurs directly and is of first-order [dashed line
in Fig. (1)]; as noted above, at t = 0, a first-order MI-
MDW transition is obtained at U = 2V . Within the
accuracy of our calculation, the MI-SF, MDW-SF, and
MI-MDW phase boundaries meet at a bicritical point at
(U, V ) = (8.5±0.05, 4.75±0.05). We have looked for, but
not found, a supersolid phase with both SF and MDW
order. A very brief discussion of some of our preliminary
results has been given in Ref. [28].

The remaining part of this paper is organized as fol-
lows. Section II contains the details of our Finite-size
Density-Matrix Renormalization Group (FSDMRG) cal-
culation. Section III contains our results. We end with
concluding remarks in Section IV.

II. FSDMRG CALCULATIONS

The Finite-Size Density-Matrix Renormalization
Group (FSDMRG) method has proven to be very useful
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in studies of one-dimensional quantum systems7,25,28. To
make this paper self-contained we summarize the salient
points of this method. Open boundary conditions are
preferred for such calculations since the loss of accuracy
with increasing system size is much less than in the
case of periodic boundary conditions. The conventional
FSDMRG method consists of the following two steps:

1. The infinite-system density-matrix renormalization
group method (DMRG), where we start with a sys-
tem with four sites, add two sites at each step of
the iteration, and continue till we obtain a system
with the desired number L of sites ( in most of our
calculations we use L ≃ 100 but, in some represen-
tative cases, we have gone up to L = 200).

2. The finite-system method in which the system size
L is held fixed, but the energy of a target state
is improved iteratively by a sweeping procedure,
described below, till convergence is obtained.

For a model like Eq. (1) we first construct the Hamilto-
nian matrix of the superblock configuration B

ℓ
1 • • B

r
1,

where B
ℓ
1 and B

r
1 represent left- and right-block Hamil-

tonians, respectively, and each one of the • represents a
single-site Hamiltonian. In the first step of the DMRG
iteration both B

ℓ
1 and B

r
1 also represent single sites, so,

at this step, we have a four-site chain. We now diagonal-
ize the Hamiltonian matrix of the superblock and obtain
the energy and the eigenfunction of a target state. In
our study the target state is the ground state of the sys-
tem of size L with either N = L or N = L ± 1 bosons.
The latter is required for obtaining the gap in the energy
spectrum. We now divide the superblock into two equal
halves, the left and the right parts, which are treated, re-
spectively, as the system and the universe. The density
matrix for this system, namely, B

ℓ
2 ≡ B

ℓ
1 •, is calcu-

lated from the target state. If we write the target state

as | ψ〉 =
∑

i,j ψi,j | i〉 | j〉, where | i〉 and | j〉 are,
respectively, the basis states of the system and the uni-

verse, then the density matrix for the system has ele-
ments ρi,i′ =

∑

j ψi,jψi′,j. The eigenvalues of this den-
sity matrix measure the weight of each of its eigenstates
in the target state. The optimal states for describing
the system are the ones with the largest eigenvalues of
the associated density matrix. In this first step of the
DMRG the superblock, and hence the dimension of the
density matrix, is small, so all the states can be retained.
However, in subsequent steps, when the sizes of the su-
perblocks and density matrices increase, only the most
significant states are retained, say the ones correspond-
ing to the largest M eigenvalues of the density matrix (in
our studies we choose M = 128). We then obtain the ef-
fective Hamiltonian for the system B

ℓ
2 in the basis of the

significant eigenstates of the density matrix; this is used
in turn as the left block for the next DMRG iteration.
In the same manner we obtain the effective Hamiltonian
for the right block, i.e., B

r
2 ≡ •Br

1. In the next step
of the DMRG we construct the Hamiltonian matrix for

the superblock B
ℓ
2 • • B

r
2, so the size of the system in-

creases from L = 4 to L = 6. For a system of size L, we
continue, as in the first step, by diagonalizing the Hamil-
tonian matrix for the configuration B

ℓ
L

2
−1

• •Br
L

2
−1

and

setting B
ℓ
L

2

≡ B
ℓ
L

2
−1

• and B
r
L

2

≡ •Br
L

2
−1

in the next step

of the DMRG iteration. Thus at each step of the DMRG
iteration the left and right blocks increase in length by
one site and the total length L of the chain increases by
2.

