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A%simple derivation of the three magnon bound state
equation

CHANCHAL K MAJUMDAR*, G MUKHOPADHYAY* and
A K RAJAGOPALT

*Tata Institute of Fundamental Research, Bombay 400005

1Department of Physics, Louisiana State University, Baton Rouge, Louisiana, USA

MS received 16 May 1973

Abstract. A simple derivation of the equation for determining the bound states of
three magnons in the Heisenberg linear chain with longitudinal anisotropy is given.
The present method utilizes nothing more than the Schrédinger equation and Faddeev’s
three body equations, and avoids the introduction of the ideal spin wave Hilbert space.
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1. Introduction

The old problem of spin-wave interactions for the Heisenberg Hamiltonian

FH=—1FZ S Sivs ()
7,0

(i denotes the lattice sites; & joins a site to its nearest neighbours) still retains some
interest. Many years ago, Bethe (1931) considered the linear chain, described by the
Hamiltonian

N
H=—F3 S Sin (2)

=1

(J> 0, N+1=l, i.e. periodic boundary conditions) and showed that the interactions
were strong enough to produce bound states of two or more spin waves. In one, two
and three dimensions, the interaction of just two spin waves leads to a soluble problem.,
Its solution was started by Dyson (1956) in his classic work on the Hamiltonian (1)
and completed by the work of Hanus (1963) and Wortis (1963). Fukuda and Wortis
(1963) gave an extremely simple derivation of the solution. The problem has been
studied by several others (Boyd and Callaway 1965, Katsura 1965) from different
angles.

Since Bethe’s predictions were made, almost forty years elapsed before the bound
spin wave states were detected experimentally by Torrance and Tinkham (1969 a, b)
in the far-infrared transmission studies on CoCl,-2H,0O at helium temperatures. They
found 2, 3, 4 and 5 spin wave bound states. Actually CoCly-2H,O has strong longitu-
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dinal and transverse anisotropy. JTaking advantage of the longitudinal anisotropy,
Torrance and Tinkham explained the data by a slight variation of the Ising model.
They also pointed out that the transverse anisotropy in CoCl,2H,0, though weaker
than the longitudinal part, facilitated the observation of the bound states. The intro-
duction of the transverse anisotropy complicates the theoretical problem very much,
although Baxter (1971 a, b), in a remarkable work, has succeeded in solving the ground
state energy problem of the completely anisotropic linear chain

N
_ * Y g £ oF
== {]xS;-S'z'+l+ijiSi+l +7.5; Si+1] (3)
i=1
(Fx«#Fy#J - The transverse anisotropy is still sufficiently weak so that it can be

left out as a first approximation. The mathematical problem then becomes much more
tractable, almost in the same manner as (2) is.

The Hamiltonian with only longitudinal anisotropy we shall write as

2

N
i=1 ’

This has been studied by Kastelijn (1952), Orbach (1958), Walker (1959), Griffiths
(1964), Katsura and Inawashiro (1964), des Cloizeaux and Gaudin (1966), Yang
and Yang (1966 a, b, ¢) and Flicker and Leff (1968). In view of the experimental
situation, one might pose the problem of compurting the various spin wave bound
states of (4), for all values of | o| between 0 and 1 (the dominantly ferromagnetic situa-
tion). In fact with two spin waves in interaction the complete solution is obtained by
Orbach (1938), following the Bethe analysis, and by Wortis (1963). For arbitrary o
their generalized equations have not been solved for three or more spin waves.

