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Feynman diagram approach to atomic collisions™
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Abstract. A quantum field theoretic formulation of atomic collision phenomena
involving non-relativistic free and bound systems is developed and a calculational
procedure in terms of Feynman diagrams is prescribed. Matrix elements of several
atomic collision processes have been calculated. In most cases standard quantum
mechanical results are reproduced. But in some cases new terms appear in the scat-
tering matrix whose contribution though negligibly small in the low energy region,
become important at higher energies.
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1. Introduction

In the Feynman diagram approach to atomic collision problems developed earlier
(Pradhan and Khare 1976), the Bethe-Salpeter method was used to obtain the vertex
function involving the atom and its constituents while standard expressions were
used for propagators. This method was adequate for some collisions involving
hydrogen-like atoms. For some other collisions involving hydrogen-like atoms and
collisions involving three-body bound states, this method is not applicable. It is the
purpose of the present paper to develop a Hamiltonian approach within the frame-
work of quantum field theory for the interaction among the non-relativistic bound
systems involving two particles and their constituents and their interactions with
photons. From this, Feynman diagrams and the rules for writing down the corres-
ponding S-matrix elements would follow quite naturally.

The problem that one would encounter in perturbation theory for scattering of
particles that can form bound states is that such states would not come out of the
theory unless these are used as inputs. For instance in nonrelativistic electron-
proton collision, it would be necessary to put hydrogen atom, in addition to electron
and proton, into the Hamiltonian before doing perturbative calculations for scattering
processes. A familiar example from particle physics may be useful. In the problem
of collision between a pion and a nucleon, a resonance occurs around pion laboratory
energy of 200 MeV. A successful perturbation theory of pion-nucleon collision
phenomena must, therefore, use this resonant state as an input in the Hamiltonian.

Having made our point that the bound entity must be used as input, the task of
implementing the same has to be undertaken. For this let us first consider the

*A large portion of this work formed material for an invited talk delivered by one of us (T.P.)
at the Second National Workshop on Atomic and Molecular Physics at Visva-Bharati, Santi-
niketan (India) held from.18-23 November 1979. o
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simplest of all atomic systems: the hydrogen atom. Our task is to write down a
Hamiltonian in terms of the field operators of the proton, the electron and the hy-
drogen atom from which matrix elements of any process involving these three ‘par-
ticles’ can be calculated. This will be done in §2. §3 will be devoted to obtain rules
for writing down S-matrix elements for Feynman diagrams for any scattering pro-
cess and §4 will be devoted for the actual calculation of matrix elements of simple
processes. Interaction of the above system with photon and application to the scat-
tering of photon by hydrogen atom are discussed in §5.

Apart from obtaining standard quantum mechanical results we do get some
entirely new results. For example, in addition to diagrams in photon-atom collision
which yield the Kramers-Heisenberg formula, there are diagrams whose contribu-

tion, although negligible in the low energy region, is comparable to the Kramers-

Heisenberg terms at sufficiently high energy.

2. Non-relativistic field theory

As stated earlier we shall consider the simplest non-relativistic system of a proton,
an electron and a hydrogen atom interacting with each other. We introduce a sec-

- > -
ond quantised field operator h(xy, x5, t) for the hydrogen atom where X, is the co-
—_

ordinate -of the proton and x

p 18 that of the electron. The Hamiltonian of the
system can be written as

H:H0+Hint=Hh+Hp+He+Hint: (1)

1 ~=> - 1 = N -
where H, = ff d3x1d3x2[m(vlh*) (Vlh)+2—’—n(V2h)‘(V2h)

t1=tg=t

+v<l¥Z—Zl)h*h)] @

is the Hamiltonian of the hydrogen atom whose second quantised field operator
- -
h (xy, x,, t) is represented by

- - - = 3 — -3
h (xls x29 t) =h (X3 x; t) = z d P anlm (-P) Unlm (.X.')

nlm (2ny
exp [(i?-;—i(wjt’_-.j%—en) t] €))

where

- -
:Y"_Mxl—l—mxg.
= 71T m,
M4+ m
- >

. h >
* = X — x; being the centre of mass and relative coordinates respectively. iy (x)
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~
and anlm (P) being the hydrogen atom wavefunction and annihilation operator
satisfying commutation relation