In the infinite-system DMRG method outlined above
the left- and right-block bases are not optimized in the
following sense: The DMRG estimate for the target-state
energy, at the step when the length of the system is L,
is not as close to the exact value of the target-state en-
ergy for this system size as it can be. It has been found
that the FSDMRG method overcomes this problem25. In
this method we first use the infinite-system DMRG iter-
ations to build up the system to a certain desired size
L. The L-site superblock configuration is now given by
B

ℓ
L

2
−1

• • B
r
L

2
−1

. In the next step of the FSDMRG

method, the superblock configuration B
ℓ
L

2

• • B
r
L

2
−2

,

which clearly keeps the system size fixed at L, is used.
This step is called sweeping in the right direction since
it increases (decreases) the size of the left (right) block
by one site. For this superblock the system is B

ℓ
L

2

•, the

universe is •Br
L

2
−2

, the associated density matrix can be

found, and from its most significant states the new effec-
tive Hamiltonian for the left block, with (L

2
+ 1) sites, is

obtained. We sweep again, in this way, to obtain a left
block with (L

2
+ 2) sites and so on till the left block has

(L− 3) sites and the right block has 1 site so that, along
with the two sites in between these blocks, the system
still has size L; or, if a preassigned convergence crite-
rion for the target-state energy is satisfied, this sweeping
can be terminated earlier. Note that, in these sweeping
steps, for the right block we need B

r
1 to B

r
L−3, which

we have already obtained in earlier steps of the infinite-
system DMRG. Next we sweep leftward: the size of the
left (right) block decreases (increases) by one site at each
step. Furthermore, in each of the right- and left- sweep-
ing steps, the energy of the target state decreases system-
atically till it converges (we use a six-figure convergence
criterion in our calculations).

We use a slightly modified form of the FSDMRG
method in which we sweep, as described above, at ev-

ery step of the DMRG scheme and not only in the one
that corresponds to the largest value of L. This helps
in obtaining accurate β functions which we use to ob-
tain critical exponents (see below) at continuous transi-
tions. Furthermore, since the superfluid phase in mod-
els such as Eq. (1), in d = 1 and at T = 0, is critical
and has a correlation length that diverges with the sys-
tem size L, finite-size effects must be removed by using
finite-size scaling as we show below. For this purpose,
the energies and correlation functions, obtained from a
DMRG calculation, should have converged properly for
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FIG. 2: The percentage difference between the ground state
energies ∆EL = (EDMRG

L −EF SDMRG
L )/EF SDMRG

L obtained
by DMRG and FSDMRG methods, for a representative point
in the SF phase of Fig (1), plotted as a function of L.

each system size L. It is important, therefore, that we use
the FSDMRG method as opposed to the infinite-system
DMRG method especially in the vicinities of continu-
ous phase transitions. We find that convergence, to a
specified accuracy for the target-state energy, is faster in
the MI phase than in the SF phase. Figure (2) shows,
at a representative point in the SF phase of Fig. (1),
how the percentage disagreement between DMRG and
FSDMRG ground-state energies increases with L in our
calculations.

Since the bases of left- and right-block Hamiltonians
are truncated by neglecting the eigenstates of the density
matrix corresponding to small eigenvalues, this leads to
truncation errors. If we retain M states, the density-

matrix weight of the discarded states is PM =
∑M

α=1(1−
ωα), where ωα are the eigenvalues of density matrix. PM

provides a convenient measure of the truncation errors.
We find that these errors depend on the order-parameter
correlation length in a phase. For a fixed M , we find
very small truncation errors in the MI and MDW phases;
these grow as the MI-SF and MDW-SF transitions are
approached; and the truncation errors are largest in the
SF phase. In our calculations we choose M such that the
truncation error is always less than 5×10−6; we find that
M = 128 suffices.

