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Manifestations of Drag Reduction by Polymer Additives
in Decaying, Homogeneous, Isotropic Turbulence

Prasad Perlekar,l’ﬁ Dhrubaditya Mitra,z’ﬁ] and Rahul Panditl’ﬁ

ICentre for Condensed Matter Theory, Department of Physics,
Indian Institute of Science, Bangalore 560012, India.
? Observatoire de la Céte d‘Azur, BP 4229, 06304 Nice Cedex 4, France.

The existence of drag reduction by polymer additives, well established for wall-bounded turbulent
flows, is controversial in homogeneous, isotropic turbulence. To settle this controversy we carry out
a high-resolution direct numerical simulation (DNS) of decaying, homogeneous, isotropic turbulence
with polymer additives. Our study reveals clear manifestations of drag-reduction-type phenomena:
On the addition of polymers to the turbulent fluid we obtain a reduction in the energy dissipation
rate, a significant modification of the fluid energy spectrum especially in the deep-dissipation range,
a suppression of small-scale intermittency, and a decrease in small-scale vorticity filaments.
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The dramatic reduction of drag by the addition of
small concentrations of polymers to a turbulent fluid con-
tinues to engage the attention of engineers and physicists.
Significant advances have been made in understanding
drag reduction both experimentally ﬂ E E and theo-
retically M E I ﬁ in channel flows or the Kolmogorov
flow E] However, the existence of drag-reduction-type
phenomena in turbulent flows that are homogeneous and
isotropic E m |ﬁ| |E E m E E ﬂ, E,%E remains
controvers1a1 Some experimental ﬂﬁ [1d, E,E]] numer-
ical ﬂﬁ' [id, 9 m and theoretical E m studies have
suggested that drag reduction should occur even in ho-
mogeneous, isotropic turbulence; but other studies have
refuted this claim [19].

To settle this controversy we have initiated an exten-
sive direct numerical simulation (DNS) of decaying, ho-
mogeneous, isotropic turbulence in the presence of poly-
mer additives. We monitor the decay of turbulence from
initial states in which the kinetic energy of the fluid is
concentrated at small wave vectors; this energy then cas-
cades down to large wave vectors where it is dissipated
by viscous effects; the energy-dissipation rate e attains
a maximum at t,,, roughly the time at which the cas-
cade is completed. A recent shell-model study ﬂﬂ] has
suggested that this peak in e can be used to quantify
drag reduction by polymer additives. Since shell mod-
els are far too simple to capture the complexities of real
flows, we have studied decaying turbulence in the Navier-
Stokes (NS) equation coupled to the Finitely Extensible
Nonlinear Elastic Peterlin (FENE-P) model [2(] for poly-
mers. Our study, designed specifically to uncover drag-
reduction-type phenomena, shows that the position of
the maximum in e depends only mildly on the polymer
concentration c¢; however, the value of ¢ at this maxi-
mum falls as ¢ increases. We use this decrease of € to de-
fine the percentage drag (or dissipation) reduction DR in
decaying homogeneous, isotropic turbulence; we also ex-
plore other accompanying physical effects and show that
they are in qualitative accord with drag-reduction exper-

iments ﬂﬂ, ﬂ] In particular, DR increases with ¢ (upto
25% in one of our simulations). For small values of ¢
the energy spectrum of the fluid is modified appreciably
only in the dissipation range; however, this suffices to
yield significant drag reduction. We show that vorticity
filaments and intermittency are reduced at small spatial
scales and that the extension of the polymers decreases
as c¢ increases.

