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ABSTRACT

It is shown that the ultraviolet divergences encountered in the lowest
order perturbation calculations of quantum electrodynamics no longer
appear if the theory is expanded so as to include the mu meson, a triplet
of heavy axial vector bosons and two heavy polar vector bosons in addi-
tion to the electron and photon, and suitably chosen couplings between
them are introduced.

1. INTRODUCTION

ALTHOUGH the divergences occurring in the perturbation theoretic calcula-
tions of physical processes in the present framework of quantum electro-
dynamics can be separated by the process of renormalisation and physically
meaningful results can be extracted,! the theory is not entirely satisfactory.
The relation between the bare and renormalised quantities are formal,
involving divergent expressions, and can lead to various paradoxes.? These
problems cannot be bypassed by formulating the theory in terms of renorma-
lised field operators because then the Lagrangian contains the renormalisa-
tion constants which are, strictly speaking, meaningless in so far as they are
divergent quantities. Although the method of indefinite metric® has cir-
cumvented these problems, it appears to have some difficulties of physical
interpretation.*

As far as the divergence in the self-energy of the electron is concerned,
it can be traced back to the classical theory where the repulsive coulomb
energy diverges in the limit of a point electron. A cohesive force would
keep the electron stable by compensating for the repulsive coulomb energy.
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Such cohesive forces have been considered in the pas
the theory as problematic as before.

In this paper we discuss a theory where the cohesive forces arise due
to the coupling of axial vector fermionic currents with axial vector bosons
which act as the cementing particles. That the axial vector currents may
play a vital role in this respect was conjectured by one of us (TP). It was
falt that if the Maxwell’s equations were made symmetric in the electric and
magnetic quantities by introducing a ‘ magnetic® charge-current (giving
rise to no net magnetic charge but a magnetic dipole moment) then this could
supply the required cohesive energy. For conservation of parity this has to
be an axial vector current.® We know that if such a current, bilinear in the
fermionic field, is to have charge conjugation —1 then it would be rather
problematic. Thus, a cohesive force of the above origin in a theory with
only electrons and photons is ruled out. At least one more lepton is needed
to construct the magnetic current. The most natural candidate for this is
the mu meson which can be used to construct a magnetic current

£5 but they have left

AW = {,-5 (2 () yirspe () — 7 () vavse (1))

which has C = —1 and P = 41. This current is to be coupled to an axial
vector boson (we call it ¢,'V) to conserve parity. However, such a coupling
wou.ld have the serious consequence of violating muon number conscrvatim{.
A similar trouble with strangeness conservation would arise if we had a
model of #/ interaction mediated by the K, meson. This analogy suggests
that 'V, which is analogous to K, here, must have its partner a'*, mmlogc;ul;
to K.. In that case we can treat the linear combinations |
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[I'\(i) _ a}\ i Ia)\(2)
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r?,tttler than «'V ?r'ld a‘->' themselves, as the mediating particles. The axia.
ui?c orhbosons a? =), which are charge conjugate to each other have muo
nic charge +1 and — 1 respectivel ,
y and are coupled t > currents
() e by pled to the currents

W= igadyysp,
A = igaiyyse.
The introduction of the i 1
€ mnteracuon term ( /™ 4, ) 4 1) 4, ¢
0 Cuo! LN T A e ) leads to finit
clectron and muon self-energies in the lowest order perturbation treatmI:ti
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if the coupling constant g, is properly chosen, provided the electron and
the muon are taken to be degenerate.

In this theory the photon self-energy gets additional contribution from
the virtual muon-antimuon pairs which has a divergent part of the same sign
as the contribution from the virtual electron-positron pairs. To cancel
these divergences we introduce a coupling of the photon with the muonically
charged bosons which contributes to its self-energy through a virtual o,
a‘=) pair. This coupling should be of the Pauli type so that the bosons do
not acquire any charge. On calculation we find that the contribution
of the boson pair to the photon self-energy is opposite in sign to that of the
fermion-antifermion pairs and hence, the divergent parts of the two cancel
for a proper choice of the coupling constants.