- - -> -

[anim (P), an'tm’ (P)] = Onn’ o1’ Smmy 6 (P — P), C))
H—__fd3pr*(x,t) Vp(x,t), (52)

and H, =_fd3xVe*(x,t) Vel 1) (5b)

are Hamiltonians for the proton and the electron and

- = - - - -
Hint = Jf d3 xy d3 xy v (| %y — %1 )[BT (xq, X, £) p (01, 1) € (3, 1)
=t =1

- > — > - - — -
—I_pT(xla t) eT (x2a t) h (xla x25 t) +pT (xls t).p (xla t) e* (xZa t) e (xz, t)

ot oy ) p (s 1) ' (i 1) 2 (igy 1) — € e 1) € (s 1)
et (rgy 1) € (g, 1)] ©

is the interaction Hamiltonian which contains, besides proton-proton, electron-
electron and proton-electron interactions, terms A’ p e and p' &' & which represent
virtual conversion of the hydrogen atom into its constituents ie., proton and
electron, It is similar to the N* N interaction in pion-nucleon collision problem.
The non-relativistic field operators p(x) and e(x) are essentially annihilation
operators i.e.

p(x)= (2 )32 ¢ exp (I kx), [crs C::’] = 8y,
e (x) = (2_7;)._3 2_: by exp (ik ), [ 1] = 8, Q)

It will be seen that the equation of motion resulting from H, is

—[Q;_‘[VL{—_—VZ —v(‘xz —';:l)]h(xv Xos t)——z?_h_glé_:.c.?___’t) (8)

which is the Schrodinger equation for the hydrogen atom. Use has been made
of the equal time commutation relation

[ Gy %), Bt (o} x0)] =8 (g —x0) 8 (g — ) | )
h=ty=t=1,=t,
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and the Heisenberg equation

- - 1 -2
, L
[Hp h (x]_) KXo, t)] =i Q—Oc":é’—“——tw (10)
in obtaining the above Schrédinger equation, if we use the separability ansatz:
- - > - —> -
e X 1) = (X, %, 1) = O (X, 1) th (%) (n
n

- — : .
with @, (X, t) as a second quantised field and u, (x) as the c-number energy eigen-
function, the Hamiltonian H, given by (2) simplifies to

— 3 V_;DI(Z t)'-;’@n(ft)'__e i > = 12
= [ex[TRGR TR0 ol Goade] 2

n

and the Schrodinger equation (8) separates into

-
—VO) L 00,00 = — e (D), (13)
2
20,(X, 1) > a0(X. 1)
V t .0 15
d —_—— =gy i3b
an 0L = ) €,0,(X,t) =i o7 (13b)

Equation (13b) is also obtained from (12) using Heisenberg equation of motion

-
for @,(X, t) and the commutation relation
- - - -
[0.(X, ), ®L(X", )] =8,y § (X — X). - (14

—
It should be noted that although ®,(X, ¢) is a function of the centre of mass co-or-
dinate, its Schrédinger equation (13b) contains the energy of relative motion €,. It
can, therefore, be the field for hydrogen atom. The interaction Hamiltonian can

now be expressed in terms of centre of mass co-ordinates. For this we rewrite @)
as

-
- > =
P(xy, t) = ch gX’ ‘) exp (ibk - x), b=_"1"__,

e (2m)? M+ m
k
- b—q)- (Xft 1) > M
e(x,, 1) = _;—(—2—7?)7- exp (—igk - x), a= M 15 |
q

and use (11) in (6) and obtain

- - . —
Hiow=2 3 TWbk—ag) [ a2 X0} (X, 1) e (X, 067 (X, 1)
n ?? :
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+b> (X0C (X, 00, (X, 0]+ > o {bk —8) —alg’—9)}
k,
—5e
9
- -

t . =gt
{as X[e> (X, )C (X, 06> (X, Db (X, 1)

Ry

3> - > - > -
—c> (X, t)e> (X, t) > (X, ) > (X, ) --bk~—>»(X, t)bk—,> X, 1)
L e T
by (X, b (X, 1)], (16)
> - - —>
where I.(K) = f d3x exp (iK- x) v(x) u, (x), an

is the vertex function for the hydrogen-proton-electron vertex. The propagator

- - -
for the fields @,(X, 1), C;—> (X,t) and b;+ (X, t) and their Fourier components can
now be obtained using