The NS and FENE-P (henceforth NSP) equations are

D = vViu+ %V.[f(rp)C] — Vp; (1)
DC = C.(Vu)+ (Vu)T.c— L0PC=T )

TP

Here u(x,t) is the fluid velocity at point x and time ¢,
incompressibility is enforced by V.u =0, D; = 0; +u.V,
v is the kinematic viscosity of the fluid, p the viscos-
ity parameter for the solute (FENE-P), 7p the polymer
relaxation time, p the solvent density (set to 1), p the
pressure, (Vu)? the transpose of (Vu), Cog = (RoRp)
the elements of the polymer-conformation tensor C (an-
gular brackets indicate an average over polymer con-
figurations), Z the identity tensor with elements 0.3,
f(rp) = (L* — 3)/(L* — r%) the FENE-P potential that
ensures finite extensibility, rp = /Tr(C) and L the
length and the maximum possible extension, respectively,
of the polymers, and ¢ = /(v + ) a dimensionless mea-
sure of the polymer concentration [22]. ¢ = 0.1 corre-
sponds, roughly, to 100ppm for polyethylene oxide ﬂ]
We consider homogeneous, isotropic, turbulence, so we
use periodic boundary conditions and solve Eq. () by
using a massively parallel pseudospectral code [23] with
N3 collocation points in a cubic domain (side L = 2).
We eliminate aliasing errors [23] by the 2/3 rule, to
obtain reliable data at small length scales, and use a
second-order, slaved Adams-Bashforth scheme for time
marching. For Eq. @) we use an explicit sixth-order
central-finite-difference scheme in space and a second-
order Adams-Bashforth method for temporal evolution.
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The numerical error in rp must be controlled by choosing
a small time step &t, otherwise rp can become larger than
L, which leads to a numerical instability; this time step
is much smaller than what is necessary for a pseudospec-
tral DNS of the NS equation alone. Table [ lists the
parameters we use. We preserve the symmetric-positive-
definite (SPD) nature of C at all times by using[2J] the
following Cholesky-decomposition scheme: If we define
J = f(rp)C, Eq. @) becomes

D = J.(Vu)+ (Vo). T —s(T —T) +q7, (3)

where s = (L? —3+52)/(rpL?), ¢ = [d/(L? —3) — (L* —
3+ 7)(5° = 3)/(rpL2(LF — )], 2 = Tr(7), and d =
Tr[T.(Vu) + (Vu)T.J]. Since C and hence J are SPD
matrices, we can write J = LLT, where £ is a lower-

triangular matrix with elements ¢;;, such that ¢;; = 0 for
j > 1. Thus Eq.@) now yields (1 <i < 3 and I';; = d;u;)
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The SPD nature of C is preserved by Eq.@) if ¢;; > 0,
which we enforce explicitly ﬂﬁ ] by considering the evolu-
tion of In(¢;;) instead of £;;.

We use the following initial conditions (superscript
0): CO.(x) = dpn for all x; and uf (k) =
Prn (k)00 (k) exp(if,(k)), with m,n = 2,9,2, Pnn =
(Omn — kmkn/k?) the transverse projection operator, k
the wave-vector with components k,, = (—N/2,—N/2 +

., N/2), k = |k|, 0, (k) random numbers distributed
uniformly between 0 and 27, and v2(k) chosen such
that the initial kinetic-energy spectra are either of type
I, with E'(k) = k%?exp(—2k*), or of type II, with
B (k) = k* exp(—2k?).

In addition to u(x,t), its Fourier transform uk(t), and
C(x,t) we monitor the vorticity w = V x u, the kinetic-
energy spectrum E(k, 1) = >3 1o prcpin/2 [ui, (t)], the

total kinetic energy &(t) = >, E(k,t), the energy-
dissipation-rate e(t) = v, k*E(k,t), the cumulative
probability distribution of scaled polymer extensions
PC(r%/L?), and the hyperflatness Fs(r) = Ss(r)/S3(r),
where S, (r) = ({[u(x +r) —u(x)| - r/r}?) is the order-p
longitudinal velocity structure function and the angular
brackets denote an average over our simulation domain
at t,,,. For notational convenience, we do not display the
dependence on ¢ explicitly.