However, the couplings so far considered cannot remove the diver-
gences from the self-energy of the photon and that of the muonically charged
bosons simultaneously. In view of this it has been found necessary to con-
sider, in addition to the doublet of the axial vector bosons, a doublet of
polar vector bosons A,‘*) as well. These wiil be taken to couple to the
fermion fields in the manner

Lin = gy (éy AN — fypeAy, ).

The coupling of the photon with the vector and axial vector bosons will be
taken to be of the Pauli type:

MgALD, (A, A — A A

and
: ) gy - ~) g (D)
IAA D, (a,P ¢, — a,7 a,fP)

respectively. Finally, to eliminate the divergence arising in the self-energy
of the polar vector bosons we introduce a muonically neutral axial vector

beson «, with the coupling
Lint = A (D,u,ay - Dua‘u,) (a,u,(+) Ay(_) -+ [ZM(_) Ay(+))'

This coupling will give rise to a divergent self-energy of @, which can be
cancelled by contributions aiising from its coupling to the axial vector
currents of the fermions. This latter coupling gives additional contributions
to the self-energies of the fermions in such a manner that the earlier con-
straint of degeneracy of the muon and electron is no longer necessary to
render their self-energies finite. Taking into account all the couplings
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P

discussed above, it is found that in addition to the fermion and boson
self-energies all the vertex functions are also finite.

It must be noted that quantum electrodynamics in its present form,
in spite of its unsatisfactory features, has led to excellent agreement between
theory and experiment. We should therefore make sure that our modification
through the introduction of the new particles does not upset this agreement.
This is achieved by taking the bosons to be sufficiently heavy. It would
appear that couplings of such massive vector bosons we have considered
v ould make the theory non-renormalisable (even in a finite theory one nceds
:erormalisation). There has been considerable discussion in the literaturc?
on the ways to make the such theories renormalisable. We shall adopt here
2 procedure which is straightforward and has the merit of making all the
vertices finite without additional constraints on the coupling constants.
This method essentially consists of taking a certain limit of a local thecory
and asriving at an effective non-local theory where the massive bosons are
coupled to non-local but conserved currents.

Our theory thus has altogether eight particles—a triplet of massive
axial vector bosons, a triplet of polar vector bosons, two of which arc mas-
sive—the third one being the photon—the electron and the muon. The
theors can be enlarged so as to encompass leptonic weak interactions by
introducing two-component neutrinos associated with the clectron and the
mucn. The neutrino currents, when coupled to the bosons. can account
for the muon decay and other leptonic weak interactions. In fact. in the
limit of infinite mass of the vector bosons the leptonic weak interaction will
be idcontical to a Fierz shuffled Fermi interaction.

2. FORMULATION OF THE THEORY

The co

[

Iine scheme in our
piing scheme in our theory can be represented by the Lagrangian

p—1 1o i 5n i ;e y " - 5
L= Lo —ielene + gyap) Ay 1 (Fayaysp -+ g8ya 50) ay

R A W ()Y 5 y '
v {8y Ay BneANT) - iga (Eynysiant) - fipayseay ()

— VALY, (AL A, — A A ()
—IAGALD (ALTA, ALY ALY - IAAAL, (P )

I {—} - ! g B
3,7 @) = XA (0,8, — 2,4, (@, A 4 @, IALMY, (1)

wh i ectri ,

Sta:;: e 1.; .t};e electric charge,' Js g, 8as &v. Axy Ay, and N\ are coupling con-
) which are as vet arbitrary and L, is the kinetic energy part of the
agrangian including the mass terms. o -
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As pointed out earlier, because of the appearance of the massive vector
and axial vector fields coupled to non-conserved currents, the theory, as
defined by eqn. (1), is non-renormalisable. However, this difficulty can
be overcome by introducing suitable couplings of our bosons and fermions
with massless scalar bosons and adopting a limiting procedure which makes
our theory renormalisable and at the same time eflectively decouples these
massless scalar bosons. We illustrate this procedure for the coupling of one
of the vector fields, say ay, coupled to the axial vector current of the electrons
for which the Lagrangian is

L=—¢@+me—32,40,a, — % Ma,a, + igéyysea, (2)

M being the mass of «,.