— —_- - =
O, (X, 1) = (2m)* a,(P) exp (iP+ X —iE,), (18a)
5 |
> (X, B exp (k- X — i 18b
> (X0 =@ exp (k- X —iT0) (18b)
- — — qzt
b—> (X, t) = b(q) exp (iq X — i_-) (18¢)
q 2m .
where
P2
"M Emy "

as can be seen by substituting (18a) in (13b). It is then clear that the propagators
—
for the centre of mass motion of the hydrogen atom, ¢, (P, P,), that of the proton,

~> ; -
Ap (k, k) and for the electron, A, (g, g,) are:

9y (B, Py =—i [ @ X [ d1(0](@, (X, 1) 9] 0, 0). [0}
exp (—i;' }—[— iPyt)
=|p— 2 ok (192)
"[ °"2(M+m)+€"+"’] ' |

~ +
8y k) = —1 [

k? -1 N
— [ko — 5=+ in] (19b)

: dt 0](c> (1) c:%* (0))4 ] 0) exp (—ikyt)

- € T
Ae (g o) = — if_:o dt 0)(d7 (1) b7 (0)+]0

q2 ] -1 .
=[a—=L +11]". (190)
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3. Feynman rules

We are now in a position to write down the rules for Feynman diagrams for the
S-matrix elements defined by

+o0
S=1—i[" " di Hy (1)
~—00 ’

+ ("-l) f‘{'oo d f dtz ( int (tl) int (tg))+

—i) o] +c0
RS ) f’twdtl....f dty (H (). . Hey (6)sF .

n!
(20)
These are
(i) Draw thick lines for bound states such as hydrogen atom and thm lines for
constituents such as protons and electrons with arrows representing directions
of their momenta. Since all “ particles” obey non-relativistic dynamics,
there are no arrows pointing backwards.

—
(i) Draw a dotted line for each »(k) appearing in the interaction Hamiltonian

— B .
and label it by momentum % and zero energy. The point where this line joins
either a proton or an electron is to be treated as a simple vertex

(iii) Conserve energies and momenta at each vertex. Write T (bk — aq) for each
—_—

- hydrogen-proton-electron vertex, k being the proton momentum and ¢ belng
that of the electron. All simple vertices are to be represented by unity.

(@iv) Write down appropriate propagators for the internal lines.

(v) Affix an overall factor i/ (2)* for each loop in the diagram.

(vi) Integrate over the independent energy and momenta of internal lines.

4. Calculation of simple processes
4.1. Charge form-factor of an atom

We can obtain the charge distribution of the hydrogen atom using the Feynman
diagram technique. There are two diagrams for the charge form-factor. These are
given in figures 1(a) and 1(b). The former gives the proton charge distribution while
the latter gives the electron charge distribution. The net charge distribution is the

sum of the two. The matrix elements give the Founer transforms of the charge
distribution and are

50 =e [£4 = &9 @ —50 {9, | (21a)
and B =—e [0 090 &), | (21b)

(2 )3 Se
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3.Do e -Espo Eap P Epo
H(IS) st t—mmtis H(1S)  H(IS) et H(S)
A\ ev
é.ﬁ,o f'i?,o
(a) : (b)

Figures 1(a) and 1(b). Feynman diagrams for charge form-factor of hydrogen atom.

In configuration space, these become

gl 2(MAmyr\ M)3 e
s () "( > )3exp( m 5{,)”(% e
M-+m
exp (— 2 Mr[may), (22a)
> e _2MAmr\ e .
pe (r) = me)@( - E;) ;—a-geXp (—2r/ay)
M-+4+m (22b)

and hence .
p ) = py () + pe () = =, [MIm)Fexp(—2 Mrmag) — exp (— rlap).
md,
@3)