The number of possible states per site in the Bose-
Hubbard model is infinite since there can be any number
of bosons on a site. In a practical DMRG calculation
we must restrict the number nmax of states or bosons
allowed per site. The smaller the interaction parameters
U and V , the larger must nmax be. As in earlier calcu-
lations7,9,28 on related models, we find that nmax = 4 is

sufficient for the values of U and V considered here; we
have checked in representative cases that our results do
not change significantly if nmax = 5.

In summary, then, our FSDMRG procedure gives us
the energy EL(N) for the ground state of model (1) and
the associated eigenstate | ψ0LN 〉. Given these we can
calculate the energy gaps, order parameters, and corre-
lation functions that characterize all the phases of this
model and thence the phase diagram. We discuss this in
Section III.

III. RESULTS

The single-particle energy gap GL for a system of size
L, the order parameter for the MDW phase, and the cor-
relation functions that characterize SF and MDW phases
in model (1) can be defined in a straightforward manner
in terms of the energies and wavefunctions mentioned in
the previous Section. The energy gap is

GL = EL(N + 1) + EL(N − 1) − 2EL(N), (3)

where EL(N) is the ground-state energy for a system of
size L with N bosons; since we are interested in studying
the case ρ = 1, we increase the number of bosons by 2
at every DMRG step in which 2 sites are added to the
system (Sec. II) so that ρ = N/L = 1. We expect, and
show explicitly below, that this gap is positive in both MI
and MDW phases, which are incompressible insulators,
but it vanishes in the SF phase, which is compressible.

The correlation function that characterizes the SF
phase is

ΓSF
L (r) ≡ 〈ψ0LN |a†0ar|ψ0LN 〉, (4)

where |ψ0LN 〉 is the ground-state wavefunction of the sys-
tem with size L andN bosons. The associated correlation
length can be obtained from the second moment of this
correlation function, namely,

ξSF
L ≡

[∑

r r
2ΓSF

L (r)
∑

r ΓSF
L (r)

]1/2

. (5)

Note that ξSF
L is the correlation length for SF ordering

in a system of size L; it remains finite so long as L <∞.
The MDW phase can be differentiated from the MI

phase by using the order parameter for the MDW phase

MMDW =
1

L

∑

i

(−1)i〈ψ0LN |(n̂i − ρ)|ψ0LN 〉, (6)

and the associated correlation function

ΓMDW
L (r) ≡ 〈ψ0LN |(n̂0 − ρ)(n̂r − ρ)|ψ0LN 〉; (7)

the correlation length for MDW ordering ξMDW
L can be

defined as in Eq. (5) but with ΓMDW
L instead of ΓSF

L .
It is useful first to discuss the case V = 0. Here we re-

produce the well-understood SF-MI transition. In d = 1
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FIG. 3: L/ξSF
L plotted as a function of U for different system

sizes and V = 0 in model (1). The coalescence of different
curve for U ≃ 3.4 shows a Kosterlitz-Thouless-type SF-MI
transition.

the appearance of the SF phase is signaled by the diver-
gence of the correlation length ξSF

L→∞. For a finite sys-
tem ξSF

L is finite and we must extrapolate to the L→ ∞
limit, which is best done by using finite-size scaling. In
the critical region the correlation length

[ξSF
L ]−1 ≈ L−1f(L/ξSF

∞ ), (8)

where the scaling function f(x) ∼ x, x → 0. Thus plots
of L/ξSF

L versus U , for different system sizes L, consist
of curves that intersect at the critical point at which the
correlation length for L = ∞ diverges. Such plots are
given in Fig. (3) for V = 0. Curves for different values of
L coalesce for U ≤ Uc ≃ 3.4 indicating the existence of
a critical SF phase, with a diverging correlation length,
i.e., a power-law decay of correlations, for all 0 ≤ U ≤ Uc.
The single-particle gap GL scales as the inverse of this
correlation length and is, therefore, zero for L = ∞ for
0 ≤ U ≤ Uc. For U > Uc we have an MI phase with a
finite correlation length and a nonzero gap. Figure (3)
also suggests that the SF-MI transition here is of the KT
type. We can quantify this by calculating the β function
at this transition via the Roomany-Wyld (RW) approxi-
mants7,29,30