Figure ([[h) shows that e first increases with time,
reaches a peak, and then decreases; for ¢ = 0 this peak
occurs at t = t,,. The position of this peak changes
mildly with ¢ but its height goes down significantly as
¢ increases. This suggests the following natural defini-
tion ﬂﬁ] of the percentage drag or dissipation reduction
for decaying homogeneous, isotropic turbulence:

fm _ pym
DR = (676) x 100;
Efvm
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here (and henceforth) the superscripts f and p stand, re-
spectively, for the fluid without and with polymers and
the superscript m indicates the time ¢,,. Figure ([Ib)
shows plots of DR versus ¢, for the Weissenberg num-
ber We = 7py/ef™/v ~ 0.35, and versus We, for
¢=1/11 =~ 0.1. DR increases with ¢ in qualitative accord
with experiments on channel flows (where DR is defined
via a normalized pressure difference); but it drops gently
as We increases, in contrast to the behavior seen in chan-
nel flows (in which 7p is varied by changing the polymer).

In decaying turbulence, the total kinetic energy £(t)
of the fluid falls as t increases; the rate at which it falls
increases with ¢ [Fig. ()], which suggests that the ad-
dition of polymers increases the effective viscosity of the
solution. This is not at odds with the decrease of € with
increasing c since the effective viscosity because of poly-
mers turns out to be scale-dependent. We confirm this
by obtaining the kinetic-energy spectrum E?>™ (k) for the
fluid in the presence of polymers at ¢ = ¢,,. For small
concentrations (¢ ~ 0.1) the spectra with and without
polymers differ substantially only in the deep dissipa-
tion range, where B/ (k) < EP™(k). As c increases,
to say ¢ ~ 0.4, EP"(k) is reduced relative to Ef™ (k)
at intermediate values of k [Fig. ([Bh)]; however, deep in
the dissipation range E/™(k) < EP™ (k). We now de-
fine [19] the effective scale-dependent viscosity ve(k) =
v+ Av(k), with Av(k) = =3 2 jpcp<pprye e - (V-
T) x| [rpk> EP™(K")], where (V - J)i is the Fourier
transform of V - 7. The inset of Fig. k) shows that
Av(k) > 0 for k& < 15, but Av(k) < 0 around k =
20. This explains why EP™(k) is suppressed relative to
Ef™ (k) at small k, rises above it in the deep-dissipation
range, and crosses over from its small-k to large-k be-
haviors around the value of k& where Av(k) goes through
Zero.

Given the resolution of our DNS, inertial-range inter-
mittency can be studied only by using extended self sim-



ilarity m] as we will report elsewhere. However, we
explore dissipation-range statistics further by calculat-
ing the hyperflatness Fg(r) [Fig. @b)]. The addition of
polymers slows down the growth of Fg(r), as r — 0,
which signals the reduction of small-scale intermittency.
This is further supported by the iso-|w| surfaces shown
in Fig. @). If no polymers are present, these iso-|w| sur-
faces are filamentary [25] for large |w|; polymers suppress
a significant fraction of these filaments.

We use a rank-order method m] to obtain PY(r% /L?)
and find that, as ¢ increases [Fig. k)], the extension of
the polymers decreases. We have checked that, in the
passive-polymer version of Egs. () and ), the extension
of polymers is much more than in Fig. k).

Our study contrasts clearly drag reduction in homoge-
neous, isotropic, turbulence and in wall-bounded flows.
In both these cases the polymers increase the overall vis-
cosity of the solution (see, e.g., Fig. [{k) and Ref.[1d]).
In wall-bounded flows the presence of polymers inhibits
the flow of the stream-wise component of the momentum
into the wall, which, in turn, increases the net through-
put of the fluid and thus results in drag reduction, a
mechanism that can have no analog in homogeneous,
isotropic turbulence. However, the decrease of e(t) with
increasing ¢ [Fig. ()] vields a natural definition of DR
[Eq.(@)] for this case ﬁ,] Thus, if the term drag reduc-
tion must be reserved for wall-bounded flows, then we
suggest the expression dissipation reduction for homo-
geneous, isotropic, turbulence. We have shown that v,
must be scale-dependent; its counterpart in wall-bounded
flows is the position-dependent viscosity of Refs. ﬂl H]
Furthermore, as in wall-bounded flows, an increase in ¢
leads to an increase in DR [Fig. ([@b)]. In channel flows
an increase in We leads to an increase in DR, but we find
that DR falls marginally as We increases [Fig. (Ib)].