The bound state problem for three interacting spin waves for (2) was solved by
Majumdar (1970) by a new line of attack. He utilized the rigorous quantum mechanical
treatment of the three body problem by Faddeev (1961) (Newton 1966) and derived
an integral equation for the bound state eigenvalue. Majumdar and Mukhopadhyay
(1970) computed the eigenvalues for arbitrary 0. There are three steps in this calcula-
tion. First, the spin Hamiltonian is converted into a Hamiltonian for interacting Bose
particles by Dyson’s construction. The ferromagnetic ground state becomes the vacuum,
t}.xe single particle states are the ordinary spin waves. The spins at each site have a
kinematical restriction—there are (25+41) states associated with a spin of magnitude §
on a site. The harmonic oscillator introduced at each site in lieu of the spins have no
such restriction. Over this extended basis, a2 new Hamiltonian is constructed such that
the physical scattering matrix elements of the original spin problem are correctly
rcpr.oduced. ‘This new operator is in fact non-hermitian. [A general discussion of
possible D):son-like construction is given by Dembinski (1964)]. In the second stage
the two spin wave interaction is solved completely in terms of the t-matrix and it is
observcd. that this t-matrix is separable. The importance of this simplificationn was
first realized in connection with the Faddeev equations by Lovelace (1964). Finally
the Faddee‘.f _equations for the 3 spin waves are written down and simplified, thanks tc;
t;::; ;cgi)::::shq of the two particle t-matrix, into an integral equation for the 3-magnon

'?."he .ﬁrst-step is complicated. The full capability of the Dyson comstruction is re-
quired in discussing thermodynamics of spin waves, but it seems that for the dynamical
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problem of three bound magnons a simpler method, for example a generalization of
the Fukuda and Wortis (1963) method, ought to suffice. This work presents such a
generalization. '

The method, just as the original method, works in one, two and three dimensions,
but the solution for the eigenvalues has so far been possible in one dimension. We
shall restrict ourselves to the exposition of the one-dimensional situation for §=3}.

2. The two-magnon problem

We write (4) as

FH=1Y JaS; 5+l S +S; 5)] (5)

i J
JF(i,j) will be taken to be zero unless 7 and j are nearest neighbour sites, and — 7 if they
are. Also J(i,7) =F(j,1). Asground state|0 ), we take the all-spins down state with

energy E.
10Y =B(1) B(2)........ BN)
FE0) =Ey|0) (6)
Let the one spin wave state be
b=> U()S; 0 (7)
{
with energy E; or excitation energy &;=E, —E,. Then from Ji =E) we get
ep=y UW|FL, 5;]10) o (8)
l
Using the standard commutation rules '
z o 2 e z
(S5, 8] = £ 58 [S, S;] =28, S 9)
we get
+ . + 2 + 2
[3,8,]=2 576, [8; 8§ =05 8] (10)
?
As

SflO):—%[O),foreveryi,

we have from (8) and (10)

el¢=%2U<z>_2ﬂz', O (=8 +e8])10)
or, Z[el—}-%z‘}’ nlow s;10) %ozZU[)j‘z[S 10)
EZUz)] )S; [0 (11)

Follows the difference cquauon for U(l):

(6 =F)U(l) = =4 F(U(I+1) + U(I-1)) (12)

T T TR S e s
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The solution is

U(l) =N-} exp (ikl)

k=2m AN, A=0,1,........ , N—1

g, =F(1—o cos k) (13)
The two spin wave state can be written as

b= UL m) S, s 10) (14)

lL,m

As [S;, S;]zo, we must have symmetry between [ and m, U(l, m) =U(m, [). Also for

S=1}, S:S;[O ) is identically zero, so U(l, {) is undefined. The excitation energy €,
for this state is given by

. Z Z

egfi= > U (L m) ) F(is ) (8)87 —asS; S, ) ST10) +

I,m i

. + Z
+5 Ul,m)y Fi,m)S, (787 — oS, s2)10) (15)
Iim i
In pushing the $% operators to the right we remember that i can be equal to m.

egp= > Ulm) D JGi, ) (5] 8" SE487 8, 8im —oS] 8" %

lL,m i

+ o+ 2

—a S8 8,]10) + > Ulbm)y F(i, m) (s, 8, $Z oS 8, 82)10)
I,m i

i | et 3 76, D+ TG, m)|U (1, m)S; S7 10
;%UIZ ZU(I, m) ¥ (i,0) S; S, 10) +%o'lz zU(l, m) J(i, m)S; S;10) —
—%{2 QUL m 3 () 8.8 8 |0 >’+
+ z’U(z, m) F(I, mS; S, |0 (16)
Now o

