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Rotational analysis of the 0-9, 0~10 and 0-11 bands of the
A1~ X1, band system of (0 *0)*

G L BHALE and N A NARASIMHAM
Spectroscopy Division, Bhabha Atomic Research Centre, Bombay 400 085
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Abstract. High-resolution spectra of the 0-9, 0-10 and 0-11 bands of the 4211 X,
system of (*°O **0)* ion have been studied for their rotational structure. This study
enables a direct determination of the A-doubling parameters of the 4*Il, and X I,
states. The model of ‘pure precession’ explains, though not entirely, the A-doubling
of the X*II, state as arising out of its interaction with the B® X4~ state. The A-doubling
in the 4211, state was found insignificant.
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1. Introduction

Rotational analysis of the 0-9, 0-10 and 0-11 bands of the A2JI,~X? II, system of
(10 O)* is presented here. There is no earlier available report on the high reso-
lution studies of (10 80)" spectra. The corresponding band system of 160,*, called
the second negative system, is known for a long time and has been extensively studied
by Stevens (1931) and Bozoky (1937). Using their data Albritton ef a/ (1973) carried
out a least squares analysis to determine various molecular constants of O,*. They
stated that the data of Stevens and Bozoky used by them in their computational work
were not very accurate. It was partly for this reason that we carried out a reinvesti-
gation of the second negative band system of O,* (Bhale and Narasimham 1976)
after photographing several of its bands under higher resolution. Subsequently,
Colbourn and Douglas (1977) also reported the rotational analysis of a few more
bands of ¥O,*, particularly those involving the lower vibrational quanta of the
X°1l, state. These studies, however, do not give a direct information of the
A-doublings involved in the two 2]f states of the transition because of the following
reasons. O," is a homonuclear molecule with a nuclear spin of zero for 0. This
means that only the symmetric component of the A-doublet appears for each J value
of the two states. Thus, for any rotational line only one of the two A-components
is observed and this prevents a direct determination of A-doublings. Although
Stevens (1931) did calculate the A-doubling constants in his work on the second
negative bands of O,*, his procedure was rather involved. He estimated these cons-
tants from the amount of staggerings in the A,F(J) and A;Fy(J) values. These
differences, however, cannot be obtained directly in a 2[[—2]] transition because of
the absence of Q branches. It was, therefore, thought worthwhile to study the
aspect of A-doubling in a direct manner from the (10 180)* spectra where both the
A-components occur with equal intensity.
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2. Experimental

While recording the emission spectrum of (10 20)*, one also gets the spectra due
to 160,* and 180,%. A given band of (%0 0)* is sandwitched between the corres-
ponding 160,* and 180," bands. In order to carry out a satisfactory rotational
analysis of a (10 180)* band, it has to be seen that the band of interest is not very
much masked by either 10,* or ¥80," band. To achieve this objective, it is neces-
sary to choose bands having large isotope shifts. Because of the appreciable differ-
ence in the w, value of the 4%I], and X*[I, states, the bands of »" = 0 progression
involving high »” quantum numbers are observed to have considerable isotope
shifts. Accordingly, the 0-9, 0-10 and 0-11 bands, lying at 40136 A, 42787 A and
45740 A respectively, were chosen for the present studies. Isotope shift studies
of these bands were reported earlier (Bhale and Rao 1968). The bands were photo-
graphed in the third order of a 3'4 m Ebert grating spectrograph at a dispersion of
05 Ajmm. The spectra were excited by microwaves of 2450 MHz at oxygen pres-
sure of 0'1 torr. Spec-pure oxygen used for the experiment was enriched with 657,
180 jsotope. Exposures ranging from 1 to 3 hr were required on the 103 a-0 photo-
graphic emulsion. Atomic lines of thorium were used as the reference spectrum.
Thorium spectrum was excited in an electrodeless discharge tube containing thorium
iodide by microwaves of 2450 MHz. The plates were measured on a Zeiss Abbe
comparator. Figure 1 shows a portion of the 4%I[,—X*[l, transition of the 0-11
band. o

3. Analysis and discussion
3.1. Determination of B,, D, and 4,

The rotational constants B, and D, were determined graphically from the second
combination difference using the relation

Lo F(J)=(@4B,—6D)(J+4) —8D,(J+ %)

~and the spin-orbit coupling constant was calculated from the graph of KF.()—
Fy(J)}/B,J* vs (J-+1%)* in which the intercept on the ordinate gives Y(Y—4) where
Y=A|B. The lower state X*], is known to be regular, as is also evident from the
higher A-doubling seen in the higher frequency sub-band, and accordingly the posi-
tive value for A” was chosen. For the A*], state, which was established to be in-
verted (Bhale 1972), the negative value for the constant 4’ was taken.

