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Manifestations of Drag Reduction by Polymer Additives

in Decaying, Homogeneous, Isotropic Turbulence
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The existence of drag reduction by polymer additives, well established for wall-bounded turbulent
flows, is controversial in homogeneous, isotropic turbulence. To settle this controversy we carry out
a high-resolution direct numerical simulation (DNS) of decaying, homogeneous, isotropic turbulence
with polymer additives. Our study reveals clear manifestations of drag-reduction-type phenomena:
On the addition of polymers to the turbulent fluid we obtain a reduction in the energy dissipation
rate, a significant modification of the fluid energy spectrum especially in the deep-dissipation range,
a suppression of small-scale intermittency, and a decrease in small-scale vorticity filaments.
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The dramatic reduction of drag by the addition of
small concentrations of polymers to a turbulent fluid con-
tinues to engage the attention of engineers and physicists.
Significant advances have been made in understanding
drag reduction both experimentally [1, 2, 3] and theo-
retically [4, 5, 6, 7] in channel flows or the Kolmogorov
flow [8]. However, the existence of drag-reduction-type
phenomena in turbulent flows that are homogeneous and
isotropic [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] remains
controversial. Some experimental [15, 16, 17, 18], numer-
ical [11, 12, 13, 14], and theoretical [9, 10] studies have
suggested that drag reduction should occur even in ho-
mogeneous, isotropic turbulence; but other studies have
refuted this claim [19].

To settle this controversy we have initiated an exten-
sive direct numerical simulation (DNS) of decaying, ho-
mogeneous, isotropic turbulence in the presence of poly-
mer additives. We monitor the decay of turbulence from
initial states in which the kinetic energy of the fluid is
concentrated at small wave vectors; this energy then cas-
cades down to large wave vectors where it is dissipated
by viscous effects; the energy-dissipation rate ǫ attains
a maximum at tm, roughly the time at which the cas-
cade is completed. A recent shell-model study [13] has
suggested that this peak in ǫ can be used to quantify
drag reduction by polymer additives. Since shell mod-
els are far too simple to capture the complexities of real
flows, we have studied decaying turbulence in the Navier-
Stokes (NS) equation coupled to the Finitely Extensible
Nonlinear Elastic Peterlin (FENE-P) model [20] for poly-
mers. Our study, designed specifically to uncover drag-
reduction-type phenomena, shows that the position of
the maximum in ǫ depends only mildly on the polymer
concentration c; however, the value of ǫ at this maxi-
mum falls as c increases. We use this decrease of ǫ to de-
fine the percentage drag (or dissipation) reduction DR in
decaying homogeneous, isotropic turbulence; we also ex-
plore other accompanying physical effects and show that
they are in qualitative accord with drag-reduction exper-

iments [18, 21]: In particular, DR increases with c (upto
25% in one of our simulations). For small values of c
the energy spectrum of the fluid is modified appreciably
only in the dissipation range; however, this suffices to
yield significant drag reduction. We show that vorticity
filaments and intermittency are reduced at small spatial
scales and that the extension of the polymers decreases
as c increases.

The NS and FENE-P (henceforth NSP) equations are

Dtu = ν∇2
u +

µ

τP
∇.[f(rP )C] −∇p; (1)

DtC = C.(∇u) + (∇u)T .C −
f(rP )C − I

τP
. (2)

Here u(x, t) is the fluid velocity at point x and time t,
incompressibility is enforced by ∇.u = 0, Dt = ∂t +u.∇,
ν is the kinematic viscosity of the fluid, µ the viscos-
ity parameter for the solute (FENE-P), τP the polymer
relaxation time, ρ the solvent density (set to 1), p the
pressure, (∇u)T the transpose of (∇u), Cαβ ≡ 〈RαRβ〉
the elements of the polymer-conformation tensor C (an-
gular brackets indicate an average over polymer con-
figurations), I the identity tensor with elements δαβ ,
f(rP ) ≡ (L2 − 3)/(L2 − r2

P ) the FENE-P potential that

ensures finite extensibility, rP ≡
√

Tr(C) and L the
length and the maximum possible extension, respectively,
of the polymers, and c ≡ µ/(ν + µ) a dimensionless mea-
sure of the polymer concentration [22]. c = 0.1 corre-
sponds, roughly, to 100ppm for polyethylene oxide [1].

