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Effect of correlation on the band structure of cerium
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Abstract. The electronic band structure of f.c.c. phase of the rare earth metal
cerium (a-cerium) has been calculated using a formulation of the crystal potential
where correlation also has been included in addition to exchange. We use the
prescription of Cohn and Sham as well as that of Overhauser. The Green’s
function method of Korringa-Kohn and Rostoker has been used for obvious
advantages in the calculation. The calculations indicate that the s—d bands are
hybridized with the f-levels but the f-bands are fairly narrow and lie slightly above
the Fermi level. The structure of the bands is qualitatively similar to those of
calculations by others except for a general shift of the entire set of bands by about
0-1Ryd. The density of states has been calculated from the bands obtained, The
spin susceptibility of a-cerium has also been calculated using the Kohn-Sham
method. However, the calculated additional contributions to the band structure
values cannot still explain the large experimental values reported in the literature.

Keywords. Energy bands; rare earth metals; cerium; density of states; KKR
method; spin susceptibility.

1. Introduction

The electronic band structure and the Fermi surface of metallic cerium (Ce) have
recently been calculated by the APW method (Mukhopadhyay and Majumdar
1969, Mukhopadhyay 1972). The unusual physical properties exhibited by this
metal in f.c.c. phase have attracted much attention and have been reviewed several
times (Gschneidner 1965, Cogblin and Blandin 1968, Mukhopadhyay 1973).
In Mukhopadhyay’s calculation, the effect of changing the exchange potential
from Slater (1951) value 1 to the Kohn-Sham-Gaspar (Kohn and Sham 1965,
Gaspar 1954) value 2/3 is thoroughly investigated. It is found that the f-band
1s very sensitive to the exchange potential, but the remaining structure is not.
For the Slater exchange the f-band lies well below the s-d conduction bands; it
rises quickly as the exchange coefficient is reduced and at the value 2/3 the f-band
lies above the Fermi level. The Kohn-Sham formulation of the band structure
problem has not only the 2/3 value for the exchange, but also shows how a part
of the potential comes from the correlation energy. This has not been included
in any previous calculation, although a rough idea of what might happen can be
gained from changing the coefficient of the exchange term. In this brief paper
we want to present the results of a computation that includes the correlation
potential.
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It is well known that the correlation energy for actual metallic densities 2 <
r, < 6 cannot be rigorously computed, r, being the standard electron gas para-
meter of inverse density. Usually we have to use interpolation formulas between
the computations strictly valid at small r, and at large r,. Several interpolation
formulas are possible each leading to a different potential. In order to have flexibi-
lity in this regard, it is convenient to use the Green’s function or KKR method
(Korringa 1947, Kohn and Rostoker 1954) rather than the APW method, because
in the KKR method, a clear separation between the kinematical and dynamical
parts exists and it is not necessary to repeat the kinematical part of the computation
for a different potential. We have adapted the published Green’s function
programme—that by Faulkner etal. (1967)—on a CDC 3600 computer for this
purpose.

In the next section we discuss the potential used and then describe the results

obtained in section 3. In section 4 we give the results on calculated spin para-
magnetic susceptibility.

2. Construction of the potential

The details of the Green’s function method are well known (Singh 1968) and need
no repetition. We shall simply describe the construction of our potential.

We follow Mukhopadhyay (1973) for the direct atomic potential in the follow-
ing manner. This contains the nuclear part — 2Z/r in rydbergs and the direct
Coulomb part obtained from atomic charge density of Liberman et al (1965).
The effects of potentials due to neighbouring atoms around the central atom chosen
as origin are obtained by a-expansion technique of Lowdin (1956) as discussed by

Loucks (1967). To this we must add p,, [#2 (#)] given by Kohn and Sham (1965)
of the form

e I1] = o (16,0 ()] | 1)

where e (#) is the exchange and correlation energy per electron of a uniform elec-
tron gas of density n. For the exchange part only we get

1 .
pe(F) = — = (B (M) @)
in atomic units or
2
pe(r) = — = (372 n (M) Y2 Ryd 3)
which is the usual KSG exchange part. For correlation energy we shall use the

old Wigner (1938) interpolation

0-88
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4)
so that
B 0-88

Con /3 + 778 (5)
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3 1/3
C, = (IT) —0-62.

