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Abstract. In this paper we present a review of our investigations on universal long mngt;
force between spins mediated by a massless axial vector gauge field which we name as’ am&?i
photon”. The invariance of the Lagrangian field theory of particles, possessing Spin degrees v
freedom, under local Lorentz transformations, necessitates the introduction o_f such an axial
vector gauge field which interacts with spin current of the particles. Classical as wcl} J»
quantum dynamics of electrons interacting with photon and axial photon are workcgi out. «I he
new interaction is found to be asymptotically free. It is shown that OED can be made finite if the
coupling strengths of electron to photon and axial photon can be made equal. Ex_pcrxmcx;!ai
consequences of the existence of axial photon are discussed and the strength of the interacitan
is estimated by comparing predictions of the theory with experiments.
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1. Introduction

There are at present four kinds of known fundamental interactions in nature namely:
strong, electromagnetic, weak and gravitational. It is the present-day conviction that all
these interactions stem from certain symmetries and are mediated by gauge fields that
become necessary to restore symmetry when the parameters of global transformation
are made space-time dependent. For instance the electromagnetic field is required to
restore phase invariance of the Lagrangian when the parameter of the phase
transformation is made space-time dependent. The coloured gluons (¥Fritzsch et al
1973), the W and Z bosons (Glashow 1980; Weinberg 1980; Salam 1980) that mediate
strong and weak interactions are gauge particles associated with space-time dependent

- SU(3),and SU (2) ®U(1) transformations respectively. The gravitational interaction ix

thought to be mediated by spin-2 massless gauge particle required in space-time
dependent translation group, (Cho 1976; Hayward 1979). It is natural to speculate
about gauge particle associated with the Lorentz group. Although the latter has been
considered by various authors (Utiyama 1956; Kibble 1961; Sciama 1962) who obtain
the gravitational interaction by gauging the Lorentz group it is somewhat artificial. In
all gauge theories the gauge particle usually couples to the conserved current of the
global group which is gauged. In Einstein’s theory the gravitational field couples to
energy-momentum tensor (Carmeli 1982) which is the conserved current for the space-
time translation group. It is therefore natural to associate gravitational interaction with
the local translation group. In the Lorentz group the conserved current is the angular
momentum tensor density and one would therefore expect that the gauge particle in the
local Lorentz group should couple to this density. In other words, alocal Lorentz group
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should lead to interaction betweeri spins mediated by an axial vector gauge boson. We
have shown that this is indeed the case (Naik and Pradhan 1981). Our approach to
gauging the Lorentz group is different from those of Kibble, Sciama and Utiyama. We
name the gauge particle as “axial photon”. When the gauge theory is worked out in
detail one finds that axial photon couples to the axial vector currents of the Dirac
particle as well as that of the photon and the space integrals of the space components of
these currents are the spin vectors of the respective particles. We thus have a fifth
interaction which operates universally between spins of particles. Further we have a
mechanism of dynamically measuring spin through axial photon probe.

That such an interaction should exist, can be inferred from physical considerations
without going to gauge theory. This had been done when axial photon was first
introduced (Pradhan and Lahiri 1974). Their motivation for introducing the axial

photon was to give stability to the classical electron and also to make quantum .

electrodynamics divergence free. It was argued that if an axial vector boson is coupled
to the axial vector current of the electron it would result in spin-spin interaction which
is attractive for parallel spins. The parts of classical spinning electron would therefore
attract each other and compensate the force of Coulomb repulsion. It turns out, as we
shall see in § 3 that thisisindeed the case but only when the spin-spin coupling strength
is equal to the strength of the Coulomb interaction. It also turns out that in quantum
theory the divergence associated with electron-self-energy due to exchange of virtual
photon cancels with that arising from exchange of virtual axial photon under exactly
the same condition (Pradhan and Lahiri 1974). However, the axial photon coupling to
electron and photons with such large strength would destroy the excellent agreement of
present quantum electrodynamics with experiment unless of course the axial photon
acquires a large mass through spontaneous breaking of the gauge symmetry. This
possibility was considered by Pradhan and Lahiri. The large mass suppresses physical
processes involving axial photon exchanges, but do not affect divergent diagrams.

