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Colour dielectric model of the proton
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Abstract. A model of the proton with its constituent quarks bound in a colour polarizable
medium with dielectric constant varying as (a/r —b?) from a fixed centre, is presented. The
Dirac equation modified by the colour polarization is solved and the analytic expression for
the wavefunction of the quarks obtained shows that quarks with higher energy lie closer to the
fixed centre. The energy spectrum is equispaced without any continuum. A semiclassical
approximation scheme yields closed orbits for quarks which have smaller size for higher
energies and no orbits with size bigger than a certain maximum, thereby rendering the quarks
permanently confined. The wavefunctions of the three quarks constituting the proton are used
to calculate physical parameters of the proton such as its mass, charge radius and weak
coupling constant which with suitable choice of the constants a and b appearing in the
dielectric constant agree fairly well with experimental results,
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1. Introduction

The quark model of hadrons is now highly successful in explaining their symmetries.
Quantum chromodynamics (qcp), the gauge field theory based on exact SU(3) colour
symmetry of quarks has emerged as a reasonably respectable theory for strong
interaction of hadrons. Although there have been several models such as the bag model
(Chodos et al 1974; Hasenfratz and Kuti 1978) and various potential models to describe
some properties of hadrons in the above framework at phenomenological levels, the
mechanism of quark confinement is not yet fully understood.

Recently the concept of introducing colour dielectric constant in Dirac equation has
been suggested by Lee (1980) to explain confinement of quarks. In the present paper, we
implement this idea in a different way analogous to our work (Jena and Pradhan 1981)
of confinement of photon where Maxwell equation in a suitably chosen dielectric
medium has been used. Confinement of gluons can be described in a similar manner by
solving the Maxwell-like equations for chromoelectric and chromomagnetic fields.
Here, the nonlinear terms are considered to simulate the effect of a medium (in colour
space) which is taken to be nonmagnetic but dielectric. In the present paper we extend
this idea to coloured quarks which are capable of producing colour polarization. They
are assumed to be massless and their interaction is taken care of by considering them to
move in a colour-polarized medium characterized by a colour dielectric constant. These
massless coloured quarks are described by Dirac equation modified by the colour
dielectric constant. Since the massless Dirac equation has the same form as the Maxwell
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equation, we incorporate the colour dielectric constant into massless Dirac equation in
the same way as the conventional dielectric constant enters the Maxwell equations. The
colour dielectric constant is chosen to be spherically symmetric and of the form

Ec(r) = 8«':(r) = (a/r) _bZ’ (1)

where a and b are constants. This choice is purely phenomenological and is motivated
partly by the form of dielectric constant in our discussion of confinement of photon
(Jena and Pradhan 1981). An a posteriori justification comes from those features of the
solution i.e. (i) equispaced energy spectrum without continuum (i) wavefunctions with
higher energy states lying closer to the centre than the lower energy ones (iii) closed
elliptic orbits with their size decreasing with increase of energy, which are characteristic
of confinement.

Since the colour dielectric medium takes care of all the interaction among the quarks,
they are assumed to move as independent particles inside a hadron. We consider the
lightest baryon: the proton, and calculate some static properties such as its mass, charge
radius and weak coupling constant in terms of the two parameters a and b whose values
are obtained by fitting with experimental results. In §2, we set up and solve the Dirac
equation for massless quarks in a colour dielectric medium characterized by the
dielectric constant ¢, of (1). The energy spectrum of the confined quarks is obtained in
§3 and in §4, we obtain the quark orbits by solving the semiclassical eikonal equation.
In §5, the proton wavefunction is written from those of its constituent quarks and its

various static properties are calculated in terms of the two parameters appearing in the
colour dielectric constant.

2. Equation of motion

‘Since quarks in this model are massless, coloured, spin-3 objects moving in a colour-

dielectric medium, they are described by massless Dirac equation into which the
colour dielectric constant is incorporated. This is done in the same manner as the
conventional dielectric constant enters the Maxwell equation,

VxE= —(0B/dr), (2)
V x B = £(9E/dt), (3)

in a non-magnetic, dielectric medium with dielectric constant . With the choice of time
dependence of E and B as

(E,B) ~ exp (—iwt),
(2) and (3) take the form, (Akhiezer and Berestetskii 1965)
(S.p)Jk Ek = inj’ (S.p)}kBk = --ia)b‘Ek, ' (4)

where  is the frequency, p, = —id, and (S); = — ig;.. This has the same form as the

massless Dirac equations
0P =0y, opy=wy, )

Where.qo = .E, X =.iB and o = S except that the analogue of dielectric constant in the
latter is unity. This equation can be modified and cast into the form of (4) as