This shows that whereas the positive charge is confined to a sphere of radius
ma,/M, the negative charge is contained within a sphere of radius q,.
If we consider a bound state of two equal mass particles such as the nonrelativistic

positronium, the charge distribution that would follow from equation (23)is p () =0
which means that such a bound state is completely neutral. This is in keeping with
the fact that such a particle is an eigenstate of the charge conjugation operator.
It may be worth noting here that n and #° which are considered to be a bound state
of quarks of equal mass but opposite charge will also be truly neutral, i.e., charge
density will be zero everywhere. This will not be the case with the neutral K meson.
While the K° meson consisting of § and d quarks will have positively charged central
core surrounded by negatively charged outer layer because of higher mass of strange

quark, the K° will have just the opposite charge distribution.
4.2 Proton-electron scattering

Next we consider proton-electron scattering. For this, there are two diagrams given
in figures 2(a) and 2(b), whose matrix elements, according to rules enumerated above,

are
> > 47ed

M, =v(p;—p) = - ' (24a)
| p— il
_)’. ) .
‘an M, = Z I (bP1 — aPa) I (bP1 ap,) (24b)

n pl p; _ (p1 +p2)
s om 2+ Y S



298 Babaji Charen Mishra and Trilochan Pradhan
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\\,// D 1'pl0 D;'DIO p
| > H(n)
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(a) (b)

Figures 2(a) and 2(b). Feynman diagrams for proton-electron scattering.

It will be seen that M, as it is and M, in the limit of m/M -0 agree with standard
quantum mechanical results (Dirac 1947).

4.3 Proton-hydrogen atom scattering

Since the hydrogen atom is electrically neutral, it cannot directly interact with the
proton. It must first break up into virtual proton and electron states which, after
interacting with the external proton, recombine to give in figures 3(a) and 3(b).
The corresponding matrix elements are,

-+
[ o[
2m)3 J 2m
-1 lz (W) oo
- > > >
Ty(g—bpy) T(q '—bp1)

A > = , o
@\{ p? (—*) §_ P2 (Pr“‘l)
T ) U 0% %0

2AM-+m) 2M 2(M-+m) oM
, (252)
+o0
d*q [ dq,
@ny J 2n
—0
-> > -> >
Ty(g—apy) Ty(g—apy)
> - >
ot el (pl_q)zgg n: ()
S TS0 O dT
2M+m) 2m 2(M~+m) 2m
: (25b)
His1Lp2 P Piflo S hus) —aiee. P o
'e\l/ NS
40,7, V5,5,
Pzo—o»l——p R S
P21Rag P2y Do Bl Phibho
(g) ' 1b)

Figures 3(a) and 3(b). Feynman diagrams for potential scattering between proton and
hydrogen atom.
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which on integration over g, and use of the relation

W (k) = — = 26
gn (k) hp e, (26)
47re2 déq
become M, = — o )38'0 (q) £o @ —b0), - (@7
" 4re? [ dg
and M, = f Rl (q) &o (@ — a0) (27b)

- = - >
where Q = p; — P1 = Py — Py is the mementum-transfer and

= M|(M + m), b =m|(M + m).

We obtain the potentials at the limit m/M - 0 after getting the Fourler-transform
of these matrix elements. These are

Va = /R, (28a)
—es[— Ly e R( 1 )] 28b
and v, es[ H{.—l—e s 1—}-}}_ (28b)

where s = a;%, inverse of the Bohr radius, and R = separation between protons.
These potentials are in agreement with the interaction between protons and the
Coulomb interaction in Hj — ion respectively (Pauling and Wilson 1935).

We can also consider the charge-exchange collision between proton-hydrogen
atom, the only diagram representing the process is shown in figure 4. The corres-
ponding matrix element is

-

M ==l —ap)* + 57 &o(pr — ap) &0 (P — apl), (29)

which is the same as the OBK amplitude and gives the resonance interaction in Hf —
ion (Pauling and Wilson 1935). From the similar diagrams for the elastic scattering
and charge-exchange process between electron and hydrogen-atom, it is possible to
get the Coulomb and resonance interactions in H- — ion.

B.p B0
H(IS) —n0 1+Pio

—_.——b-——— "
P2 R P2 P20

Figure 4, Feynman diagram for charge-exchange collision between proton and
hydrogen atom.
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5. Scattering of photon by atoms

We shall now consider the interaction of atoms with photon.
trically neutral, the photon cannot directly interact with it. It can, however, interact
directly with its constituents through minimal ccupling. This means we have to

Since an atom is elec-

replace V p (x t) and V e (x t) in our Hamiltonian of § 2 by (V + ie A) )/ (x t) and

- >
(V ie A) e (x t) respectively without making any such change for V A (x;, x,, 1).