S SUlm 36,0 S S0y = > UGmIL) S S, 10,

Lm ¢ lLbm 1
IEmEiU(l, m) F (i, m) S;’SHO):IE S U F m 3 STST10Y (17)

We treat the delta function part symmetrically:
. + _+
> U m) 36, 1) 87 S, 81

lim,i

=1> UL D 3G, OS) S; 4+ Ulm,m) § (i, m)S; .-
L

m, i

=1 (U )+ Ulm, m)) F (1, m)S; S, (18)
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From (16), (17) and (18) we get
li(sz—w) U(l, m) S, ST 10Y =%4> > UGEmFLHS; S [0)

I,lm 1

+10> DU D) Flm, i) ) S, |0)

ILm i
—3> Ft, m)[o LU, 1)+ Ulm, m)}—2U m)1 S} S" [0 (19)
I,m

Hence

(e2—25) Ul m) =3y Ulis m) F(ls i) 3o > UL, i) Flam, §) —
—37(, m) {oU(l, [)+oUlm, m) —2U(l, m)} (20)

Note that the physically undefined quantities U(m, m) and U(/, [) cancel out of the right
hand side of the equation as they should. The Schrodinger equation (15) thus does
not involve these. It is convenient, however, to remove undefined character of U(l, m)
at [=m so that Fourier transforms can be freely taken. We assume that (20) holds
when [=m on the left; this defines U(/, {) in terms of physically significant quantities.
Eq. (20) thus hold for all / and m. Define the Fourier transform

Ul m)=N"1> Uky, ko) exp (ikyl--ikym) (21)
kla kﬁ
with U(k,, k,) =U(ky, k) by symmetry of [ and m. Eq. (20) gives
[82—2]+03(COS k]_"l" COS kz)] U(k]_, k2)

- _ §'lfvz l’zm exp(— ik I—ikym) F (L, m)kzk’{o exp [i (K, 4K+

“+o exp [k +k,)m]—2 exp (ik,[+ z'k;ntz):;-U(k'l, k.) (22)
Define the centre of mass and relative momentum |

p=kytky p'=K 4k, g=3% (ky—ky), ¢ =%, —F)) (23)

Eq. (23) reduces to .
[e;—2F+4-20 F cos } p cos qlU(#, 9)
:% Z 8(p—p"){20 cos g cos 3p"—2(cos ¢ cos ¢'+sin g sin Y YU, q")
s q
25 / '
=7V——§cos g(o cos } p—cos ¢') U(p, ¢') (24)
pr

The last line follows as U(p, — ¢) =U(p, ¢). The continuum of the two particle states
is given by g,=27 [l —o cos 4p cos g], while the bound state is obtained by the solution
of the integral equation (24). The bound state condition is
1 — %_7 7 cos q(o cos 3p— cos q) dg
7w J 0 g,—2F+20 F cos ip cos g

and the bound state energy is
gop=J (1 —0o? cos® }p) (26)

(25)
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We shall not write down the two particle t-matrix here, as it is derived below in the
form required.

3. The three magnon problem

The three spin deviation state is written as
R
p= > U, mmn)§ S, S 105 (27)
L, m,n

Here U(l, m, n) is symmetric under the permuta.uon group S3 of three objects. The
excitation energy €; of the state (27) is gwen by

ep= o Ul m, n) [2 F(, 1)( S; —G.S S; )S; S+

L,m, n

4
+.8 zj(z m) (S, 87 —o S S 2) s +8) S Zj(z n) (S5 87 —o S!S 2110 >
(28)
First we push all the SZ terms to the extreme right to let them operate on the vacuum
state, carefully keeping any non-vanishing commutator. Next we use considerations
analogous to Eqgs. (17) and (18). We thus arrive at the cquation