O'pp = wy, ©'py= we.Q, i (6)
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and be taken to represent massless quarks moving in a colour dielectric medium with
colour dielectric constant &, (r) which is assumed to be diagonal in colour space and
same for all colours. It is worth mentioning that (6) can also be obtained from massless
Dirac equation

[yupu +yu V;l(w’ r)+S(cu,r)]|// = Os
with energy-dependent scalar (S) and vector V, = (0,0,0, ¥,) potentials with

=, =28 _pa_
PO

However, the correspondirig Hamiltonian is not hermitian. To take care of this a space-
dependent metric has to be introduced in calculation of expectation values and fixation
of normalisation constant. This will be dealt with at the end of §2.

With the choice &,(r) = (a/r —b?), the solution of (6) can be put in the standard form:

( 90) _ ( J) Q4 0, ¢) ) )
X lg(r) le’m (05 ¢) ’

with | = j+4-and I' = 2j —I. The Qj,, are the spinor spherical harmonics which are
related to the spherical harmonics Y, (6, 9) by,

f F ) ) S
Q(=149),Lm=1/2l+ 1)‘-'(“ ‘/l_iﬁ_z hm 2). (8)
5\/Z$m+% Yl,m-b-é
Using the relation Q;,,, = (i} ~"6-#Q;,,, in (6) we get the radial equations
1+
f+—=f-wg=0, , (%a)
1—k
g/+—T—g+w8c(r)f= 0: (9b)
where
= (j+3) =1, forj=1-4
U+ = =0+, forj=1+4,
iseithera (+)ve or (—)ve integer and can never take the value zero. From (1)and (9) we
get
2 2 1
S+ {1‘:— — b2 - "("rj )} f=0, (10)
which on changing to the dimensionless variable p = 2bwr and taking
f~ p"exp (= p/2)¢(p), (11)
yields
aw
pf”+(2x+2——p)€’+<§g~—x-—l>f=O‘ (12)
This is a confluent hypergeometric equation whose general solution is
Ep) = AF(x+1-22 2 12:p
2b
+B(p)“1""F<~lc—%C£, - 2K; p), (13
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where A and B are constants and F(...,...;...) is confluent hypergeometric
function. There are two sets of solutions for (4 )ve and (—)ve values of «

(i) Fork >0,j=1—12and k = (j+1/2) == 1,2,. .. etc. Here | = 0 is excluded
as k # 0. In this case (p)™!~2* = (p)~* 2! blows up at the origin for all values of I.
Further, since —2x < 0, the function

aw
F(-—rc——ig, —2K; p)

cannot be defined. So, we take B = 0 in which case

¢i(p) = AF(1+ 1 ——%)—, 21+ 2; p). (14a)

(i) For k<0, j=1+412 and x=—(4+1)=—1,-2,...etc. with [=
0,1,2,.... etc. Here (2k+2)= —2I <0 and hence the function F(x+ 1 — (acw/2b),
2k +2; p) cannot be defined. So, we set A = 0 in this case and the solution reduces to

aw

2b

Thus from (11) and (14), the two sets of solutions for (+ )ve and (—)ve values of x are,

&lp) = B(p)z'“F(H—l ——,2042; p). (14b)

AQ2bwr) exp (—bawr) F(H— 1 —%CI;)—, 21+2; 2ba>r>

for j=1I—4%, with | =1,2,3,. .. etc,
. aw
B(2bwr) exp (—bwr)F|1+1 % 21+ 2; 2bor
forj=1+1, with/=0,1,2,... etc. (15)

\

To ensure good asymptotic behaviour of f; (r) the confluent hypergeometric series must
terminate and reduce to a polynomial. This imposes a condition,

I+1—(aw/2b) = —n,,
with n, =0, 1, 2,. . . etc. which restricts the o value to
o = 2b 16
n a n, ( )

1,2,3,.. . etc, for j =[+14,

2,3,4,.. . etc, forj=1-1, (17)

where n=l+1+n,={

Putting the allowed values of  from (16) in (15) we get,

A(@db?nr/a) exp (—2b*nr/a) F(1+1 —n, 21 +2; 4b*nr/a),
forj=1+3,with!=0,1,2,.. . etc,andn=1,23,...etc.