We now introduce a massless pseudoscalar boson field ¢ with the coupling

Line = ige@y\vsedng — €7 t\dyg. (3)

For finite ¢ this describes a local interaction. The modifications of the
vertices and propagators arising out of the mixing interaction — (1/¢) dydz¢
are such that in the limit ¢ — 0, ¢ is effectively decoupled leading to an effec-
tive interaction of @, with the conserved, but non-local, current

Mo\ -
(87\0 - \Dj) €YsY5€

and an effective propagator

— (3= k;’”)/(k + M2).

It is thus clear that the renormalisation difficulty is avoided by adopting this

limiting procedure. In the following it will be understood that this procedure

has been performed for all the massive vector and axial vector fields and

their interactions represented in the Lagrangian given in eqn. (1). This

amounts to a modification of the vertices and propagators whereby any

vector or axial vector boson vertex with momentum A& will acquire a factor
kuk,

Guv (k) = bm - e

and the corresponding propagator will be
kz + M2
where M is the mass of the boson.

— Gy, (k)
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By applying these considerations we shall now see that with a proper
choice of the coupling constants we can make the self-energies and vacuum
polarisations finite in second order perturbation theory. It turns out that
all the second order vertex functions are also finite without any further con-

straints on the coupling constants.
3. FERMION SELF-ENERGIES

Let us first consider the electron self-energy. The diagrams, Figs. 1 («)
to 1(d), contribute to this self-energy. The Feynman matrix clement for
Fig. 1(a) is (we use the Landau gauge for the photon propagator)

A B .

A
1 R [ e ).I. e ] }l e [ e e
@) b © «)
fig.1
A A9 K&, 2
M N P e A ) € P “ » M
@) b (c) (d)
fig.2

FiGs. 1-2. Fig. 1. Feynmann diagrams for electron self-energy. Fig. 2. Muon sclf-
energy diagrams.

@ e Cdk i(p— k) — y
2 0= f i s O, G

By applying the rules discussed in Section 2 we get the following contributions
from the other three diagrams

(o)} 2 .
= & d% C — B
Z (p) (2 f kKT My? G,y (k) ée:hk)‘gf'F" ‘;,',3;;'3
L
X G,y (k) ')’G-G"u, (k),
(C) 2
_ 8 d% _—
(P) — (277)4 f kT_q:_MAz Gﬂ)\ (k) YAYs (Ig:w ]g).‘?.‘_{; :7;2“3
®
X Gyo () 075Gy, (K),
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‘d’ _ i(p — ) e
Z (277)4f ko + M) y)\ ('l\) YAYs (p ) + l”e
X Gyq (k) 70’75Gm (k)’

My, M, and M being the masses of the relevant bosons and me, m, the
masses of the fermions. After some simplifications, we get

(b) i(p— k) m
Z =G J B G 0 () S (40
“ i(p—k)+m
Z (p) (27r)4f k21 M -+ M 2 GW’ (k) Yu (p k)z + mM » (4 )

(d) 3
2 0=y S v O 07 E(p e, @

It is to be noted that the sign of the mass term in the neumerator of 2© (p)
and 2D (p), which is crucial for the removal of divergence, has its origin in
the occurrence of the two y; matrices. By using standard techniques of
Feynman parameters and symmetric integration, we see that

i(p—k)
sz _I__ M2 G\o- (k) YA (p k)z + me Yo

is free of ultraviolet divergence while
J’ ) dk
(k2 4+ M?) ((p — k)* + m¥)

Gs (k) 7avs

1s not. Thus

Z(p) =Z@ (p) + 2% () + 2 (p) + 29 (p)

will be free of ultraviolet divergence if
mee® + m,gy® = meg® + m, g, (5)
We can treat the muon self-energy in the same manner. The diagrams,

Figs. 2 (a) to 2 (d), contribute in this case and we get the condition of
finiteness as

m,e?* + megy® = M, f? + mega® (6)
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4. Bo0SON SELF-ENERGIES

We start with the photon vacuum polarisation diagrams. The four
diagrams shown in Figs. 3{a) to 3 (d) will contribute to this. The contri-
bution of Fig. 3 (a) to the vacuum polarisation tensor is given by