(es—3F) UL, m, n)=?15az[U (i, m, n) F(i, O+ UL, i, n) F(, m) -+

+U(l, m, 1) (2, 7z)]~§j(l m)[o U(, I, n) +al(m, m, n)—2U(l m, n)]
—3 F(m, n)[oU(l, m, m)+cU(l, n, n) —2U(I, m, n)]
—3 F(n, D) [cU{, m, ) +cU(n, m, n) —2U (I, m, n)] ‘ (29)

The equation thus derived for the condition that no two of the trio [, m, n could be
equal is extended to arbitrary {, m, n by defining the unphysical quantities U(/, [, n) etc.
by means of (29). We are then ready to take Fourier transforms:

Ul m, ) =N 5 Ulky, ky, ks) explikyl+kym-+-Fkgn)] (30)
kl’ kﬁ: kij
We obtain
[e3—3 F+oFf(cos ky+cos ky-tcos k)] U(ky, ko, &3)
1
=~ > exp [—i(kyl+kym+kyn)] [F (L, m) LU, £, n)+

{,m,n

+al(m, m, n) —2U(1, m, )} +F(m, n) {oU(l, m, m)+cU(l, n, n) —
—2U(l, m, n) }+ F(n, 1) {aU(l, m, I) +cU(n, m, n) —2U(I, m, n)}] (31)
Consider the reduction of the first term on the right hand side. We have

1
v 285 {—ilklkam+-kn) } F(U m) > {oexpli(k, I-+k.1+k,m)]+

I’ } ’ s, 4
s kl’k’szé’a
-+ o exp [{(k] m+-k, m+k, n)]—2 exp [i(k, I+k, m+k, n]YUK,, k,, k)

27
= —-_— Z 8(ky+ho+hya—K, —k]—K.) & (ky+hky—k, —EK]) X
Ic k k .
% [o cos } {(k1~A2) +(E KD 3+ o cos ¥ {(ky—ky) — (K, +K)F
—2 cos § {(ky—ks) — (K, —k)}] U(K,, &, k) (32)
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We now define

K=k +ky+k,, K'=k +k 4k,
b=k +k, 2y =k’1 ~|’—k2,
73=3(k1—ks), g =3k, —k) (33)

Eq. (32) takes the compact form

4.7 Z (E—K")8(p3—p,)[o cos g3 cos §p, —COS g5 COS ¢, —sin. gy smq]/<
Ny d
XUK', p., ¢.)

_ Y z S(K—K")8(ps—p.) cos g3 (o cos }p, —cos g UK, py, q,) (34)
.NK'/ ’ '

by
The last step uses the symmetry U(K", p,,—~q.) =U(K", p, q.).

Clearly, as in (33), we could define two other sets (py, ¢5) and (§y, ¢;) obtained by

cyclic permutation of the indices 1, 2, 3. All these decompositions are equivalent and
we have

|k1, Fs, k3>Ele.p1> 91>1Elf{>ﬁ2= Go ) o= | K, D3, 37 3 (35)

the subscripts 1, 2, 3 referring to the particular decomposition. The reduction of the
last two terms of (31) can be achieved with the help of these sets (py, ¢;) and (P, ¢2)>
exactly as (ps, ¢) is used in (34). Eq. (31) finally takes the form

[e3—3F 40 (cos k;+cos ky+-cos ky)JU([K]) =z QLIANANLADRI(IA)
(%]
(36)
where the total interaction can be written as

CENVIET Y == 5 (K—EK")[8(pg—p,)cos g5 (o cos §pz—cos ¢,) +

+3(P2"P;) cos 42(‘7 cos %pz——cos 99) +8(y “f%) cos ¢, (o cos 3y —cos 9:)] |
(37)

Compare this with Eq. (25). The full interaction is a sum of three two-body inter-
actions, the momentum representation of each is given explicitly in (37). Observing
which two of the three spin waves interact, we use a particular decomposition of the
set (ky, ko, k3) or (K, k,, k). This last fact is implied by enclosing the momenta in
square brackets. The ovcrall momentum conservation is given by 6(K—K'): this
causes no difficulty. The existence of the other delta functions 8(p;—p,) etc., indicating
one spin wave remains a spectator while the other two interact, causes difficulty in

mathematical manipulations. Precisely this is overcome in Faddeev’s equations for
the three body problem.

