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Connectivity constant of the kagomé lattice
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Abstract. From the computation of self-avoiding walks on the kagomé lattice, its
connectivity copstant is found to be 2-569 4 0-008.
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1. Introduction

The connectivity constant* (Broadbent and Hammersley 1957; Hammersley 1957)of
the kagomé lattice is not reported in the literature (Shante and Kirkpatrick 1971;
Watts 1975; McKenzie 1976). The coordination number of this two-dimensional
lattice is four, the sameasthat of the simple quadratic lattice, but the overall topology
is different. The results on the kagomé lattice can therefore be compared with those
on the simple quadratic lattice to find the effect of the global structure of the lattice
on physical quantities. For example, it is known that the transition temperature in
the Ising model in these two lattices differ by 69, (Fisher 1963). Here we report the
number of n-stepped selfavoiding walks (SAW) on the kagomé lattice, n = 1 to 16,
estimate the connectivity constant of this lattice, and compare it with that of the
simple quadratic lattice.

2. Calculations

The kagomé lattice is obtained by decorating the hexagonal lattice with a point at the
midpoint of each side, joining these points and dissolving away the original lattice.
But it is convenient for the use of a computer to distort the lattice into a square
geometry (figure 1) and enumerate the neighbours. The method is explained by
Dean (1963). The computer program then follows the algorithm outlined by
Martin (1974). We take a 51 X 51 matrix to represent a finite part of the lattice, and .
count sAw of up to 16 steps. The time taken to count all the 16 step saw is
about 2hr. As a check on the computer program, we counted the SAW on the
simple quadratic lattice and reproduced the first few known numbers of these walks,
Table 1 lists the number of saw counted on the kagomé lattice.

*In the literature the constant is often called the connective constant but Kesten (1980), who has
done much work on self-avoiding walks, uses the term connectivity constant.
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Figure 1. a. The kagomé lattice structure. b. Topological structure equivalent to
the kagomé lattice. :

“Table 1. Number of SAw on the kagomé lattice.

No. of steps No. of saw
n

CIX
1 4
2 12
3 32
4 88
5 240
6 652
7 1744
8 4616
9 12208
10 32328
11 85408
12 224640
13 589024
14 1542944
15 . 4039256
16 10560552

It has been conjectured that the number ¢, of n-stepped sAW is given asympto-
tically by

e - W

as n- 0. Here w is the connectivity constant and g is an index, having a value
close to 1/3 for all two-dimensional lattice (Domb 1970). The numerical methods
for analyzing the numbers in table 1 are well known (Domb and Sykes 1961 ; Martin
et al 1967). Our best estimate for p in the kagomé lattice is -

p = 2569 +0008. . O

Sometimeés one writes 1 = €', and the value of « for the kagomé lattice is

¢ =0-943 £ 0003 R 3.
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g turns out to be & 0-3. The best estimate for the simple quadratic lattice is p =
2:6390 4 0-0003. Examining the detailed numbers, we find that the convergences
of n and g are somewhat poorer in the kagomé lattice than the simple quadratic
lattice. Hence our estimate of the error is larger in both p and g, as indicated above.

We conclude that the effect of the global structure vis-a-vis local structure on the
connectivity is indeed rather small. In problems of physical interest, percolation
processes or dilute magnetism, the effect of global structure may be ignored unless
high accuracy is attempted in the calculation.
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