We consider homogeneous, isotropic, turbulence, so we
use periodic boundary conditions and solve Eq. (1) by
using a massively parallel pseudospectral code [23] with
N3 collocation points in a cubic domain (side L = 2π).
We eliminate aliasing errors [23] by the 2/3 rule, to
obtain reliable data at small length scales, and use a
second-order, slaved Adams-Bashforth scheme for time
marching. For Eq. (2) we use an explicit sixth-order
central-finite-difference scheme in space and a second-
order Adams-Bashforth method for temporal evolution.

http://arXiv.org/abs/nlin/0609066v1


2

The numerical error in rP must be controlled by choosing
a small time step δt, otherwise rP can become larger than
L, which leads to a numerical instability; this time step
is much smaller than what is necessary for a pseudospec-
tral DNS of the NS equation alone. Table I lists the
parameters we use. We preserve the symmetric-positive-
definite (SPD) nature of C at all times by using[22] the
following Cholesky-decomposition scheme: If we define
J ≡ f(rP )C, Eq. (2) becomes

DtJ = J .(∇u) + (∇u)T .J − s(J − I) + qJ , (3)

where s = (L2 − 3 + j2)/(τP L2), q = [d/(L2 − 3)− (L2 −
3 + j2)(j2 − 3)/(τP L2(L2 − 3))], j2 ≡ Tr(J ), and d =
Tr[J .(∇u) + (∇u)T .J ]. Since C and hence J are SPD
matrices, we can write J = LLT , where L is a lower-
triangular matrix with elements ℓij , such that ℓij = 0 for
j > i. Thus Eq.(3) now yields (1 ≤ i ≤ 3 and Γij = ∂iuj)

Dtℓi1 =
∑

k

Γkiℓk1 +
1

2

[

(q − s)ℓi1 + (−1)(i mod 1) sℓi1

ℓ2
11

]

+ (δi3 + δi2)
ℓi2

ℓ11

∑

m>1

Γm1ℓm2

+ δi3Γi1
ℓ2
33

ℓ11
, for i ≥ 1;

Dtℓi2 =
∑

m>2

Γmiℓm2 −
ℓi1

ℓ11

∑

m>2

Γm1ℓm2

+
1

2

[

(q − s)ℓi2 + (−1)(i+2)s
ℓi2

ℓ2
22

(

1 +
ℓ2
21

ℓ2
11

)]

+ δi3

[ℓ2
33

ℓ22

(

Γ32 − Γ31
ℓ21

ℓ11

)

+ s
ℓ21ℓ31

ℓ2
11ℓ22

]

, for i ≥ 2;

Dtℓ33 = Γ33ℓ33 − ℓ33

[

∑

m<3

Γ3mℓ3m

ℓmm

]

+
Γ31ℓ32ℓ21ℓ33

ℓ11ℓ22

− s
ℓ21ℓ31ℓ32

ℓ2
11ℓ22ℓ33

+
1

2

[

(q − s)ℓ33

+
s

ℓ33

(

1 +
∑

m<3

ℓ2
3m

ℓ2
mm

)

+
sℓ2

21ℓ
2
32

ℓ2
11ℓ

2
22ℓ33

]

. (4)

The SPD nature of C is preserved by Eq.(4) if ℓii > 0,
which we enforce explicitly [22] by considering the evolu-
tion of ln(ℓii) instead of ℓii.

We use the following initial conditions (superscript
0): C0

mn(x) = δmn for all x; and u0
m(k) =

Pmn(k)v0
n(k) exp(iθn(k)), with m, n = x, y, z, Pmn =

(δmn − kmkn/k2) the transverse projection operator, k

the wave-vector with components km = (−N/2,−N/2 +
1, . . . , N/2), k = |k|, θn(k) random numbers distributed
uniformly between 0 and 2π, and v0

n(k) chosen such
that the initial kinetic-energy spectra are either of type
I, with EI(k) = k2 exp(−2k4), or of type II, with
EII(k) = k4 exp(−2k2).