Briefly these equations are as follows. Let the three body problem be set as

where H,, is the diagonal part in momentum representation. The three particle
T-matrix is then written as

T=T14 T2 T8 ' (39)
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with

Ti=T,+T,Go(T2-+T?)

T2=T,+T,Go(T3+TY)

T3=T,+T,Gy(T*+T?) (40)
and .

Gy=(E—H,y)™ (41)

The operators Ts are derived from the two body potentials

T, =V1+ViG T,

To=Vs+VsGoTs (42)
These are really the two-particle t-matrices but because they contain G, and operate

in three particle Hilbert space, they are actually obtained by off-shell extension of the
t-matrix that would be derived from (25). We shall directly solve (42).

Take the equation for T, for example. From (34) we identify V; and use the set
(K, p3, g5), subscript 3,

ST | Tal 6] ) 5= %’8(}6——1{')8@3—;»9 cos gy (o cos Jpg—cos 4.)+

2] 8(K—~EK")8(py—p.) cos qa(a coS 33—~ C0S ¢,)

14 k
gg—3F+20f cos 3#, cos q, + o cos (K—p,) 3< TR 2 o

[k"]
(43)
Putting

T T3 | 1) 4= 27 S(K—K)5(p3—)) cos g2 () (44)
we get

, "o 27 z cos ¢ (o cos $p5—cos g,)$(g,)
= 1p,— - >
¢(43) —(G cos 2p3 Cos (.Zs) + N 63—3]+Uj cos (K—p3) +20:_7 coS %p's cos q:

or
$(g,) =(o cos $pz—cos ¢,)[D(es, K, py o) (45)
where
D(ey, K, pg, o) =1 _gzz cos ¢ (o cos }pg—cos q)
B gg—3F+0F cos (K—ps)+20F cos $p5 cos q
q
=[8—w—1% o cos (K—py) —{§—w—1%0 cos (K—py) —0? cos? § pa} X
— a? cos? %Pa >_%:| / g 2 46
* (1 [B—w—1%o cos (K—py)° 05" ¥ 140)
with w=g,27.
So*

®One might be puzzled by the difference of a factor 2 between this equation and Eq. (76) of Majumdar
(1970). This arises as the latter explicitly uses the creation and annihilation operators for bosons and
takes exchange automatically into account. The present work leaves out exchange explicitly; it is, of
course, known, that exchange is equal to the direct term for these bosons.

B L

- »«-—w-w% -
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3 (R TGlIK] ) 5= 2]-;—(7 S(K—EK")8(ps—p,) cos gs(o cos 3p3—cos ¢,)/D(e; K, py, o)
(47)

Expressions for T; and T, can be similarly written down in their respective sets sub-
scripted by 1 and 2.

Consider now the first of Eq. (40). For T we are to use seti. Thus
1 < Knbl’ QI’l Tll [k’] > =1 < Kubls 911 Tl! [k’] > + Z <K’ pl, qll T] l [k”]> X

[*]
{<IFT T2 R + <R T2 K1)} (48)
* "e,—3F -+ (cos E, + cos K, + cos k)

For T%, we must have { [k"]| =,{ K", ., ¢, | and for T3, we must have

(k1| =3{ K", p,, ¢°| . On theotherhand, for T; we must express| [£"] ) interms of
theset 1. Let

l k) = ‘K”, 1’:’ (I: 2= ‘K”, Z’;a (7; )1

l[k”]>E|K”3p:: 9:>35|K”:/’:> ?;,)1 (4'9)
We use (33) to work out the transformation (49):

bo=K'—}p,+4q,  §,=2(K'-34,—4,)

by=K"—3p,—q,,  G=}(=K"+3p,—4,) (50)
We then have

VK by | Ty ) o= (K s 0 | Ty K s €00

2%7 S(K—K")8(p,—B.) cos ¢ (o cos } py—cos q,)[D (&g, Ky, py; 0)
2 ” 4
e N‘78 (K—K”) 8 (p]_'_K-I'%pn-—QQ) X
X cos ¢, [o cos $p,—cos $(K'—35p, —q,)1/D(e3, K, py, 0) - 6D

