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Antiferromagnetism in the Heisenberg Hamiltonian
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Abstract. The shortcomings of the classical theories of antiferromagnetism are
reviewed. On the basis of known exact results of several antiferromagnetic models,
it is argued that the spin correlation functions may have oscillating behaviour
anticipated from the classical Neel states even though the exact ground state is quite
different from Neel state. It is also found that as the spin becomes large, the classical
results become more and more applicable as seen in Fisher's model and verified
experimentally. A few remarks on the broken symmetry are made. The existence
of an anisotropic antiferromagnetic model with Neel states as ground state is pointed
out.
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1. Introduction

The understanding of antiferromagnetism in quantum mechanics is not as complete
as that of ferromagnetism. The difficulty is that the structure of the ground state
is rather complicated and usually cannot be explicitly written down for a given
Hamiltonian. The theoretical situation is slightly better for the insulating salts
than for metals. The familiar results due to Neel (1932), Van Vleck (1941),
Anderson (1966) and others and quoted in text books (Kittel 1927) are fairly correct
for the excitation spectrum for the large spin case and away from the transition point.
The critical phenomena are now rather well explained by the renormalization group
theories (Fisher 1974). We shall concentrate on the ground state, low-lying excited
states, and the correlation functions in the Heisenberg Hamiltonian.

Whether the isotropic Heisenberg Hamiltonian is a good description of real
antiferromagnets will be discussed in the last section.

2. Criticism of the usual results

The Heisenberg Hamiltonian is

F =13/ 55, 1)

<ij>

209




210 C K Majumdar

where the sum goes over the sites i and j (i#/ as indicated by the prime, the angular
bracket < > denotes that i and j are nearest neighbours). The classical spin wave
theory is based on the sublattice picture (for a review, see Keffer 1966). In the
simplest situation (that of bipartite lattices), there are two sublattices, and for each
sublattice the Holstein-Primakoff transformation is used. The underlying ground
state is assumed to be the Neel state—up spins on one sublattice and down spins on
the other. Far from being the ground state the Neel states are not even eigenstates of
the Hamiltonian (1). It can be shown that the ground state of (1) is non-degenerate,
has total spin s=0 and has contributions from all the ¥Cy/, states of the z com-
ponent of total spin 5,=0.
The excited states have the energy dispersion relation

w~k, )

for small wave vector k. The derivation does not reproduce the degencracy correctly.
Little is known about spin wave interaction in antiferromagnets.

The thermodynamic properties were established by Van Vleck in the mean free
field approximation. The transition temperature is

T,=2JzS(S+1)/[ky, €

where z is the coordination number. Above T, the susceptibility satisfies the Curie-
Weiss law

X = Ng?B* S (S+1) [ G kgT+T O
B is the Bohr magneton and g is the Lande factor. Below T, the substance shows
spontaneous antiferromagnetism and one has to consider separately magnetic field
parallel and perpendicular to the direction of sublattice magnetization. The
perpendicular susceptibility X, is a consfant equal to the value of X at T,

X, = Ng*BS (S+1) [ 6kp T, , )

The parallel susceptibility X, is

Ng? 242 B/ )
X = ePrBsbd ___, ©
Ky [TH3T, G+ 128 By (7g)]
where y, = 2z ST |Sy| [ ksT, |So| = SBs(Gp) - 1 ™

Bg (x) is the Brillouin function and the prime denotes its derivative. For §=1/2
equation (6) becomes

Ng*p?

Xo = Moy [T+ (1459 T]

®

while for the classical limit S—+c0, B—+0 the expression for X,, is (with 4 =ggS)
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N2
3kpT,+ksT[1=(So/S)? 3 (TTH]™

Xn = ©
The expression 452 appearing in (8) or (Sy/S)? in (9) has the interpretation of being
the square of the ratio of the values of the spontaneous internal fields at the tempera-

ture T and the absolute zero.
For a polycrystalline sample of a cubic crystal the susceptibility is

X =3Xu+EX, . (10)

In summary, the susceptibility has a maximum and a cusp at 7=7,. The parallel
susceptibility vanishes at 7=0, while the perpendicular susceptibility remains large,
thus creating a situation for spin flop transition.

It has been shown by Fisher (1960abc, 1962), that in antiferromagnets the thermo-
dynamic transition occurs at a temperature T lower than the temperature of the
susceptibility maximum

TN < T(Xmax) H (11)

and at Ty, the derivative of the parallel susceptibility diverges

X /3T —+ . (12)

These results are explicitly seen in the exact solution of Fisher’s model on antiferro-
magnet, which is derived from the Ising model.