In addition to u(x, t), its Fourier transform uk(t), and
C(x, t) we monitor the vorticity ω ≡ ∇ × u, the kinetic-
energy spectrum E(k, t) ≡

∑

k−1/2<k′≤k+1/2 |u
2
k′(t)|, the

total kinetic energy E(t) ≡
∑

k E(k, t), the energy-
dissipation-rate ǫ(t) ≡ ν

∑

k k2E(k, t), the cumulative
probability distribution of scaled polymer extensions
PC(r2

P /L2), and the hyperflatness F6(r) ≡ S6(r)/S
3
2 (r),

where Sp(r) ≡ 〈{[u(x + r) − u(x)] · r/r}p〉 is the order-p
longitudinal velocity structure function and the angular
brackets denote an average over our simulation domain
at tm. For notational convenience, we do not display the
dependence on c explicitly.

Figure (1a) shows that ǫ first increases with time,
reaches a peak, and then decreases; for c = 0 this peak
occurs at t = tm. The position of this peak changes
mildly with c but its height goes down significantly as
c increases. This suggests the following natural defini-
tion [13] of the percentage drag or dissipation reduction
for decaying homogeneous, isotropic turbulence:

DR ≡

(

ǫf,m − ǫp,m

ǫf,m

)

× 100; (5)

here (and henceforth) the superscripts f and p stand, re-
spectively, for the fluid without and with polymers and
the superscript m indicates the time tm. Figure (1b)
shows plots of DR versus c, for the Weissenberg num-
ber We ≡ τP

√

ǫf,m/ν ≃ 0.35, and versus We, for
c = 1/11 ≃ 0.1. DR increases with c in qualitative accord
with experiments on channel flows (where DR is defined
via a normalized pressure difference); but it drops gently
as We increases, in contrast to the behavior seen in chan-
nel flows (in which τP is varied by changing the polymer).

In decaying turbulence, the total kinetic energy E(t)
of the fluid falls as t increases; the rate at which it falls
increases with c [Fig. (1c)], which suggests that the ad-
dition of polymers increases the effective viscosity of the
solution. This is not at odds with the decrease of ǫ with
increasing c since the effective viscosity because of poly-
mers turns out to be scale-dependent. We confirm this
by obtaining the kinetic-energy spectrum Ep,m(k) for the
fluid in the presence of polymers at t = tm. For small
concentrations (c ≃ 0.1) the spectra with and without
polymers differ substantially only in the deep dissipa-
tion range, where Ef,m(k) ≪ Ep,m(k). As c increases,
to say c ≃ 0.4, Ep,m(k) is reduced relative to Ef,m(k)
at intermediate values of k [Fig. (2a)]; however, deep in
the dissipation range Ef,m(k) ≪ Ep,m(k). We now de-
fine [12] the effective scale-dependent viscosity νe(k) ≡
ν + ∆ν(k), with ∆ν(k) ≡ −µ

∑

k−1/2<k′≤k+1/2 uk′ · (∇ ·

J )−k′/[τP k′2Ep,m(k′)], where (∇ · J )k is the Fourier
transform of ∇ · J . The inset of Fig. (2a) shows that
∆ν(k) > 0 for k < 15, but ∆ν(k) < 0 around k =
20. This explains why Ep,m(k) is suppressed relative to
Ef,m(k) at small k, rises above it in the deep-dissipation
range, and crosses over from its small-k to large-k be-
haviors around the value of k where ∆ν(k) goes through
zero.

Given the resolution of our DNS, inertial-range inter-
mittency can be studied only by using extended self sim-
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ilarity [24] as we will report elsewhere. However, we
explore dissipation-range statistics further by calculat-
ing the hyperflatness F6(r) [Fig. (2b)]. The addition of
polymers slows down the growth of F6(r), as r → 0,
which signals the reduction of small-scale intermittency.
This is further supported by the iso-|ω| surfaces shown
in Fig. (3). If no polymers are present, these iso-|ω| sur-
faces are filamentary [25] for large |ω|; polymers suppress
a significant fraction of these filaments.

We use a rank-order method [26] to obtain PC(r2
P /L2)

and find that, as c increases [Fig. (2c)], the extension of
the polymers decreases. We have checked that, in the
passive-polymer version of Eqs.(1) and (2), the extension
of polymers is much more than in Fig. (2c).