βLL′ =
1 − ln(ξSF

L /ξSF
L′ )/ ln(L/L′)

(ξSF
L ξSF

L′ /ξ′Lξ
′
L′)1/2

, (9)

where L and L′ denote two system sizes and ξ′L ≡
dξSF

L /dU . For a KT transition the correlation length
ξKT ∼ exp(c/(U − Uc)

σ) and β ∼ (U − Uc)
1+σ, with

σ = 1/2. In Fig. (4) we show the β function for the
SF-MI transition for V = 0. To obtain this β func-
tion we use L = 98 and L′ = 100 in Eq. (9). Our

3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2
0.0

0.2

0.4

0.6

0.8

 

b 
(U

)

U

FIG. 4: The β function for the MI-SF transition for V = 0
obtained by using RW approximants [Eq. (9)] with L = 98
and L′ = 100. The full line is a fit to the form β(U) =

c(U − Uc)
(1+σ); we get c = 0.37 ± 0.01, Uc = 3.35 ± 0.02 and

σ = 0.48 ± 0.05.

fit to the data of Fig. (4) yields Uc = 3.35 ± 0.02 and
σ = 0.48 ± 0.05 which are consistent with the values re-
ported earlier7,9. If we fit our data (here and below) over
a fixed region of (U − Uc)/Uc, then our nonlinear least-
squares programme yields smaller errors. The conserva-
tive error bars we quote here reflect the range over which
our fitted values for Uc, σ, etc., vary when we change the
region of (U−Uc)/Uc over which we fit our data, namely,
0.001 < |U−Uc|/Uc < 0.2 or 0.001 < |U−Uc|/Uc < 0.35.

Initially the nearest-neighbor interaction V suppresses
the SF phase relative to the MI phase, but at larger val-
ues of V this trend is reversed leading to a reentrant SF
[Fig. (1)]. Figure (5a) shows a plot of L/ξSF

L versus U
for V = 0.5; by comparing this with Fig. (3) we see that
Uc(V = 0.5) < Uc(V = 0). Curves for different values
of L coalesce for U ≤ Uc(V = 0.5) ≃ 3.0 indicating a
power-law SF phase, as for V = 0, and a KT-type MI-SF
transition. Again we use RW approximants to obtain the
β function shown in Fig. (6) and our numerical fit yields
Uc = 2.95 ± 0.02 and σ = 0.53 ± 0.05. Eventually the
MI-SF phase boundary in Fig. (1) turns back; a represen-
tative plot of L/ξSF

L versus L, for V = 2.5, illustrates this
[Fig. (5b)]; we find Uc(V = 2.5) ≃ 4.2. This reentrance
of the SF phase, with increasing V , was not resolved by
the study of Ref. [26].

For sufficiently large values of V we can have an MDW
phase and an SF-MDW transition, at small values of U ,
and an MI-MDW transition at large values of U as shown
in the phase diagram of Fig. (1). In Fig. (7) we plot the
MDW order parameter MMDW as a function of 1/L for
U = 6 and values of V ranging from V = 3.0 to 5.3
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FIG. 5: L/ξSF
L plotted as a function of U for different system

sizes and for (a) V = 0.5 and (b) V = 2.5 in model (1). The
coalescence of different curve for U < 3.0 in (a) and U < 4.2
in (b) show KT-type SF-MI transitions.
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FIG. 6: The β function of the MI-SF transition for V = 0.5,
obtained by using the RW approximants with L = 98 and
L′ = 100 as in Fig. (4). The full line is a fit to the form

β(U) = c(U−Uc)
(1+σ); we get c = 0.27±0.01, Uc = 2.95±0.02

and σ = 0.53 ± 0.05.

in steps of 0.1. We see that MMDW goes to zero for
V < Vc(U = 6) ≃ 3.9 whereas it is nonzero for higher
values of V . To determine the universality classes of
the MI-SF and SF-MDW transitions we plot in Fig. 8
both the order parameter MMDW and L/ξSF

L as func-
tions of V for U = 6. The different curves for L/ξSF

L
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M
M

D
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FIG. 7: The MDW order parameter MMDW versus 1/L for
U = 6 and different values of V starting from 3.0 below to 5.3
above in steps of 0.1.