Finally we come to the spin arrangements derived from the neutron scattering data.
Thus in MnO spins in a single [111] plane are parallel, but in adjacent [111] planes they
are antiparallel.

Recall that the neutron scattering is determined by correlation functions. The
spin structures deduced are supposed to give the correct correlation functions. The
question arises: what can be inferred about the ground state wavefunction from such
data? Because the Neel states have the same up-down form as the spin structure
deduced from the two sublattice model, an impression seems to persist that the
wavefunction must have the structure of the spin structure. We show below that
this need not be the case.

3. The antiferromagnetic linear chain

Many exact results are known in the spin-1/2 linear chain with isotropic exchange

, N 5 &
=23 S8y (13)
i=1

(J>0, N even, N+ 1=l i.e. periodic boundary conditions, i:S:,-l =1/2). The ground
state has total spin s=0 and has energy - 0.88629 NJ. The ground state is a combi-
nation of all the ¥Cy,, states with s,=0. Its structure is not given explicitly but
by the celebrated Bethe ansatz (Bethe 1931).  Since the total spin is 0, the average
01840 >0, Vi. The first excited states are s=1 states and the eigenvalues
are given by

AS 18
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hw=mJ|sing|, (14)

¢ is the wave vector measured with respect to that of the ground state (the wave
vector of the ground state is 0 if N is a multiple of 4 and o if N is of the form 4j+2

with j an integer). Here we have taken the lattice spacing to be unity. Notice the
characteristic double periodicity of the spectrum (14).

The excitation spectrum from the spin wave theory is
ho =2/ |sink| . @15

This differs from the exact result by a factor 2/=. However, the double periodicity of
(15) is artificially produced, and the degeneracy of these states is not correct.
Actually by numerical computation on short chains of higher spin particles it is
possible to show that the spectrum (15) becomes correct in the limit S—00, while
the S =1/2 system is the extreme quantum limit (Jain et al 1975).

The correlation function < S? S%., > inthe ground state has not been calculated
from the Bethe anmsatz. Only the nearest neighbour correlation function
< §*8%,>, which is connected to the ground state energy, is known and
{8185, > < 0. A detailed knowledge of the functions < S S%.,> can be
obtained from the short chain calculations (Bonner and Fisher 1964) (table 1.
The long range order can be estimated:

lim & 8F S, > =0, (16)
The correlation function alternates in sign and falls off with the separation between

the spins. Although the ground state is complicated, the correlation functions
alternating in sign are reminiscent of the Neel states.

4. Antiferromagnetic model with known ground state

More about the relationship between the ground state wavefunction and the correla-
tion functions can be learnt from the antiferromagnetic model studied by Majumdar
and Ghosh (1969). Their Hamiltonian is

Table 1. Spin correlation functions of the linear chain as calculated by Bonner and

Fisher 1964.
No. of spins 4 6 8 10 ®
485 83> 0.667 0623  0.609  -0-682  -0-591
485 S50 0333 0.277 0261 0254 0.2
48 85 - -0-309 0252 0231 -0-19
485 85> - — 019 0173 0.15

485 SE> — — — ~0.188

TEG
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NS o N
T =2 2 Si i+ T JE Si'Si+2 ’ an
i=1 =

(J>0, N+1=1, N+2=2). The ground state energy is Ey=-%NJ and the
ground state wave functions can be written as

Yt =11,21[34] ... [N-1, N]

(18)
T 23145 ... N-1],
with [/m] representing a singlet pair
[, m] = a(l) Bm) - B() a(m) (19

a and B are the up and down spin eigenfunctions, respectively. If T corresponds to
unit translation, we have

Tyt =¥*, Ty~ = -y~ ' (20)

The ground state has total spin zero, and < 0 S7| 0 > =0, V;. The order pro-
perties can be calculated exactly for the N—0o limitand they show only short range
order. If the evanescent order is studied for short chains, one gets a remarkable result
(table 2): the corerrelation functions < 0% 07,, >not only alternate in sign but
settle down to a constant absolute value very much like what the Neel states
suggest. The absolute value represents long range order which diminishes with
increasing number of spins in the chain and ultimately disappears. Nevertheless, it
suggests the view that the exact ground state wavefunction may have a quite compli-
cated structure and yet show the alternating spin correlation functions expected from
the Necl states. An. observation of the Neel type spin correlation function does
not say much about the exact ground states.

Table 2. Spin correlation functions for the state ¥ (Similar results hold for ¥/ ).