This results in the following additional terms to the Hamiltonians:
Hmtm___ ff d*x dt [{p (x, 1) Vp (x, t)}A (x t)
+{p @DV 0} Al — 2 [ [drxdr o 1) p (%
’ ’ * ’ = 3 ,t
{p px}(x]2M xdtpt(x,t)p (x, 1)
ACx 1) 4 (v, t)—_ff a3 x dt [{e" (v, )V e (o )} . A (5 1)
- - > - >
+ {e(x 1) Vel (x, )} 4(x,1)]
&2 - e —- > ’
—»-.—ffd”xdte* OO r (30)
2m |

In terms of the creation and annihilation operators of the proton, electron and the
photon, the last being defined by

Z(—;,t)—— éi__“; 3(/6)
rs

exp [i (k x—-— wt)] + h.ec., (3D

the interaction Hamiltonian takes the following form

H ‘ ) 4 ' 8—) _>,+7:8(q2 q12+
int =~ S Gyt 2 @ —a + R0~ “’)
> -
(I:Q',k

[{c" @) pop ¢ @) ~en()) 47 +{e @ Pop €' (@)} ", () 471

e? ‘ S (—>+_Z —t _I:I) S ( q2 + q,2 1)
—_— —_ — _ W —— W
4 M (ww")L2 z 1 9 2M 2M

_>
99,
k&’

- - T

ct (q') c(q) AT 4% ,\(k') e)((k)—l——--——————— SU—=I'+k)

m (2 )

=~}
¥
&y
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12 1’2 i '—,> - - — N
8('27n‘5771+°”)[{b () 2yy b (D} - ey (0 A7 + |
> > > ~ : 2 - > > >
@O rop b O} 610 47| = = > 80k~ —F)
dm (ww')t/2
- >
Ll kK
I ]2 > > - -
s(..~+ w1 w')bf ()b {) A7 A7 oy &) - 2y (6). 32)
2m 2m

-
Here pop is the momentum operator.
We are now in a position to note down additional Feynman rules for the S-matrix
elements for interaction. The rules are:

(i) Draw a wavy-line for each e, (k) appearing in the interaction Hamiltonian

—_
and label it by momentum k and energy w. The point, where this line joins

a charged particle, is called a single cornerand is treated as a simple vertex.
- -

(i) Draw two wavy-lines for each e, (k) - e, (k) appearing in the interaction
- -
Hamiltonian and label them by momenta k and k' and energies w and o',

The point where these lines join the charged particle is called a double corner
and is treated as a simple vertex.
(iii) Give a factor

e >
——(@+Dp)
2u
> -
at each single corner where p and p’ are the momenta of the particle line
coming in and going out of the corner, respectively and u is the mass of the
particle. .

(iv) Give a factor — e?/2u at each double corner. '

(v) Conserve energies and momenta at each single corner and each double
corner.

(vi) Put the factor (2w)~1/2 for each external photon line which is emitted or
absorbed at a single corner or double corner.

(vii) For the photon propagator appropriate to nonrelativistic case, use
-
Dy () = “;;T?'-T'J?i (84 ——%’2‘_1) Dy = Dy = 0.
(viii) Integrate over the independent energies and momenta of internal lines.

(ix) Affix an over all factor (— )", where n is the total number of single and
double corners.

(x) Multiply the matrix element by a weight factor W =29, where g =d —a—b;
d being the number of double corners in the diagrams; a being the number
of closed photon lines (this corresponds to the situation at double corner
where a photon is emitted and reabsorbed); and b being the number of
pairs of double corners connected by two photon lines.
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When applied to atom-photon vertex
iven in ﬁ @
yield the following matrix clements, ron o T S6) end 50, thee

Mo s | G & @+ @+ B0 (g o @)es 0+ ), ()

%ﬁﬁl J&I"

- @ daq > - - > > > -
m (zw)mf Omp®! (@4 bp + dk) (. e, (k) g, (g + Bp), (33b)

In configuration space, these take the form

M, m [ @ T} o @en (—ivk-, o)

e » > L
and M, ;;-;m(zw)“g f ddr {!/l; v l/l[ (r)} "€y (k) exp (—iak. ", (34b)

which ure what one obtains from quantum mechanics if proper care is taken to take
mite acvount the interaction of the proton of finite mass with the photon.