B(4b*nr/a) exp (—2b%nr/a)F (I+1—n, 21 +2; 4b%nr/a)
forj=1-3,withl=1,2,3,.. etc,andn=2,3,...etc.
(18)

Ju(r) =

SRR
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In a similar manner we obtain the solution gu(r) of (92) in the form
(A (4b*nr/aY exp (—2b%nr/a)
[{bU+1—n)/U+ D)} F(I+2—n, 20+3; 4b*nr/a)
—bF(l+1—n, 21+2; 4b*nr/a)], 4
J forj=1+4,withi=0,1,2,... etc,and n=1,2 3, .. etc,
B(4b?nr/a) exp (— 2b%nr/a) '
[{bU+1—n)/(+ D} F(I+2—n, 21+3; 4b*nr/a)

+ {a(2l+2)/2bnr —b}F(I4+1—n,2/+2; 4b*nr/a)],

forj=1-4,withi=1,23,...etc, andn=23,... etc
(19)

gnl(r) =

The quark in the |njl ) state is thus described by,

¢n'1 fz(")Q'z (9, ¢)
it = 7= nl . - . 0
¥ (x,,ﬂ) N ‘(zgn,<r>9j,,m(9, ¢)) 20)

To determine the normalisation constant N »l> We write the equation of continuity using
(6) from which the probability density turns out to be

p=0oleo+yty (21)
Using the property,

J\dQ Qﬁm o, ¢)Qj'l’m‘ (A ®)= 5jj’511’5mm’7

of the spinor spherical harmonics, the normalization condition [pd3x = 1, reduces to

N f "4 [ o)+ ) = 1,
0

which on simplification gives
Ny = [(4b%nfay/4b*n(n—1— 1)1 { 21 + 1)1}2]*72, (22)
The probability density given by (21) can be put in the form

p = Y&y, where & = (ecc()r) ?)

Here & can be considered as a space-dependent metric for the massless coloured quarks
in the colour-dielectric medium.

~ 3. Energy spectrum of the quarks

From (16), the allowed values of w for the quarks in the state njl ) are seen to depend
only on n and are independent of jand I So,
2b

Enjl = .E,l = wn = —H. (23)
) ‘a
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The energy levels of the quarks are thus equispaced like the spectrum of a simple
harmonic oscillator. It will be noticed that the spectrum has no continuum. Therefore, it
would not be possible to liberate a quark by supplying energy from outside.

Further, the radial parts of the quark wavefunction given by (18) and (19) look very
much like that of hydrogen-like atoms with one important difference. From (23) it is
seen that in the radial wavefunction the quantum number n appears in the numerator of
the exponent rather than in the denominator as is in the hydrogen atom. As a
consequence, the higher energy states lie closer to the centre than those with lower
energy which is quite the opposite of hydrogenic states. In other words, increasing
energy of a quark brings it closer to the centre rather than taking it away. So it is not
possible to make a quark free by increasing its energy. The hadron which in the present
model is a colour dielectric medium characterized by the colour dielectric constant
given by (1), thus privides a trap for confining coloured quarks.

We have obtained bound states of massless quarks in a colour dielectric with &, =
a/r —b?, about a fixed centre and those of photons (Jena and Pradhan 1981) in an
ordinary dielectric with the same variation of dielectric constant. It may be noted.that
a/r variation of the static dielectric constant in translationally invariant quantum

electrodynamics can make the photon massive (Schwinger 1962) because this would
follow (Killen 1972) from the vacuum polarization tensor

1
'E'z's
which in turn would lead to the photon propagator
k,k, 1
Dl = (gw‘ T) e

This seems to be the case in our theory since the bound photons in a sense can be
considered massive. ‘

Ty (k) = m? (kukv —kzg/zv)

4. Quark orbits

To get a simple picture of quark motion inside the hadron, we take recourse to a
semiclassical approximation of (6) which is valid in the limit @ — co. In this

approximation, quarks are found to move in elliptic and circular orbits. For this we first
eliminate y from (6) and obtain

Vi + w?e(r)e = 0.

(24)
Next, we set
¢ ~ poexp (iSw),
and finally obtain in the limit @ — 00,
(VSY =¢,(r) = a/r —b2. (25)

Here, S is the so-called eikonal and (VS) gives the direction of propagation of the
quarks. Since the colour dielectric constant is spherically symmetric, the path of the
quarks will be confined to a single plane. We, therefore, use plane polar co-ordinates in

A
£
£
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which (25) takes the form, -
dS,, 2 1 ng 2 a 2

(m) +F(¥> =y 26)
where we have used |

S() = S(r, 0) = S,(r)+ S(0). (27)
It is clear from (26) that

%—%‘3 = constant = o, (say), (28a)
and hence

ds a o2 \1

T={——p2—L 7.

dr (r r’*) : (280)

For convenience we introduce two quantities J, and Jy:
ds

Jo = §d0-d~9—” = 2ma, (29)

and ,
ds, a ., o

J, = é¢dr 5 -§dr(7—b —r~2>. (30)
Integrating (30) by standard methods and using (29) we get