As mentioned earlier, the force arising out of exchange of axial photon between
particles with spin is attractive when the spins are parallel and repulsive when they are
antiparallel. Strikingly enough, this is exactly the situation with the experiments carried
out with polarized laser beams by Tam and Happer (1977) who found that two right
circularly polarized laser beams passing through dense sodium vapour attract each
other while those with opposite circular polarization repel. They also found that the
force between the beams was of long range. The sodium vapour acts as a spin
polarizable medium which on account of asymptotic freedom of axial photon coupling
enhances the spin-spin force between laser beams. By analysing the experimental results
of Tam and Happer and considering the enhancement by spin-polarizability of the
medium, Naik and Pradhan found that good agreement between theory and the
experimental results, over the range of densities of sodium vapour used in these
experiments, can be achieved if the coupling strength is taken to be o, = g*/4n = 07

x 107°.

Anindependent estimate of the coupling strength can be made from the contribution
of the long range force between nuclear and electronic spin to hyperfine splitting in the
hydrogen and the deuterium atoms for which only a small discrepancy exists between
theory and experiment. This discrepancy can be accounted for by the long range spin-
spin interaction if the axial photon coupling strength is taken to be a, =g*/dn ~ 10713
which is several orders of magnitude smaller than that estimated from the force
between circularly polarized laser beams in sodium vapour. We take the latter value to
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be more reliable since precision of measurement of hyperfine splitting is much higher 4

than that of the laser beam experiment.
In view of these two experimental evidences for the existence of the fifth interaction
we think it worthwhile to review the classical and quantum aspects of this interaction.

In this paper we begin with a presentation of the gauging of the Lorentz group in §2.

The classical dynamics of the theory is worked out in § 3. Equations of motion for the
axial photon field and its spin source are worked out and their static solution for point
sources obtained. Stability of the classical electron and radiation of axial photon by
spin sources are discussed in the classical framework. Section 4 is devoted to the
quantum dynamics of the theory where questions such as the removal of divergences,
asymptotic freedom of the interactions, its contribution to hyperfine splitting and two-
body bound states resulting from long range spin-spin forces are discussed. In this
section we also discuss a Bohm-Aharonov type of experiment which can establish the
existence of the fifth interaction as well as measure its strength.

2. Local Lorentz group

Invariance of Lagrangian density under global Lorentz group of transformations:

X, -»x =X+

o 1)
Oyy = — 0y
leads to conservation of angular momentum It
aJ,,
—5?— = 0 J J‘dal M,u,v}.
()]

61M‘”1 =0

where M, ,, is the angular momentum density. As mentioned in § 1 one expects that in
the local Lorentz invariant theory the gauge-field would couple to the conserved
current M, , . This implies that the gauge field would be a third rank tensor B,, ,,;. That
this is actually the case can be seen as follows:

L =3 [¥7,0.0 — @)1 —mipy. ©)

The above Dirac Lagrangian density which is invariant under global transformation (1)
under which,

() > ¥ (x) = exp BZ“J Vo) = QY ()
1 (4)
Zv). = 3()’\,)’;_ D)

ceases to be so when the parameters o, are made space-time dependent. However, the
Lagrangian P ‘

gD = % [-l/—/’))prd/ - (an)'))ul//] - ml;‘//, (5)
where Dy =0y +igB,y, , (6)
and Bﬂ= BM,VA.ZVA’ )
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remains invariant when the massless gauge ﬁeids B, transform as:

B,(x)— B,(x) = Q(x)B (x)Q '(x) ———*(a Q(x)Q™ (). o

At this stage it is necessary to point out that in thc above, we have considered the
invariance of the Lagrangian density which for global transformation ensures the

invariance of the action § = |d*x.%(x). For local transformation this is not the case;

one needs extra conditions because,
S = fd’*x.,?(x) -8 = jd"x’.ﬁf”(x’) = j‘d“xlf'(x’), ®)

where J is the Jacobian for the transformation of the four-volume element. Since J = 1
+ 9,(dx,) one requires both
LX) = L(x) }

2,(6x,) =0 ®

The latter is automatically satisfied for global transformation. For our local Lorentz
group this is equivalent to,
8,08 = 0. (10)

prud

In the Kibble-Sciama (Kibble 1961; Sciama 1962) approach to local Lorentz group
this restriction is not put, they use vierbeines to define covariant derivatives and their
theory leads to Einstein-Cartan theory of gravitation.

The tensor gauge field B” .1 18 antisymmetric in the last two indices. We can
decompose it into symmetric and anti-symmetric parts in the first and last two indices
as:

B,u,vl = —%E,u\ul{ac + Sn,v).’ (1 1)

where a, is an axial vector field and,
Su.v). = % (B,u,v). + Bv.,ul +‘Bl,vp.)

is a symmetric tensor field which on account of (10) transform as,

a,(x) = a,(x') = a,(x) + 2/3 ccm(x)av (x) ——;mA

where Oz = Euapulu A ' (12j
and SE =85 =Q(x) §, Q7 (x).

We shall name the axial vector field as “axial photon” field. Substituting (6) and (11) into
(5) we obtain

Lp= L+ LY
where LY =gM, 1B,

N

ig —
Or LY = Zapm; I Zvﬂ’p)‘/’ ac

= 3/29%?5?;"1”% J

13)
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which is equivalent to taking

Dy =04 —3/2gys¥a,. (14)

It will be noticed that the tensor field S, ,, does not couple to the Dirac field; only the
axial vector field a, couples to the axial vector current iy sy, ¥ of the Dirac field. The
space integral of the space components of this current is the spin of the Dirac particle
and that of the time component its helicity. It thus follows that the axial vector field
couples to the spin and helicity of the Dirac particle just as the Maxwell field couples to
its electric charge and current. Thus axial photon provides a means of dynamical
measurement of spin in the same sense as photon measures the charge of the electron.

The kinetic energy term of the gauge field must now be included in the Lagranglan It
is given by

°g)G = “‘4Bvauv (15)
where B,,=0,B,—0,B,+ig[B,,B,]
Bp = Bu,vﬂ.Zvﬂ. : (16)

The axial photon part of .%;; is:
2

. 3
LE = ~3(0,0) (0,) - 1= (0,8, )

Since the photon has spin it will also couple to axial photon. To obtain the interaction
Lagrangian we start with

Ly =—%D,A4,—D,A,)D,A, —D,A,), (18)
where DA, =08,A,+igB,. ;Y an Ac, (19)
with Zvc.ln = = i(évzégq - 5\»;5:1)- ‘ (20

Substituting (11) and (20) in (19) and evaluating (18) gives the following interaction
Lagrangian between photon and axial photon

gg} = —g&,,x (0,4 )Azag —1g° [a2A2 - (a'A)z] (21)

It will be noticed that this Lagrangian is not invariant under the electromagnetic gauge
transformation

1
Ay A= A+ -0, (22)

This can be rectified by replacing A, occurring in the Lagrangian by (4, + 10,®@) where
®(x) is a massless scalar field Wthh transforms as

B0 /() = $() ~ -, 3

In order to ensure the invariance of the kinetic energy term —1 1(0,®) (9,®) of the scalar
field we add a counter term —1(3,®)A4, to the Lagrangian. In order to decouple the
scalar field from the rest, one goes to the limit 1 — 0. This has been discussed in detail
(Naik and Pradhan 1981) and is a slightly modified version of Stueckelberg’s (1938)
compe~sating field method.