Frow the ahove matrix elements it is quite evident that the contribution due to the
wteraction of photon with proton is small by a factor m/M compared to that with
rlectran und s thus neglected in subsequent calculations, Here we shall consider
clastic waltering of photon by hydrogen atom. The relevant Feynman diagrams

ate guvent an figures 6(a) to 6(¢). The corresponding matrix elements under dipole
approssmalion are

e 2

A e 2(“""V’") e V) (352)
! 2m (w we M Lom (B —w, —E,)
B
w;; ot (e,\ Vju) (")\" nl) (35b)
M s
o 2m (w w M Lym (B - wp — Ey)
n
P >
M ey ey) 8 (35¢)
! 2m (wy wp)ti?
—+- ->

V1 ¢t 21 (ey" ) B (354)
T o (wy w) B3 (K 2m (e + )}

Vo et 2k (ea eX) 511 (35¢)
e 2 (wy w3 (KR 2m (¢ — @)}

8 [ B, p DR

0 el € 0 (8] HS) e HIS)

iy 0 e

‘(ﬁ'.w ‘It,w
(a) (b)

Figures 5(a) and 5(b). Feynman diagrams for atom-phofon verlck.
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Tokio o ok Fikiop Hi p Rk
HiIS b -c'; p Hm)ep 20 ) H(IS)""W_H“S)
f \< . f'-lzf,wf -F;,wi :

= Kj wi ket
(b)

(a)

Ki.kio P K keo

H(IS) g HUS)
Kihw; Kp ywr
(c)
s P 0 gy o) i B B H(S)
e ey 4
(d) (e)

Figures 6(a) to 6(e). Feynman diagrams for photon-hydrogen atom scattering.

where n stands complete set of states of the hydrogen atom,
. e
and Vn:fd3r¢}*(r)v¢n(r).

It will be noticed that MJI* + MJt + MI' = Mgy is the Kramers-Heisenberg

expression for scattering of photon by an atom (Fowler 1962) and can be shown
to add up to:

- s > > > o

Myp = 62—2 (w; wy)1? Z [(e,\ ) (") —_ = tn) (€3 r"t)]. (36)

Wy — Lpy w; + Ey

n

The diagrams of figures 6(d) and 6(¢) give contributions beyond the Kramers-Heisen-
berg formula. However, these contributions are negligible in the low frequency
region; if we add the matrix elements given by equation (35d) and (35¢) and take the
low frequency limit, we obtain

o a2e? R '
Lt M =_"_(wle)? (e)-ey) (7
6mew '

w-0
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which is small (by a factor of a?) compared to the low frequency limit

2

w—>0 me

(wfeg)? (;: . E: , (38)

of the Kramers-Heisenberg matrix element (36). On the other hand, in the high
frequency limit,

2 12— >
Lt M, =8€ k (eA'e’\/ N (39)

@ —>00 mw

is comparable to that of the Kramers-Heisenberg matrix element, which is

2 = -

e
Lt MKH =%~)(e}"e’\/ s (40)

>0

and cannot, therefore, be ignored. We thus see that our diagrammatic approach
gives new results. It may be asked how such a thing comes about since our claim
is that diagrammatic approach is equivalent to ordinary quantum mechanical
approach. It will be noticed that the extra terms that we get arise from electron-
proton intermediate state whereas in the Kramers-Heisenberg approach the inter-
mediate states form the complete set of states of the hydrogen atom including the
continuum states. It is true that these continuum states are electron-proton states,
but so are the bound states. The point to note here is that both the discrete and

continuum states are correleted electron-proton states and are represented by our
- = ’

h(x, x5, t). The proton-electron intermediate states of our diagrams (6d) and (6e)
are virtual but uncorrelated proton and electron. If one were to include them in a
standard quantum mechanical calculation, one would have got the extra terms
that we get. Our advantage is that in a diagrammatic approach it is easier to
visualise things and include all possible intermediate states.