Our DNS of the Navier-Stokes equation with poly-
mer additives [Eqgs. () and )] resolves the controversy
about drag reduction in decaying homogeneous, isotropic
turbulence and shows clearly that Eq. (H) offers a natu-
ral definition of DR for this case in a far more realistic
model than those of Refs. ﬂﬂ, |E] We also find a non-
trivial modification of the fluid kinetic-energy spectrum
especially in the deep-dissipation range [Fig. [@b)] that
can be explained in terms of a polymer-induced, scale-
dependent viscosity. Experiments [16, [17] do not resolve
the dissipation range as clearly as we do, so the experi-
mental verification of the deep-dissipation-range behav-
ior of Fig. (% remains a challenge. Earlier theoretical
studies ﬂ%, | have also not concentrated on this dis-
sipation range. The reduction in the small-scale inter-
mittency [Fig. [@b)] and in the constant-|w| isosurfaces
[Fig. is in qualitative agreement with channel-flow
studie(smé], where a decrease in the turbulent volume frac-
tion is seen on the addition of the polymers, and water-jet
studies M], where the addition of the polymers leads to
a decrease in small-scale structures. We hope our work

N ot L v P c
NSP-96 96 1.0 x 1072 100 1072 0.1 —3 0.1, 0.2, 0.3, 0.4
NSP-192 192 1.0 x 1072 100 1072 1 0.1, 0.4
NSP-256A 256 1.0 x 1072 100 1072 1 0.1, 0.4
NSP-256 256 4.0 x 1072 100 1072 1 0.1, 0.4

TABLE I:. The parameters N, 6t, L, v, 7p and c for our
four runs NSP — 96, NSP — 192, NSP — 256A, and NSP — 256.
NSP — 96, NSP — 192, NSP — 256A use type [ initial conditions;
NSP — 256 uses an initial condition of type II. We also carry
out DNS studies of the NS equation with the same numerical
resolutions as our NSP runs. Re = m&'f’m/\/ 3vefm
and We = 7py/e/™/v; NSP-96: Re = 47.1 and We =
0.03,0.17,0.24,0.28,0.31, 0.41, 0.48, 0.55, 0.62, 0.68, 1.03;
NSP-192 and NSP-256A: Re = 47.1 and We = 0.35; NSP-256:
Re =126.6 and We = 0.76.

will stimulate more experimental studies of drag or dis-
sipation reduction in homogeneous, isotropic turbulence.
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FIG. 1: (Color online) (a) Temporal evolution of the energy dissipation rate ¢ (run NSP-256) for concentrations ¢ = 0.1(——) and
¢ = 0.4(solid line), with 7 = /2€(t = 0)/3L2; (b) percentage drag-reduction DR versus ¢ (run NSP-192); the inset shows the
mild variation in DR with We (runs NSP-96); (c) temporal evolution of the total fluid energy £ for concentrations ¢ = 0.1(——)
and ¢ = 0.4(solid line) (runs NSP-256). In (a) and (c) the plots for ¢ = 0 (0o—) are shown for comparison.
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FIG. 2: (Color online) (a) Plots of the energy spectra EP™(k) or EY™(k) versus k (run NSP-192) for ¢ = 0.1(——) and
¢ = 0.4(solid line) [EP™(k) is unchanged if we use N = 256, with all other parameters the same (run NSP-256A)]; inset:
polymer contribution to the scale-dependent viscosity Av(k) versus k for ¢ = 0.1(——); Av(k) = 0 (solid line) is also shown
for reference; (b) the hyper-flatness Fs(r) as a function of r (run NSP-256) and concentration ¢ = 0.4(solid line). In (a) and
(b) the corresponding plots with ¢ = 0 (o—) are shown for comparison. (c) The cumulative PDF P (r%/L?) versus r%/L? for

¢ =0.1(——) and ¢ = 0.4(solid line) (run NSP-256).
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FIG. 3: (Color online) Constant-|w| isosurfaces for |w| =
(lw]) + 20 at t, without (a) and with (b) polymers, (run
NSP-256) and ¢ = 0.4; (Jw|) is the mean and o the standard
deviation of |w|.
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