P."" 6
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3. Classical dynamics of axial vector gauge field

3.1 Equations of motion for the field and its source

The Lagrangian density for the field interacting with its spin source as worked out in the
preceding section can be written as

P =L+ FD+ PP+ LV = O 4 ) (24a)
. where
PO = ~1(0 ) = 4F Fo + 300,00 — 00001 —mpy, (24b)
2= 3 (0,0 ~ 302 [a2 A% — (@ AP +5,00,05), (240
where _
5,(¢) = 329y — 9€uv2c(0,4,)A4,, (24d)

is the spin current density of the electron and the photon. If we add a four divergence
$0,(a,8,a,) to the #@ in (24b), the kinetic energy of the axial photon can be written as

plxia) 1 v Fuv (25a)
where Jfw=20,a,-0,a, (25b)

and the equations of motion that follow from the Lagrangian are,

av f;w = Su(x) ‘
Eyvagavfag =0 : (26)
if we neglect nonlinear terms of orderg? in (24c). In terms of &; = f,; and %; = %5 i

these equations read
10%

V x é"w—ma——_o V-#=0
V Q—lg‘; s(x) V-&= h(x) @7)

where h(x) = s,(x) is the helicity density and together with spin density s(x) obeys the
continuity equation:

5u(3) = 0. | (28)

The equatlon for the axial vector potential a, that follows from (24b) when terms of
order g’are neglected, are

Da, = 5,(4). (29)

This equation can also be regarded as Hamilton’s equations:

om _ . OH OH 3

2~ Y50, day (30)
SH

(31)

where T =

T (g
(5)

S



The fifth interaction 83

1s the field canonically conjugate to a; and

2 .
H=fd3x{—12-(an)2+%(—g%> -s'a}-f-Ho, (32)

H, being the energy of the bare source. It will be seen that the axial vector field couples
to the spin of the source.

The equation of motion for the spin of the source can be obtained by using the
Poisson Bracket equation: '

0S/ot = i [H, S]. (33)
Using the definition, ‘
5, = f d3 x 5,(x), | | (34)

and the ansatz
[si(x), 5;(x) o =s = 630 (x —X') 54 (),

yields

This equation shows that the axial photon field exerts a torque on the spin the direction
of which is perpendicular to the field potential a as well as to the spin of the source so
that §2 = constant. If a were space-time independent, the solution of (35) would give: =
gyration of the spin like that of a spinning top in a gravitational field. This situation is to
be contrasted with the interaction of the photon field on a charged particle which gets
accelerated by it.

3.2 Static field of a spin-source
Solution of (29) can be written as

5;(x’)

X —x|

a;(x) = Z%Jd%’ (36)

For the spin distribution we can take

si(x) = gp(x)S;, (37)
where p(x) is the spin distribution function. Substitution of (37) in (36) leads to

_Si [, 9p(X)
ai(x) = . .[d X Ix—_-;;l- (38)
For a point spin source p(x') = 3/25(x")
3gS;
a;(x) = W’ (39)
and
3g(rxs
&= ..vXazgg( X ) | | (40)

&= —0ajot = 0. » (41)
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The situation here is to be compared with static photon field of a steady electric current
which produces a steady magnetic field but no electric field. It will be seen from (40) that
for a right circularly polarized light beam travelling in a straight line for which the spin
is in the direction of motion, the & lines of force will be circles around the beam axis
just like magnetic lines of force (B) around a straight wire carrying current. On the
other hand for circularly polarized light beam travelling in a circular path, the & lines
of force would be on the surface of a torous around the path like those of B lines
around a circular current. It then follows that the & lines for an infinitely long helical
light path as in a selfoc fibre would be exactly like the B lines produced by a solenoid,
i.e. the & lines would be parallel to the fibre and confined to the inside of the fibre.