coalesce in the region 3.5 . U . 3.9 indicating an SF
phase sandwiched between MI and MDW phases. Both
SF-MI and SF-MDW transitions are continuous. To con-
firm this we have also obtained plots of the ground-state
energy E0 ≡ limL→∞EL(N) as a function of V for fixed
U . In Fig. (9) we plot E0 and dE0/dV versus V ; this
plot shows no discontinuity at the SF-MI and SF-MDW
transitions (as it does at the first-order MI-MDW tran-
sition discussed below for U = 12). To determine the
universality classes of these SF-MI and SF-MDW tran-
sitions we have obtained β functions, via RW approxi-
mants for ξSF

L , in Fig. (10) for U = 6.0. For the MI-SF
transition, we get Vc = 3.59 ± 0.05 and σ = 0.47 ± 0.05;
and, for the SF-MDW transition, Vc = 3.78 ± 0.05 and
σ = 0.49 ± 0.05. Thus both of these transitions are of
the KT type. However, in addition, the MDW-SF tran-
sition also has an Ising character (two-dimensional) since
the MDW phase has a doubly degenerate ground state
as mentioned above. To extract such Ising-model ex-
ponents, we use the form MMDW ∼ (V − Vc)

βMDW as
V ↓ Vc, where βMDW is the MDW order-parameter ex-
ponent. For U = 6 our fit yield Vc = 3.87 ± 0.05 and
βMDW = 0.12±0.01 (Fig. 11) in good agreement with the
two-dimensional, Ising order parameter exponent. Note
that the value of Vc obtained from this fit for MMDW is
within error bars of that obtained from the β function for
the SF-MDW transition. Thus, within our calculation we
cannot resolve a supersolid phase which has long-range
SF correlations and MDW ordering.

From the phase diagram of Fig. (1) we see that, for suf-
ficiently large values of U , there is no SF phase and only a
direct, first-order MI-MDW transition. This direct tran-
sition shows up clearly in Fig. 12 where we plot L/ξSF

L
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FIG. 8: Plots of L/ξSF
L and MMDW versus V for U = 6 and

L = 90 and 100. The coalescence of different curves of L/ξSF
L ,

for 3.5 < V < 3.9, shows an SF phase sandwiched between
MI and MDW phases; for 3.9 . V we obtain the MDW phase
with MMDW > 0.
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FIG. 9: Plots of the ground-state energy E0 and its derivative
dE0/dV versus V for U = 6. There is no visible discontinu-
ity in dE0/dV so both MI-SF and SF-MDW transitions are
continuous.

and MMDW versus V for U = 12: Curves of L/ξSF
L ,

for different values of L, do not merge at any point, so
we can conclude that no power-law SF phase intervenes
between MI and MDW phases. Furthermore, the sharp
jump in MMDW at V ≃ 6.3 indicates that we have a
first-order MI-MDW transition. This is corroborated by
the plots of the ground-state energy E0 and its derivative
dE/dV given in Fig. 13 for U = 12; the discontinuity of

3.8 4.0 4.2 4.4 4.6 4.8
0.0

0.2

0.4

0.6

0.8

1.0
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(b)

 

 

b(
V)

V
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b(
V)

V

U=6.0

FIG. 10: The β functions for MI-SF (a) and MDW-SF (b)
transition for U = 6, obtained by using RW approximants
with L = 98 and L′ = 100. The full line is a fit to the form
β(U) = c(U − Uc)

(1+σ). For the MI-SF transition (a) we
get c = 0.76 ± 0.01, Uc = 3.59 ± 0.05 and σ = 0.47 ± 0.05
and for the MDW-SF transition (b) we get c = 0.86 ± 0.01,
Uc = 3.78 ± 0.05 and σ = 0.49 ± 0.05.
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FIG. 11: A log-log plot (base 10) of the MDW order parame-
ter MMDW versus V −Vc for U = 6. The straight line is a fit
to the form MMDW ∼ (V − Vc)

βMDW , V ↓ Vc. Our fit yields
Vc = 3.87 ± 0.05 and βMDW = 0.12 ± 0.01.
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FIG. 12: Plots of L/ξSF
L and MMDW versus V for U = 12 and

different system sizes L. Note that the curves for L/ξL do not
meet at any point; however, MMDW jumps at the first-order,
MI-MDW transition at V ≃ 6.3.
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FIG. 13: The ground-state energy E0 and its derivative
dE0/dV versus V for U = 12.0; the jump in dE0/dV at
V ≃ 6.3 shows that the MI-MDW transition is first order.

dE/dV at V ≃ 6.3 indicates the first-order nature of the
transition.