Our study contrasts clearly drag reduction in homoge-
neous, isotropic, turbulence and in wall-bounded flows.
In both these cases the polymers increase the overall vis-
cosity of the solution (see, e.g., Fig. (1c) and Ref.[12]).
In wall-bounded flows the presence of polymers inhibits
the flow of the stream-wise component of the momentum
into the wall, which, in turn, increases the net through-
put of the fluid and thus results in drag reduction, a
mechanism that can have no analog in homogeneous,
isotropic turbulence. However, the decrease of ǫ(t) with
increasing c [Fig. (1b)] yields a natural definition of DR
[Eq.(5)] for this case [27]. Thus, if the term drag reduc-

tion must be reserved for wall-bounded flows, then we
suggest the expression dissipation reduction for homo-
geneous, isotropic, turbulence. We have shown that νe

must be scale-dependent; its counterpart in wall-bounded
flows is the position-dependent viscosity of Refs. [4, 7].
Furthermore, as in wall-bounded flows, an increase in c
leads to an increase in DR [Fig. (1b)]. In channel flows
an increase in We leads to an increase in DR, but we find
that DR falls marginally as We increases [Fig. (1b)].

Our DNS of the Navier-Stokes equation with poly-
mer additives [Eqs. (1) and (2)] resolves the controversy
about drag reduction in decaying homogeneous, isotropic
turbulence and shows clearly that Eq. (5) offers a natu-
ral definition of DR for this case in a far more realistic
model than those of Refs. [11, 13]. We also find a non-
trivial modification of the fluid kinetic-energy spectrum
especially in the deep-dissipation range [Fig. (2b)] that
can be explained in terms of a polymer-induced, scale-
dependent viscosity. Experiments [16, 17] do not resolve
the dissipation range as clearly as we do, so the experi-
mental verification of the deep-dissipation-range behav-
ior of Fig. (2a) remains a challenge. Earlier theoretical
studies [10, 11] have also not concentrated on this dis-
sipation range. The reduction in the small-scale inter-
mittency [Fig. (2b)] and in the constant-|ω| isosurfaces
[Fig. (3)] is in qualitative agreement with channel-flow
studies [2], where a decrease in the turbulent volume frac-
tion is seen on the addition of the polymers, and water-jet
studies [21], where the addition of the polymers leads to
a decrease in small-scale structures. We hope our work

N δt L ν τP c

NSP-96 96 1.0 × 10−2 100 10−2 0.1 − 3 0.1, 0.2, 0.3, 0.4

NSP-192 192 1.0 × 10−2 100 10−2 1 0.1, 0.4

NSP-256A 256 1.0 × 10−2 100 10−2 1 0.1, 0.4

NSP-256 256 4.0 × 10−3 100 10−3 1 0.1, 0.4

TABLE I: The parameters N , δt, L, ν, τP and c for our
four runs NSP− 96, NSP− 192, NSP− 256A, and NSP− 256.
NSP− 96, NSP− 192, NSP− 256A use type I initial conditions;
NSP− 256 uses an initial condition of type II . We also carry
out DNS studies of the NS equation with the same numerical
resolutions as our NSP runs. Re ≡

√
20Ef,m/

√
3νǫf,m

and We ≡ τP

√

ǫf,m/ν; NSP-96: Re = 47.1 and We =
0.03, 0.17, 0.24, 0.28, 0.31, 0.41, 0.48, 0.55, 0.62, 0.68, 1.03;
NSP-192 and NSP-256A: Re = 47.1 and We = 0.35; NSP-256:
Re = 126.6 and We = 0.76.

will stimulate more experimental studies of drag or dis-
sipation reduction in homogeneous, isotropic turbulence.

We thank C. Kalelkar, R. Govindarajan, V. Kumar,
S. Ramaswamy, L. Collins, and A. Celani for discus-
sions, CSIR, DST, and UGC(India) for financial support,
and SERC(IISc) for computational facilities. DM is sup-
ported by the Henri Poincaré Postdoctoral Fellowship.
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FIG. 1: (Color online) (a) Temporal evolution of the energy dissipation rate ǫ (run NSP-256) for concentrations c = 0.1(−−) and
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mild variation in DR with We (runs NSP-96); (c) temporal evolution of the total fluid energy E for concentrations c = 0.1(−−)
and c = 0.4(solid line) (runs NSP-256). In (a) and (c) the plots for c = 0 (o−) are shown for comparison.
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