7gg'® (k)z.._f_zﬂf S dp_ s
@)t (72 + me?) ((p — B>+ me?)
X Try, [(ip — me) yg (i (p — k) — e)]. (7)
It is known that m,g® (k) can be written in the form
7'M (k) = k*Gp (k) 7@ (k%) + 8,,D@ ®)

where the constant D® containing a quadratic divergence is of no physical
significance since in all observable quantities it cancels with the so-called
“sea-gull * terms. #(® (k?), on the other hand, contributes to physical pro-
cesses, but is logarithmically divergent. By employing usual methods of
calculation we get, for its divergent part =p® (k2),

Y m o 9)

@ (F2y — — . .0
™ (k) 316m% | 5o Mle?

In a similar manner, from Fig. 3 (b), we get

102 2
4 ie Im /n Ii?_; X (10)

B (12) = &
) (k) = 316m2 oo M,

The contribution of Fig. 3 (¢) to the vacuum polarisation tensor is given by
. Ay> di
O (k) = 2V ok f . AN —
Taf (k) (2m)! ! (qu “+ My ((k — C])2 + Mvzz)
X (Gaﬁ (q) Gnr (k - Q) - Gan (Q) GBv (k - ([)) (] 1)
It can be easily seen that m,g'® is of the form

7o' = Goag (k) [K*=© (k?) + C], (12)

where C is a constant which, like D in eqn. (8), does not contribute to the
physical processes or to charge renormalisation and is compensated by
‘sea-gull’ terms and where
e 2 2
mp© (k) = 2 fim & (13)

2 L2
167% | Se0 My
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Similarly, from Fig. 3(d) we get

@ () = LA lim In s 14
o™ () 1672 | 500 M,? (14

It is to be noted that the divergent parts of #'* and 7 are opposite in
sign to those of #© and »®. It is on account of this that the sum of
all the contributions

nd) = 5 a9
img, b, ¢, @

can be made divergence-frec by suitably choosing the coupling constants.

From eqns. (9) to (14) we find that = (k°) is free of divergence if and only
if

’% e2 e AV2 + )\Az_ (15)
¢ In A4 L
S O
A A
€ A ’1 A A A(_) A A a(_) A
@ ) © @
fig.3
u , A K& .
o <:>e " A OA & ) Q‘ A4
(a) (b) ()
fig.4

Figs. 3-4. Fig. 3. Photon self-energy diagrams. Fig. 4. Sclf-energy diagrams for the
massive polar vector bosons.

We now consider the self-energy of the A(*) vector bosons. Defining
7ag (k) = (‘2“%4 J‘ dtxe®® (0 | T (Au™ (x) A (0)) ] 0), (16)

we see that in the second order the three diagrams, Figs. 4 () to 4 (c), con-
tribute to m,g (k). Defining m g b, © a5 the contributions of these three
diagrams respectively to m,g (k) we can easily see that they ar¢ of the form

’”aﬁ(“’ b, ¢ (k) — Ga{i’ (k) 7;(“~ b, ¢) (kz)? (17)



34 T. PRADHAN AND A. LAHIRI

and, dropping the quadratically divergent terms as discussed above, we get
the logarithmically divergent parts as given below

2

2y — ig® 4 4 = 18 «)
@ (k) =— {e23 Llirg n > (18 &
b _ A1 L2 18 b)
m® (&) = (g3 Hm Iy (
i1 .. L?

'TI'D(C) (k2) = 1~6—7T§3_ Ll_:;?; In W . (18 (')

Thus, = (k%) = 5 =@ (k? is free of divergence if
{=a, b, ¢
4, A2,
38 =3 T3 (19)

The condition of finiteness of the self-energy of the a,'*) bosons can
be worked out in a similar manner and is found out to be

4 , A2 N
z8 =3 +3- (20)

The corresponding condition for the finiteness of the self-energy of the
ay-field is seen to be

terrm=2n @1

Combining the conditions expressed by eqns. (5), (6), (15), (19), (20),
(21) we see that we can choose the coupling constants in such a manner that

?.11 fermion and boson self-energies are finite. The most symmetric choice
is

g =f=é

A==t

g = ga¥ = %g e?, ) (22)
A2 = }:g e? )
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