The only feature of the phase diagram of Fig. (1) that
remains unexplored now is the region in which the con-
tinuous MI-SF and SF-MDW phase boundaries meet the
first-order MI-MDW boundary. The simplest topology
possible here is that these meet at one bicritical point.
Our data are not inconsistent with such a topology. Fig-
ure (14) shows, via plots of L/ξSF

L versus V , for different
values of L and U , how the extent of the SF phase (the

4.30 4.35 4.40 4.45 4.50 4.55 4.60 4.65 4.70
3

4

5

64.60 4.65 4.70 4.75 4.80 4.85 4.90

4

64.90 4.95 5.00 5.05

4

5

6

U=8

V

U=8.5L/
xSF

L

U=9

FIG. 14: Plots of L/ξSF
L versus V for different values of U and

different system sizes L(80, 90, 100). The region over which
curves for different values of L coalesce decreases as we go
from U = 8 to U = 8.5; and there is no coalescence for U = 9.
This shows how the SF phase shrinks as we approach the
bicritical point.

region over which the curves of L/ξSF
L coalesce) shrinks

as we approach the bicritical point. Similarly Fig. (15)
shows how the jump inMMDW across the MI-MDW first-
order transition decreases as we approach the bicritical
point. To confirm that this is indeed the topology of
the phase diagram in the region where the MI-SF, SF-
MDW, and MI-MDW phase boundaries meet, we must
obtain the critical exponents in the vicinity of the bicriti-
cal point. This is beyond the accuracy of our calculation
at the moment. Nor can we rule out completely more
complicated topologies of phase diagrams in which very
closely spaced tricrital points and critical endpoints are
used to link the three phase boundaries we have studied
above.

IV. CONCLUSIONS

We have carried out an extensive study of the one-
dimensional, extended Bose-Hubbard model (1) by using
the FSDMRG method. Our study yields ground-state
energies, single-particle gaps, the MDW order parame-
ter, and SF correlation functions and correlation lengths.
By studying these we obtain an accurate phase diagram
[Fig. (1)] for this model. This shows continuous MI-
SF and SF-MDW transitions meeting the first-order MI-
MDW boundary at a bicritical point.

We have looked for, but not found, a supersolid (SS)
phase which, in the context of the lattice model we study
here, would exhibit power-law superfluid correlations, as



9

0.95 1.00 1.05 1.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.95 1.00 1.05 1.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.95 1.00 1.05 1.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 U=9

 U=8.5

 

 

M
M

D
W

V/VC

 U=12

FIG. 15: The MDW order parameter MMDW plotted ver-
sus V/Vc for different values of U across the MI-MDW first-
order transition. The jump in MMDW at the first-order phase
boundary decreases as we approach the bicritical point at
(U, V ) = (8.5 ± 0.05, 4.75 ± 0.05).

in the SF phase, and a nonzero order parameter MMDW ,
as in the MDW phase. It is likely31 that further than
nearest-neighbor interactions will be required to stabilize
the SS phase as we will explore elsewhere.

We hope our detailed study of model (1) will stimulate
experimental studies. A recent experimental study32 has
shown that it is possible, by a suitable choice of con-
fining potentials in optical lattices, to obtain a physical
realization of the one-dimensional Bose-Hubbard models.
It would be interesting to see how nearest-neighbor inter-
actions, like V , can be obtained in such lattices. If this
can be done, the rich phase diagram of Fig. (1) can be
explored experimentally.
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32 T. Stöferle, H. Moritz, C. Schori, M. Köhl and T. Esslinger,

Phys. Rev. Lett. 92 130403 (2004).