The correlation part of the potential comes out to be

. 0-88 n(r)t/3 1 :
pe (1) = — 0:62 + 7-8n(r)? [1 T3 +37-72n (r)1/3] (6).
and the total exchange and correlation potential becomes
_ 2 Y1/
V() = — 2 (32 n ()®
0-88n(r)/3 1
T 062+738n (r)l/‘*lj1 +3+37'72n(r)1/3]' D

Since the other correlation formulas give very similar results we believe that ¥,
is perhaps typical of all of them. Recently, Overhauser (1971) has proposed a
very simple exchange and correlation potential

Ay, = — 2+07 (na3)®3 Ryd ®)
where a, is the Bohr radius and the electron density » is expressed in ag® units.
In our units it is

Vo(r) = — 2:07 (n (#))** Ryd. 9)
The significant thing about this potential is that the power of » is not 1/3 but 0-3.

The relative difference of the two complete potentials is appreciable only at the
extremities of the cell. Figure 1 shows a plot of these potentials, as well as the

one constructed without correlation energy.
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3. Results on the calculated band structure

We present in figures 2 and 3 the results of our calculation of the band structure
of a-cerium. The structure is qualitatively similar to previous results of Mukho-
padhyay (1972) using APW method, except for a general shift of the entire set
of bands by about 0-1 Ryd caused by the greater attractive nature of the potentials
used by us. The s-d bands are hybridized with the f-levels, but we obtain a fairly
narrow group of f-bands lying slightly above the Fermi level, no matter whether
we allow three or four conduction electrons. This picture supports the quali-
tative features of the Ramirez-Falicov (1971) model for o~y transformation in
cerium.

For the case of ¥, the band structure is remarkably close to that of the ordinary,
KSG potential. In the case of Vo, the level I',; comes down below I, and the

entire f-band levels I, Iys s lie between I.. and T';,. The narrow bands
spread more than the V., case almost 3/2 times. The qualitative features are
reproduced correctly. Since Overhauser’s potential has a different power behaviour
this is a heartening feature. ‘

The density of states D (E,) of a-cerium for the V. or V, choice of exchange-

Ww

correlation potentials are presented in figures 4 and 5. For the three conduction
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Figure 2. Band structure of a-cerium for the crystal potential with V.. The
broken lines show the positions of the Fermi levels with 3 and 4 conduction electrons

per atom. The curves along which the points plotted are indicated by squares
represent doubly degenerate bands.
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Figure 3. Band structure of a-cerium for the crystal potential with ¥,. The broken
lines show the positions of the Fermi levels. Square points correspond to dcubly
degenerate bands.

electron -case the values at the Fermi energy are 2:06 and 1-91 electrons/(atom.
eV) respectively and for the four-conduction-electron case the values are smaller.
These are 1:06 and 0-98 electrons per atom per electron volt respectively.
These values of density of states and their trends are similar to earlier compu-

tations.

4 Spin paramagnetic susceptibility

It is possible to calculate the spin paramagnetic susceptibility of a-cerium using
the Kohn-Sham (1965) method. The magnetic behaviour of cerium metal is
extremely complicated but it is known that a-cerium shows essentially, a weakly
temperature-dependent Pauli paramagnetism (MacPherson et a/ 1971) and that
the susceptibility in units of electrons/(atom.eV) is 203 (Grimberg et al 1971,
1972). This is unusually large. The above result implies that the effective den-
sity of states is 20-3 electrons/(atom.eV) if we represent the measured suceptibi-

lity the usual electron gas formula pa D (E,).
The Kohn-Sham expression for the susceptibility is

X =%+ 5 [ )] — Xl (] do (10)
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Figure 4. Density of states N(E) for a-cerium for the case of V,. E,® (n=3,4)
indigates the position of the Fermi level with n electrons per atom in the conducticn
band.
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Figure 5. Density of states N(E) for a-cerium for the case of Voo En (n=23, 4)

indicates the position of the Fermi level with n clectrons per atom in the conduction
band. .o
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Here X, is the Pauli susceptibility while X, (#) and x, (#) are the respective suscepti-
bilities for a uniform system with and without interaction.