3.3 Stability of classical electron

It is well known that classical finite size electron is not stable; its parts would fly apart
due to repuisive Coulomb interaction which cannot be prevented unless forces of non-
electromagnetic origin are invoked. It will readily be seen that such forces would arise
from the new interaction. The static fields produced by electrons’ spin and electric
charge would be

er 3grxs
ot B=0, &= o @ = 0. 42)

The E and & lines of force are shown in figures 1a, b. These fields would give rise to a
self-force:

E=

3g e’r  9g%S?*r

F= S—— =
E‘E 2 5% 4 " T )
which can be made to vanish by suitably choosing ‘g’
2 ,2/Q2 9, ¢€
(/207 = ¢¥/S* or g* =25, | @)

This would ensure stability of the electron. For an extended electron calculations will be
somewhat more complex. We thus see that the fifth interaction can provide a “Poincare
stress” for ensuring stability of the classical electron.

3.4 Static interaction between two spins

The potential energy between two particles possessing spins, one located at the origin
and another at r is given by

vap(M) = — f 4 sPr —r')afA(r'). (45)
Using expression (39) for a,(r) in (45) we obtain after some manipulations,
(3g/2?
Vap (@) = — pY [Sa-Ss], (46)

which shows that the force between two spins is attractive when the two are parallel
while it is repulsive when they are anti-parallel. This can be considered as the Coulomb
law for the fifth interaction. It is important to note that identical (parallel) spins attract
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With k = w/c and for the limit kr » 1 this reduces to

exp (ik'r)

lim a(r,0) = d3r' s(r) exp (—iki-r'), (50)

kr—w |l']

where 7 is a unit vector along r. For the case where the dimensions of the source are
small compared to wavelength we can expand the exponential in (50) in powers of k and
the first term in the expansion namely

a(r) = ?ﬁ’l—(g‘—’) f dPrs(r') = @T(;’%‘ﬂs (51)

gives the dominant contribution to the radiation of axial photon. Since eS/mc = pis the
Dirac magnetic dipole moment, this radiation can be termed as the magnetic dipole
radiation of axial photon. The fields & and & outside the source derived from (51)

work out to be

., {3mcig exp (k1) 1 .
&= --an—zk( %% )(nXp)—T(l -i—};), (52a)
and 4= —-;:V X €
3gmc? 5 )
R = — e (n x p) x nk* + [3n(n-p)k* — p]
1 ik | exp(ik-r) :
x (rz ; )}T (520)
In the radiation zone, they take the limiting values: |
3mc?g exp (ik'r)
E=1i —t
1k( e ){(n X ) X n} x| (53a)
' ., [3mc?g exp (ik-r)
R = —ik _—
.1 ( % ){(nx;;)xn} T (53b)

Thus the time-averaged power radiated works out to be

d 2 2
ﬁ*—?—Re[rzﬁ-(cx &%)] ._.EE. 3me’g
8n \ 2e

Q" sx )lullsinze, (54)

‘where @ is the angle between the direction of radiation with respect to p. The total
power radiated is:

ck? (3mcig\?
P=— 2,
3 ( o ) ul (55)
The formula for the counter part in magnetic dipole radiation of photons reads,
ck*

P == nl. | ~(56)
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4. Quantum dynamics of axial vector gauge field

4.1 Two-body force and asymptotic freedom

The force between two particles with spins S, and Sp is mediated by axial photon
- exchanged between them. The two-body potential has been worked out (Naik and
Pradhan 1981) using Coulomb gauge axial vector propagator. It is more convenient to
use the Feynman gauge propagator

D,y = 9,./(¢* — 0?/c?). | | (57)
The two-body potential would then have the form

(Bg)

8xnr

Ugp = —

(S.4°Ss) (58)

where

3, A and B fermions,
B= { (59)

\/5, A is boson, B fermion.