Eq. (48) becomes

K by g | THIED) =1 (K b @ | Ta [ TR ) 44
27 €os q;
N D(ey, K, py, 0)
S(E—K)3(py— K"+ 1) Lo cos 3 —cos J(— BLHE"—a)]
% z g5— 37 +20.7 cos 3, cos g,+0F cos (K—p,)

K’/a!’:s ‘I:
Xg (K" iy g0 | T2 [K]) +

n 27 Cos q
N D(83: K, P a)
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X

S(K—K")8(p—K"+1p, + q,) [o cos 4py—cos (54, —K"—q))]
€5—3F+20F cos §p, cos ¢, +oF cos (K—p.) '
K"\p..q,

xg (K", phn g, | T3 [K]) (52)

We now put, using (51), . .
Kby, g | TYH TK] Y =8(K—K") cos ¢; ¥y, etc.

LK by @ | Ta| [F]) 1= 8(E'—K") cos gy, xy, etc. (53)
Thus
IP(PJ.) =X1
\ 2_"._7 1 X
T‘N D(Saa Ks pl’ 0)
y z Lo cos 4, —cos (K—3p,— #,)] cos (K—py —34) Palty)
e3— 3F + o cos (K — p.) 4207 cos §p. cos (K—p; —4p,)
n 27 1 [o cos }py—cos (K'—3p,—p7)] cos (K—py—3p,)¥s(2)

J—V: .D(Ssa K, £y, o) - &3—3F+0ajf cos (K—P:)'*‘Qc] cos %[J: cos (K——pl-%p’;)

3
(54)
The homogeneous equation leads to the bound state equation

Y(p)= gz [o cos §p;—cos (K—3p,—ps)] cos (E—p1—4p,) ¥ (bs)
N £2D(85. K, pr, 0) [£5—3F+ 0 cos (K—py) +207 cosipy cos (E—py—3$p2)]

(35)
where we utilized the fact that W,(,) is the same function of p, as W, (p,) is of 5.

3B
2J

}
]
2T K T

Figure 1. The three magnon bound state energies plotted against the centre of mass
momentum for various anisotropies. For ¢=0-2, the values are very close to the Ising

values 0=0-0. The numbers are actually given in Majumdar and Mukhopadhyay
(1970). :

P—.
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4 K=nu/8
$(p n=3 4 5 6 T B
10

Figure 2, ‘[he funetdon Yipy for o L and Ko o8, 0 8, 7, 6,5, 4, and 3, (Re-
ported in Nuelear Physies and Solid State: Physics Symposimn BARCG, Bombay: Solid
State Phyadcvol 38T (197200

4. Discussion

-

S5 and it solutions gy, for various vadues of o were reported earlier
U Muklopadhyay 10700 The solutions were obtained numerically

The equation |
(Majumdiue
(figure 1. Althougly it seens feeible, we have not succeeded in getting the functional
form Wip) anadvticadly. Ave 1L the sotropte case, the energy is known analytically
Ly R cos By (56)

The corvesponding ' pp's tor & a8, o 3,0k 8 wre shown in figure 2.

In CoClye 21,0 the exchange constants of (3) are in the ratio ((Torranee and "Uinkham
196491)

VY Y M AN B S IR Y

i
i

?

)
0
5,3
H

£
i .
p
§v H
[
t N
P
L]
P
re

The longitudinal and transverse exchiange constants are
y ) - N -~ o b/ A0
Joo b s .[},)Cﬁl hdy YOIV jv’““ R
Negleoting transverse anisotropy, we gel

o JoTz 02 (57)

Figure 1 shows that the three body bound stite energy has negligible bandwidth when
plotted against & for such stromyer longitudinal anisotropy. In the experiment the line-
widthy is thus extremely snndl, and one can obtain essentially equivalent answers, as
Torrance and Tinkham did, by considering the Ising model.
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