According to Mukhopadhyay’s (1973) APW calculations with 3 and 4 electrons,
the susceptibility X, is 1-53 and 1-18 electrons/(atom.eV) respectively (Liberman’s
data for charge density). With correlation included, for three electrons in the
conduction band ¥V, (r) gives 2-06 and ¥V, (r) gives 1-91. For four electrons the
respective values are 106 and 0-98. There is one piece of evidence that indi-
cates these values to be fair. This is the experimentally determined density of
states from electronic specific heat measurements which comes out to be 4-15
electrons/(atom.eV). Mukhopadhyay and Gyorffy (1973) have estimated the
phonon enhancement A to be 0-87 for trivalent a-cerium and 1-11 for the tetra-
valent one (Liberman’s data). Thus the corrected density of states are 2-22 and
1-97 respectively. For the trivalent case, the inclusion of correlation improves
the agreement, but not for the tetravalent case. Since one cannot assign strict
valency to metallic a-cerium and the A values are also somewhat uncertain, we
-could say that the density of states is of the correct order of magnitude.

In order to calculate the additional contribution to susceptibility as in (10),
we face the difficulty that X; for the interacting uniform system is not known.
Using approximate formulas for X; we may estimate the additional contribution
as .follows:

The Hartree-Fock susceptibility for the uniform gas is

X

— .7”‘7‘_0 i
How = (07103759 an

where

a® £3\V/3 pl/3
X4 = =2 (2 A
o IJ'BCD(EF) /“nigﬂ_(ﬂ_) 1361}
electrons/(atom.eV), a, being the lattice constant. We take for n () the charge
density used for the band structure calculations and computed from Liberman’s
data. The unit cell is replaced by Wigner-Seitz sphere and we retain only the
spherically symmetric component of the charge density. This leads to the addi-
tional contributions
r“’S
r2dr

Xog = o |
2d = 13172 J T — [0-103/n (r)"?]
0

— 0-341 electron/(atom. eV) (12)

where r, is the radius of the Wigner-Seitz sphere. Instead of (11) we may use
the Brueckner-Sawada (1958) formula for the susceptibility of an interacting
uniform electron gas.

XO
~ T — (0" 103/n'7%)1-(0-00529] n¥/3) {I-534—1In (0~ 103/n73)}" (13)

‘The additional contribution is in fact smaller, only 0-16 electron/(atom.eV). In
any case the total susceptibility falls far short of the experimental value. It is-
worthwhile to note that the contributions (11) or (13) are independent of what ex-
change or correlation we use, this being due to our choice of n (¢). If one were

X
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to use the n (¥) computed from the band structure wavefunctions, this contribg-
tion will change. But this is not likely to resolve the disagreement with eXperi-
ment which is still large.

We ought to note that (11) and (13) are derived for uniform electron gas theories
and they are not strictly applicable to interacting inner core electrons. If one argues
that only the outer electrons should be counted in using (11) and (13) one gets
corrections to be somewhat larger but not appreciably so much as to be able to
explain experimental results.

Clearly the susceptibility of a-cerium remains unexplained in this way of compu-
tation, partly because equations (11) and (13) are inadequate. We would, how-
ever, like to mention that in the literature (Herring 1966) instead of x, more
often its inverse is computed. One could obtain an equation for y~! analogous

to (10) and preliminary estimates seem to be encouraging. We hope to return
to this problem later. '
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