For =3 it is identical to the classical expression (46). The two-body force being
attractive for parallel spins has far-reaching consequences. A test body with spin, in a
spin-polarizable medium would be antiscreened by the medium rather than screened
like a test charge in a charge-polarizable medium. This is because the test spin would
attract other spins parallel to it and repel those antiparallel to it. Thus the effective spin-
spin force in a spin-polarizable medium would be stronger than in vacuum. In other
words, the force will decrease as one gets closer to the test-body. Thus, the effective—
axial—photon coupling constant would decrease as momentum transfer is increased.
Such forces are called asymptotically free forces. This conclusion will be confirmed
from a calculation of the Callan-Symanzik S-function in a later section. -

4.2 Cancellation of divergence in QED

We shall first consider the problem in the non-relativistic limit. The ground state self-
energy of an electron in the second order of perturbation theory is given by (Bethe and
Salpeter 1957)

CO|H,|n> {n|H,|0)

AE, =
0 Z E,—E,+w (60)
where H=P2,° sa (61)

2
Inserting (61) in (60) gives

-'-82

2
1 o 2 CO|piin > {n|p]0> +<%g) {O0lo;ln> {(n|a;|0 >
)
1672 5 J

AE =

0 : En —EO +w
(62)
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which can be written as

=& (Bo—E) O|Pn)> {nipl0)

AE=2L5| 4 il
“@52,,3 , ee o@+E,—E,)

_&fm? L0|piny <{nlpil0)
@

3 2 2 o0
+( g/z) ZJ. dw {0lg;|m> {m|c;|0), (63)
6n " 0
where m stands for the spin sublevels of the ground state. It will be noticed that the first
term in the above expression is convergent while the last two terms are linearly
2

divergent and would cancel with each other if 59) = ez
We shall next consider the relativistic case. The free electron self-energy contributed

by the photon and axial photon shown in figurés 2a, b,
ie? iy(p—k)—m
()= fd“k Y-, D, (k)

ey |© ok
i(3/24) o (p — k) —
._l((z/n;:i) Jd‘lk]’u')’s%p-(:pl?)g)rm—ervysDw(k) (64)

from which after a certain amount of calculation one obtains the self-mass,

*
om= %M (3’2_{_?_) _M(g _5/4)

2r \ 2 4] (2r)\ 2
e? (3/29 9
. —_ e— * E—J = —
where % = o y 4ocg (65)
It will be noticed that the divergent parts in dm cancel if
e? =(3g/2)%

4.3 Callan-Symanzik beta function

The asymptotic freedom of the axial photon interaction can be confirmed by
calculating the Callan-Symanzik B-function (Callan 1970; Symanzik 1970). For the
electron axial photon interaction

po) =0 =0 n 2, (66

>k

P

// \\
/ N
2 \

P (p-k) P P (e p
(a) ()

Figure 2. (a) Photon contribution and (b) axial-photon contribution to the self-energy of
the electron.

\ /
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where Z, is the renormalization constant associated with axial photon self-energy.
Explicit calculations of the relevant diagrams (Naik 1980) gives

20, . A?

Z, = 1+ (67)
from which we get
3/2g)
po=-LLyogr) 69)

The negative sign confirms the asymptotic freedom of the electron-axial-photon
interaction.

4.4 Contribution of axial-photon interaction to hyperfine anomaly

The ratio of frequencies of hyperfine splitting in deuterium and hydrogen atoms is
given by (Bethe and Salpeter 1957)

vo 3 (Mp\2gp

—=——] — (1 +A4), 69

o 4<Jlu) gH( ) ‘( )
where . # p and # y are reduced masses and gp and g, are Lande g-factors for deuterium
and hydrogen respectively. A represents nuclear structure and relativistic recoil-effects,
which have been calculated from theory. It is found that there exists a very minute
discrepancy between the experimental and theoretical values of A;

Atheory = 28 X 10773,

Agypt = 17 x 1075 (70)

The hyperfine splitting discussed above is taken to be due to interaction between the
electron’s spin magnetic moment and the nuclear magnetic moment. It is a short range
interaction between their spins. The discrepancy could be ascribed to the existence of
long range interaction between spins of the electron and the nucleus caused by axial-
photon exchange. We therefore take this extra interaction into account in the
calculation of hyperfine splitting.