Among other atomic processes involving photons are the Van der Waals interaction
between atoms which takes place through the exchange of two photons (Feinberg
and Sucher 1970). For simplicity, we consider the interaction between two hydrogen
atoms for which the Feynman diagrams are given in figures 7(a) to 7(j). Use of
Feynman rules and dipole approximation yields the following matrix elements.

, d*kd Eio Y JonkT g no E,z,'a r. on’ r n'o prg g
Ma=l€4f @ ( ) (a) . (a) (o.) Daa'(k,w)Daa'(k"{'Q:w)’

4 P
(27) 5 E +tow Es—w o
; Akdew B2t Jon(r Jno E2o(re)on' () | - -
My=iet f nm o a’no o\ q”on \ gm0 ’ , ,
b (27T)4 7 Eno_w En'a+w Da'a' (k’w)Daa (k+ Q,CU)
nn

(41b)

) A%de B2 Don(r Jno E2 (! Do (r Dt - - =
Mc=le4f Z nev.a a/h .- n’o\" g’Jon’\" q'/n’0 )
@' 4 E.te Fota— Daalb) Doyl Q)
nn me (41¢c)
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P1»P1n P ' Hin) p b'2"’260

P
HIS) i H(IS) H(S)

P H(n) P 52,920 H(IS)

PP
H (IS ) cmelipl e mpm =~
eny -, 7
H(S) < H(S)

s o ~Bo—
Propy P pa.p’

(f)

D;D

D
H(1S) e L HS)

k,w k'

H(IS) H(IS)

ﬁ",'pmp H) P pz'pf'eo

(h)

(1)

Figures 7(a) to 7(j). Feynman dxagrams for Van der Waals interaction between two
hydrogen atoms. :

- —
D, Aks0) D (k+0.),

ot [ [Tl S B B
! | “( 277‘)4; EH o w Eﬂ ,0

n,n’ : - ‘ (41d)
- iet d3kdw 20(7‘ )o”(l" )no N g g
== e 98 Dk, w) D [k ,w), (41
ff(w § B 1 Dotk @) Dok + Q. ), (410)
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184 j‘fdakdwz no(} )on( )no f’i' Daa/(z w) Daa,(—].:—[— _53 w)’ (41f)

(2m)* e
- fd@]fgsz(;)ﬁ) 8yt Dyulls @) Dk + 0, 0), (41g)
4
M= [ ‘1(2’“;‘” b Dyl @) Dyl + 0, ), (41)
Myt | [ Dol ) Dull + 2, ), 1)

- > - > -
where Q = p| — p; = p, — p, is the momentum transfer. The sum of all these

matrix elements can be expressed in terms of the polarisabilities

- D[ =]

(d,’)on' (d,’)n'o (dl ')on' (d")n'o

! j— a a | a a . 42

a'(w) Z[ o Ta - T ] (42b)
n

This works out to

M =38n?i f dg:)i:) a(w) o' (w)

34 2 k2 _]:- ->2 oy _>2
(Jot ot (k4 (4 0P} + (K4 O @3
(w8 — R + i) {w* — (k + O + in}

The potential energy of interaction is obtained by taking the Fourier transform of this
matrix-element (Berestetskii et al 1970): :

V(R) =8 i fffdsk(‘;‘:’r)‘fa ¢i0: R 0 (w) o (o)

It 2 {2 T ->2 T —>2
o ot — ot {k —|-(k+Q)};—|—{_li'(k+Q)}. (44)
(0 — k2 4 in) {w? — (k + 0)* + in}

This is the interaction energy between the hydrogen atoms at the distances large
compared to the atomic radius a, Since for a given distance, the important range
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of integration for k is k ~ R~ and for g, € R < A, A, being the wavelength of
the atomic transitions, we can neglect w in comparison with k. The interaction
energy thus obtained to be

vy = 5 5 Snl &0 (m|di [0
RS L, E,+E;—2E,

nn

(49)

which agrees with the standard result (Landau and Lifshitz 1977).

On the other hand, if the distances are such that the retardation effect comes into
play, the integrations can be carried out with the limit of zero momentum transfer
and static polarisability of atoms and thus the interaction energy is obtained to be

_23a(0) @/ (0)

YR = -t (46)

which agrees with the result of Casimir and Polder (1948).
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