No. of spins 6 8 10 12 f0s)
<Lof 05> -0.333  -0-556  -0.467  -0-516 0.5
<L0i 05> -0-333 0-111 -0.067 0-030 0
<Lo% 0;> 0.333 -0-111 0-067  -0.030 0
L0} 0i> 0-111 ~0-067 0-030 0
<Lof 05> 0-067  -0.030 0

<t oi> 0-030 0
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5, TFisher’s classical (S—+00) model

Fisher (1964) succeeded in evaluating the spin correlation function in the classical limit
of large spin, S—+0.

Consider the Hamiltonian for N+ 1 atoms of spin S

+> N >

N s
H = - 2"5 2 Si.SH"l - gslg H'z Si . (21)
i=0 i=0

The ground state energy for ferromagnetic case (/,>0).

E, = - 2J,8°N - (N+1)g, BHS. (22
For taking the S—0o limit, we now put

27,8 =37, &S =38, (23)
and introduce the operators ;j= E‘j/S. The commutation rules become

st -8 s =%is, (24)

S

. . nd ., .
so that in limit S—+o0, the operators 5; commute. The zerofield partition function
and the spin correlation functions are for the antiferromagnetic case (J negative)

Zy = (sinh K/K)Y, (25)

and <S8} Si> = (-D" (a1, (26)

I

where u(k) = coth k = é L K =L |J|/ksT . @
The factor (-1)" is responsible for the oscillation. Experimental data (Hutchings
et al 1972) on TMMC with S=5/2 Mu-ion are well explained by the correlation
functions. The spin 5/2 and 7/2 compounds already are fair approximations to the
S—+00 limit. The quantum limit §=1/2, however, requires exact results such as (14),
as seen in the experimental data on CPC (Endoh ez al 1974).

6. Broken symmetry

The discussion of broken symmetry in antiferromagnets is due to Anderson (1964)
but is not as rigorous as in the case of ferromagnets. Consider the solution (18).
It is possible to construct a one-parameter family of ground states without transla-
tional symmetry. The symmetry broken is that of a discrete, infinite group, not a
continuous group, so Goldstone’s theorem cannot be directly applied in this case.
For the Heisenberg Hamiltonian (1), Anderson’s argument is based on the two
sublattice picture. Let 4 and B be the two sublattices, and S, and Sp be, respec-
tively, the sums of spins in these sublattices. S, and Sy are rather like classical
variables, and the lowest encrgy is obtained by setting <S4> = = <Sp>, both being
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of order N, the number of spins present. In the exact state, of course, <§,> =
< 85> =0. Anderson suggests that this exact state is irrelevant, because there are
many othgr states infinitesimally (order 1/N) close to it in energy. Thus if we take
a state with <S§,>=—<Sp>~N, this will persist for a very long time but
eventually will break up, as it is a wave packet composed of many states.

Anderson’s description of the antiferromagnetic order must have the essence of
physics init. In this case the order parameter S, =Sy is not an exact constant of
motion, but is approximately so. A rigorous mathematical discussion of this
problem will have to take this fact into account.

7.  Anisotropy

So far we have restricted our discussion to the isotropic antiferromagnetic exchange.
It is, of coursc, known that all materials have anisotropy. Anderson’s discussion of
the broken symmetry shows that the picture of the sublattice magretisation becomes
more exact when anisotropy is present, because the system must tunnel rather than
rotate its way around to the time-and spin-reversed state. It is also known that the
Neel states are indeed the lowest states of the Ising model, an extremely anisotropic
situation.

We may point out the existence of another Hamiltonian with the Neel states as
ground states (Bose and Majumdar, unpublished),

— N
H =2 5, (5357, + A (SFSHy + 878701 (29)

Because the {ransverse anisotropy terms raise or lower nearest neighbours simul-
taneously, these terms have no effect on the Neel states for the spin-1/2 particles.
The ground state energy can be shown to be E,=3JN and it will have long range-
order of the Neel states. A generalisation of this exists in three dimensions. Con-
sider a bipartite lattice in three dimensions such that the nearest neighbours of the
sublattice A are on the sublattice B and vice versa. Then the Hamiltonian

F = 27 3 [553+ A (STSf + 575))] (29)
i€A
j€B
(with only nearest neighbour coupling) again has Neel states as ground states and
therefore has long range order in the ground state. The one-dimensional version (28)
will not have long range order at finite temperatures, but (29) will probably have this
property. A detailed analysis of the anisotropy and its role in the antiferromagnetic
order should be illuminating.
1t is a pleasure to dedicate this article to the memory of Professor A B Biswas who
was deeply interested in the antiferromagnetic and ferrimagnetic materials.
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