3.2. Isotopic calculations

The theoretical relations between rotational constants for isotopically substituted
molecules are related to the.ratio of their reduced masses (Herzberg 1950). Let the
reduced masses of 160, and (1%0-180) be designed by p and u! respectively. Then
from the ratio p/u'=p% p can be found out, which in the present case is 0-971765.
With the superscript 7 denoting the constants of (10 180)*, the isotopic relations are
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B} =p* B, |

)
a’ei =P3 e
D, =p* D,. 2

The constant B, for O, was taken from Bhale and Rao (1968) while a, and D,
were taken from Herzberg (1950) and inserting these in the above relations the cons-
tants B,!, a,! and D, were calculated. Now finally making use of the relation

B!=B}— a} (@ + %) 3

the different values of B,' were computed. These are compared in table 1 with the
values of B,} obtained by the present analysis where it can be seen that the agreement
between the two sets is quite good. It is further noticed that the centrifugal distor-
tion constant D does not vary appreciably for »” =9, 10 and 11. Its value has been
compared with D, obtained from relation (2).

3.3 A-doubling in the A® 1, and X* 11, states

Thet heoretical expressions for the separation of the A-doublets for a regular 2[]
state approaching Hund’s case (a) are given by Mulliken and Christy (1931) as

Myp: Avae ()= —pT+3 - 4)
and

2 1 1 3

a2 ) = (= 4 ) (1=3) (+3) (7+3) 2
where p and g are A-doubling constants. The separations of the A-components
for various branches of the 0-9, 0-10, and 0-11 bands are shown in tables 2 and 3.
Now confining only to the I/, sub-band it can be seen from table 2 that, within the
experimental error, the separation between the two A-components of the SRo1s
Op,., R, and P, branch lines involving a common J” is almost the same. This
means that the upper state A-doubling is negligible and the observed A-splitting

Table 1. Molecular constants (in cm—?) of the A4*T, and X*II, State of (*°0 *8QO)+
obtained from the analy51s of 0-9, 0-10 and 0-11 bands.

D,
Bv X 10—0 AU
Obsd ~ Calc Obsd Calc

A% 11, state:

0-9940 0-99383 56 5-79 —3-5
Xt 1, state:

1:4257 1-42489 5-8 193-9

10 1-4067 1-40669 55 6-1 193-6

11 1-3880 1-38849 54 191-9
) p=0-031 q=0-0024
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Table 2. A-doublet separation (in cm~') in the rotational lines of A:II
QP 21

components of the second negative bands of (*¢0 180)+ ion.
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is essentially due to the X2 Tj, state. By directly measuring the A-splitting for the
various J” values in the II;;, and I3 sub-bands the A-doubling constants were
determined using eqs (4) and (5).

The values of p and g as obtained from the present analysis are 0°031 cm™ and
0:0024 cm™ respectively. Earlier values for these constants as reported by Stevens
(1931) in the case of 80,* ion are 0°036 cm™ and 00027 cm™. He analysed the
0-8, 1-8, 0-7 and 1-7 bands of the second negative system and made use of the

staggerings in the A1 F1 (/) and A1 F'Z' (J) values to get these constants for the
X211, state. As he did not notice any staggering in the A1 Fy (/) and Ay F2 @))

values, he rightly concluded that the initial 42 I, state had A-splitting too small to
be experimentally measured.

3.4. Origin bf A-doubling in the X211, state

As stated earlier in eq. (4), for a regular state, close to Hund’s coupling case (a),
A-doubling is given by

M@ =—pT+D

The negative sign of Av,, in X?IL /s, Sub-state shows that one or more 22~ states
is the main contributor to the A-doubling in the ground state of O,". The only
23 - state known for Oy* is the B2 X~ state at 20'3 eV with respect to the X'°%,~
state of O, its corresponding state in the isoelectronic molecule NO being the G* 2.
Taking the analogy of NO (Lofthus and Miescher 1964), it can be assumed that
B X, is the main contributor to the A-doubling of the X*m, state. Using the
approximation of ‘ pure precession ’, the theory gives

:ZABI(I-I—I) andq=2321(l+1) ©)
v (I, 2) v (L, Z)
where 1 is the effective electron angular momentum, v (II, X) is the effective separa-
tion of the 1] state from the interacting 2¥~. Taking /=1, B = 1'4896 (average
of B, for the X211, and B? Z,” states), since B, for the B? 2~ state is not known it
is assumed that its value will be close to the B, value of the b* 5~ state — because
the two electronic states have almost identical w, values, 4 = 195 cm™ and
v (I, Z) = 66340 cm™1 (Rosen 1970), we get p = 0016 cm™1, the observed value
for the same being 0031 cm™. Similarly, the value of ¢ obtained from eq. (6) is
0-00012 cm™! whereas its experimental value is 0:0024 cm™. It must be noted here
that in the case of the ground state of NO the model of ‘pure precession ’ gives

Table 4. A-doublet constants for the X21I state of NO (Lofthus and Miescher 1964)

Observed values based on Calculated values bgsed on
microwave data ¢ pure precession’
cm™* cm-1
y4 q D q

0-0117 0-000077 0-0115 0-00014
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remarkably good agreement between the experimental and theoretical (based on
‘ pure precession ’) values of the A-doubling constants (see table 4). But the same
is not the case for the X2 IJ, state of (180 180)*. As for p, the disagreement is not
very serious. The ‘ pure precession’ does lead to the proper sign and the correct
order of magnitude. But in the case of the constant g even the order of magnitude
agreement is not there. One must conclude that the B2 X~ state is not the sole

contributor to p and ¢g. In the absence of evidence for any other nearby 25 state
no further comments could be made.
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