J, = —Jy+ma/b,
so that

J,+Jy = ma/b. (31

This looks very much like a relation that one comes across in the solution of Hamilton-
Jacobi equation for motion of a massive charged particle in a Coulomb potential. It is
therefore natural to impose the “Bohr-Sommerfeld conditions”,

() wJ, = 27n,, (32)
with n, =0, 1, 2, ... etc. and
(b wly=2n(l+1), 33)

with[=0,1,2,3,...etc
Combining these two conditions, we get

o(J,+Jg) = 2n(n, + 1+ 1) = 27n, | (34)
where, n = (m+1+1)=1,2,3,...etc. which along with (31) gives
w, = 2bn/a. (35)

This is precisely the same as (16) obtained from solution of Dirac equation (6).
Now, using (27), (28) and (33) we get

-4
(z:ro 1) F_; {g__ b — (1412 /wzrz} , (36)

r r
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where 6, is constant of integration. This leads to the orbit equation

% - 5(%"-217[1 + {1 —ib%(z’a_}l)_z}cos ® ~60):l (37)
which represents a conic section with one of the focii at the origin and eccentricity

e={1—4b*(I+1?/a*w?}}, (38)
Substituting the allowed values of o from (35), we get the orbit equation as

E = {2b2n2/a(1+ 1)2} [1 + {1 _¢ ;1)2 }% cos (6 — 90)], - (39)
and '

e={l—(I+12/m?}2, (40)

This shows that in general the path of the massless quarks form elliptic orbits with the

m%"/> s

semimajor and semiminor axes given by
I semimajor = @/ 2p?, (41) §
and é
Tsemiminor = a(l+ 1)/2b%n. @) %
They are circular with radius (a/2b*) when n = | + 1,i.e. when n, = 0. Thus we see that g

no orbit can have size greater than (a/2b%). Further, (42) shows that for a given value
of /, the semiminor axis decreases with increase of n (i.e. with increase of energy). So,

higher energy orbits are smaller in size. It is thus impossible to liberate quarks by
supplying energy from outside,

S. Structure of proton

We can now write the wavefunction of the proton in terms of those of its constituent
quarks. Since the quarks are taken as independent particles in this model, the proton

wavefunction would be the properly symmetrized products of the quark
- wavefunctions.

The normalized proton wavefunction can be written as
P> = @b%/14622(18)=12 (i 1 2ddh 4+ 212
— bk — i~ 0% — ik — 8t — vty
Here each of the wand 4 quarksis in the ground state and the 1, | arrows represent spin

up and spin down configuration respectively. The u and 4 appearing in the above
wavefunction can be obtained from (20):

= d = = N 3
B 1°(iglo(r)ﬂ%1§ |

(43)

and

v ¥ v fw(r)Q%O»A
U= d = 9= N 2 .
Vito 1°(z‘gm(r)ﬂ%l i
We can now calculate various static

properties of the proton in terms of the two
parameters q and b appearing in the

expression for colour-dielectric constant.
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5.1 Proton mass

Since the quarks are massless in this model, the mass of the proton isequal to the sum of
the energies of the quarks. From (23), the ground state energy of a single quark is

and hence the proton mass is given by

m,=3E, =6b/a (44)

5.2 Charge radius

The contribution of a quark to the charge radius of proton is given by

() =e, str(¢’r8c¢ +xtor, (45)

where e, is the charge of the quark g. By use of the wavefunction given by (43), the
proton charge radius comes out to be

(r? >3 = [3a2/4b2(1+ b*)]E (46)

5.3 g4/gyforn—pe”7,
For this process
3 . Y
949v=<p| ¥ (Z575)|p, (47)
A i=1

where i = 1,2, 3, is the quark index, 1} is the third component of isospin in the (u, d)
space acting on the ith quark and

. o3 0
4=
3 (O 03)’

is the third component of the Dirac spin matrix operating on the ith quark. Direct
calculation now yields

WlsolZalw o) = G = b3 + 82,
and
Wl s[> = (B =3)/3(1 + b2).
Finally using (43) we get
gu/gy=(5/3)- (3 —b*/3(1+b2). (48)

If we choose the parameters a and b as ¢ = 0-63 fm and b = 0-50, the various static
properties of the proton calculated above take on the values given below

Calculated Expt
Proton mass (m,) 939-3 MeV 939 MeV
949y ‘ 1-22 125

Proton charge radius 095 fm 0-89 fm
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Although we have considered only the proton here, these ideas can hopefully be
extended to other light hadrons with suitable choice and addition of extra parameters.
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