Taking the nuclear spin as I and the electron spin magnetic moment as p, the
standard hyperfine interaction Hamiltonian can be written as (Bethe and Salpeter 1957)

#om =] (I-u)é(r)+%{l-u—§g—9z—('i’} —stew | o
r r r
where k is the orbital angular momentum of the electron and p, = ¢/2m, a Bohr-
magneton. The expectation value of 2, gives the lowest order contribution to the
hyperfine splitting.
Now to s, we add the long range spin-spin part of the interaction so that the total
interaction is given by

X

_w, - ('83? S, (72)

total

where S is the electron spin; I is nuclear spin.
The expectation value of the additional term is easily seen to be
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2. F2 - SZ — 12
_Bgy <1><m>;F=1+S. (73)
8n \r/ \. 2
For hydrogen-like atoms
1 2z e?
- )= ; =— 74
<r> an? Ry % 4n (74)
Thus the final result of the expectation value is |
%\ 2 (FE+D)-II+1 =SS+, ¢ ,
A (cxe) n? ( 2 Ry a,= dn’ (73)
For hydrogen atom,
S=1/2,1=1/2,F=10=3
AE® = _9 (g_a) R,. (76)
For deuterium atom, |
S=121=1F=1/23/28=./3
AE® = —92 (gﬂ-)Ry. » (77)
These have to be added to the existing Fermi formula (Bethe and Salpeter 1957, p. 196)
16 grlin » |
AER = —a?{ 22N )R, 78
3 de( 2'u0 ) y ( )
8z (gon ) - |
E(E) e DHMHD
ARy =~ ( o B (719)
leading to
AE{P™ = AE® + AEY, 4
AEfe@) = AEW) + AEP. (80)

Taking effects of nuclear motion and structure one gets for the ratio of splitting in
deuterium and hydrogen

, ae(g‘;‘:") 9/8 (%,/a,)

Vb 3 -/{{D
L _ - 81
YH 4(,/{1;) oc2 g,,,uN 9)(3 (CX /a) ( )
€ 2[,(0 16 gl e
or ’
Vb 3 //{D)32gD
Z=(Z2) Z21+A-A), C(82
' 4( , g,,( ) (82)
where,

9 a 1 3 ‘
AN=-12 — . 83
8 3# [QDHD gpaup} (83)
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It will be seen that the theoretical value of the ratio is reduced as a result of taking long
range spin-spin force into account. This is what is required to obtain agreement with

“experimental result which requires A’ = 10”4, For this to be satisfied we need a,
o 1072 which is several orders of magnitude smaller than obtained from laser beam
experiment.

4.5 Electron-neutron and two-neutron bound states

Neutron and electron as well as two neutrons can form bound states when their spins
are parallel so that the force between them is attractive. The Dirac equation for an
electron whose spin interacts with that of a neutron can be written as,

(errm—(3) £8)y =, | 84
(e ) sy )

are spins of electron and neutron respectively. The latter has been taken to be infinitely
heavy compared to the electron. After separating the angular and radial part of  in the
conventional manner (Akhiezer and Berestetskii 1965)

where

iG(r)2a, (D) . r
Y. =< ! M s V=2j—Ln=— 85
=\ F ()Qp(0) i (®)
One gets the radial equations:
dG 14+x 3 20-S
dF - -S
—d7+(1 - K)F+(E—m+(3/2g)2g;——)6 =0. (87)

Since c-S=%[J(J+1)—-S(S+1)—a(a+1)]
) .
=§(J(J+1)——3/2), (88)
where J = ¢+8;0':S=1/4forJ =1and o'S = —3/4 for J = 0 it is easy to see that

bound state can be formed when spins are parallel. We shall obtain solution of (71) for
J =1 in which case ¢S = 1/4. The allowed energies are, :

_ (3/29)*/16 1
E,=m / |:l+ G2 J , (89)
(X _T+nr
_ [, _GR9* GRef( n 3 |
- m[l" 320 Sian® (1+1/2 _Z)]' 50

On account of the smallness of g* one can ignore the last term in which case the ground
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state binding energy is given by

B.E. = 81mg*/16 x 32, (91)
which is the Bohr formula. If we put a, = g*/4n = 107! this works out to be
~ 1072! eV and the Bohr radius 7 x 10? cm. For the dineutron one gets for the ground

state binding energy -
_ 81 Myg*
T 16 x 64 |
and a, = (8 x4)/(9 xg? x M) = 10~ cm. These bound states cannot exist under
ordinary conditions of temperature and pressure because they will be easily ionized by

the thermal energy and collisions. They can exist at very low temperatures and
pressures.

~10718eV 92)

4.6 Aharonov-Bohm type of experiment

Aharonov and Bohm (1959) discussed the question of the effect of electromagnetic
potential on the phase of the quantum mechanical wavefunction of the electron and
their conjecture has been experimentally confirmed (Chambers 1960). Such effect on
the quantum mechanical phase of the neutron by earth’s rotation have recently been
observed (Werner et al 1979). We shall in this section, discuss the effect of the axial
photon potential on the quantum mechanical phase of the electron and propose an
Aharonov-Bohm type of experiment to detect this effect. Its positive result would be
definite evidence for the existence of the fifth interaction.
In the case of the electromagnetic local gauge group, the covariant derivative,

Dy = (0,+ieA )W (93)

suggest that the phase of the wavefunction in the presence of the potential A, wWould be

W (x) = [exp (ie f " A, ) 0o (), (94)

where ,(x) is the wavefunction in the absence of the potential. From the covariant
derivative for the fifth interaction:

Dy = (0,+3/2(i)*gysa,)y (95)
it follows that,
W) = ( exp [ +5 0%, f " dx, a,,D‘Po(x). (96)

In the Aharonov-Bohm experiment electrons from a point source are made to pass
through a double slit so as to form an interference pattern on a screen. A solenoid placed
between the slits and the screen which produces no magnetic field but only a vector
potential outside, causes a displacement of the fringe system since the potential brings
about a phase difference 5 given by,

77=ede-B (97)

between the two beams. In our case we replace the solenoid by a long straight selfoc
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fibre through which a circularly polarized laser beam is passing. As discussed in §3.3
this fibre would produce an axial electric field £ and an axial vector potential outside. It
would therefore cause a fringe-shift on account of phase change

n = (3g) |ds&. (98)

Therefore the occurrence of a fringe-shift on passing circularly polarized light through
the selfoc fibre placed between slits and the screen would be a conclusive evidence for
the existence of the fifth interaction. Further, quantitative measurement of this fringe-
shift would lead to a determination of the strength of this interaction.

5. Concluding remark

The introduction of the fifth interaction has been motivated by a gauge theory
approach. If we believe in the philosophy that all the fundamental interactions are
dictated and determined by gauge principle according to which the conserved Noether
current of a global symmetry couples to the gauge field which results from the
corresponding local gauge symmetry, it then follows that spin angular momentum
must couple to an axial vector gauge field thereby giving rise to the fifth interaction. We
have discussed two experimental evidences for the existence of such an interaction and
proposed an Aharonov-Bohm type of experiment. It is found that the interaction is very
weak o, ~ 107!, This is why one does not easily perceive its effects in quantum
electrodynamic phenomena.

The confirmation of the fifth interaction would have far reaching consequences. It
promises to solve the problem of occurrence of the divergence in quantum elec-
trodynamics. It would make the classical electron stable by providing the “Poincare
stress”. And last of all it provides a dynamical method of the measurement of spin in the
same sense that photon provides a measurement of the charge. The superweak nature
of the interaction indicates that it will play a major role in very long wavelength and
low-energy domain and very long distant future of the expanding universe.
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