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Abstract. We study some explicit relations between the canonical line bundle and the Hodge
bundle over moduli spaces for low genus. This leads to a natural measure on the moduli
space of every genus which is related to the Siegel symplectic metric on Siegel upper half-space
as well as to the Hodge metric on the Hodge bundle.
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1. Introduction

As is very well-known today, Polyakov’s (bosonic) string theory has produced a
natural measure on the moduli spaces M, (9>1). This measure has now been
recognized as arising from pulling back the intrinsic Hodge metric of the Hodge line
bundle E over ./, to the canonical bundle K over .4 , via Mumford’s (rather inexplicit)
isomorphism K = E** for g >2.* (See, for example, the exposition in Nelson [6].) In
this article we first show that there are explicit and canonical isomorphisms K =~ E@*1)
for low genus g=1,2,3; in the case of genus 3 the isomorphism K = E* is to be
interpreted as holding over the Zariski open subset 49 = .# 3 — 43 of nonhyperelliptic
surfaces. As a result, we can pull back the Hodge metric via our isomorphisms for
these low genera to obtain a hermitian metric on K - and therefore another intrinsic
volume form on ., M, and My — 4.

Because of the explicit nature of our isomorphisms we are able to actually exhibit
this volume form in local (period matrix) coordinates on M,. To our surprise, it
turned out that the volume form we are getting is nothing but the Riemannian volume
form of Siegel’s classical symplectic metric for g=1,2,3. (For g=1 this is the
hyperbolic measure on .#,.) In particular, our volume form assigns finite (and
computable!) total volume to ., for g=1,2,3, whereas the Polyakov—Mumford
measure of .4, is infinite for any g.

The above identification of our measure on .4 , for low values of genus immediately
allows us to extend our construction and define a corresponding measure on 4 , for
every genus by utilizing Siegel’s symplectic metric on Siegel upper half-space &,. This
is explained in §4. The results here may thus be interpreted as asserting that the

* Powers of line bundles denote tensor product powers.
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canonical line bundle K, (restricted to the Zariski open set of nonhyperelliptic points
of #, for g > 3), carries a natural hermitian metric which is closely related to both
the Hodge metric of the Hodge bundle and the symplectic metric of Siegel space.

Our method of proof involves description of the Hodge bundle E and associated
bundles over .#, for any g by explicitly finding the corresponding factors of
automorphy for the action of the Torelli modular group on Torelli space 7. These
explicit formulae (in §2 below) may hold some independent interest.

2. The moduli spaces and some vector bundles

The Teichmiiller space, the Torelli space and the Riemann moduli space for compact
Riemann surfaces of genus g (> 1) will be denoted respectively by T,, 7,and 4,
For g >3 we will denote the (2g — 1) dimensional analytic subvariety of hyperelliptic
Riemann surfaces in these three spaces by H,, #, and #, respectively. (For g =1 and
2 all Riemann surfaces are hyperelliptic ~ but this will not affect us.) The Zariski open
subsets of nonhyperelliptic points in these spaces, for g > 3, will be written T 2,79
and ). For the basic theory of these spaces, and for the material below, one may
consult the book [5]. We set T9=T, 7%= T yand M)= 4, for g=1,2.

Recall that the Teichmiilier modular group Mod (g) and the Torelli modular group
(which is identifiable with the symplectic group Sp(2g,Z)) acts by biholomorphic
automorphisms on the complex manifolds T, and 7 respectively, producing .#, as
the quotient normal complex space. These group actions keep the subsets T? and
7§ invariant — giving A as quotient.

On a Riemann surface X of genus g>1 we fix a standard homology basis
(@ys..p0g,B1,..., B,) for H,(X,Z), (characterized by having intersection matrix
J= ? 0 ). The corresponding canonical dual basis (@y,...,,) of holomorphic
1-forms on X is uniquely determined by the normalization requirement: |, 0= 0.
The g x g matrix 7(X) of B-periods [ie. 1(X) = [5,@,] is then called the canonical
period matrix for the marked Riemann surface X. n(X) is a symmetric matrix with
positive definite imaginary part, and this gives us the usual period mapping n: 7~ L,
of Torelli space into the Siegel upper half-space. Recall that &, is a hermitian
symmetric domain of complex dimension 9(g + 1)/2, whereas 9~ o 1s of dimension 1 if
g=1 and dimension (3g — 3) for g> 1. It is known that = is a 2-to-1 holomorphic
immersion of I - into &yforg>3.Forg=1and 2 the period map is a holomorphic
embedding of 7, onto its imagein &,. Actually, for 9=1,%, =9 | = upper half-plane
U, and 7 can be regarded as the identity map. In genus 2, n(7 ») is “almost” all of
&5 See [S] for more details.

We are interested in the relationship between certain important vector bundles
over the moduli spaces. It is important to recall that the Teichmiiller space T}, is a
contractible domain of holomorphy, so that every holomorphic vector bundle over
it is holomorphically globally trivial, Consequently, any bundle over .# g (or 7 ;) can
be described by a factor of automorphy for the corresponding modular group (or
subgroup thereof) see Gunning [2]. The idea is to choose a global trivialization of
the pull-back bundle over T, and write down the action of the modular group on
this pull-back.

One can construct the holomorphic vector bundles Bj, (j 2 1), over T, whose fiber

i
@
!

gy g e

e e o,

»i



Moduli spaces of compact Riemann surfaces 105

over XeT, is the vector space of holomorphic j-forms on the Riemann surface X.
One knows that for the bundle B, the canonical basis of 1-forms (, (X),. -, 0,(X))
varies holomorphically with moduli (Bers [1]) — and so provides a global holomorphic
frame for By over T,. Since, as we saw above, this global holomorphic frame is definable
over the Torelli space 7, we see that the rank g bundle of 1-forms (we will still call
it B,) is holomorphically trivial over the Torelli space also. Let us describe the factor
of automorphy for the action of the Torelli modular group I' = Sp(2g, Z) on B, over
T, using this global trivialization.
Let yeSp(2g, Z) be the symplectic matrix

_(P e
y—(R S) )

partitioned into g x g blocks. y acts by changing the chosen standard homology
basis (, f)=(2y,...,0,p4,...,B,) into another standard homology basis @&p)=
(Pe+ 0B, Ra+ SB). If w = (w,(1),...,w,(r)) was the canonical basis of 1-forms at a
point 1€, dual to the original homology basis (x, f), then we need to find the
GL(g, C) matrix that transforms o to d=(dy,...,@,), where the @; are the canonical
dual 1-forms with respect to the new homology basis (& f). This requires that

[5,®;=0;; so a short calculation now shows that

@, 0, '
[ }=[Ay]l} il (2)
(bg (Dg

where the sought-for matrix 4, is:
A, =P +n(r)@) 1. 3

(Here M' denotes the transpose of a matrix M; n(t)eS,, is the (canonical) period
matrix of t€J,, as defined before.) This A, is the factor of automorphy representing
the 1-forms bundle over .#, as a I'-quotient of the B, bundle over I e

Now, the Hodge line bundle E is defined as the determinant bundle of B, (i.e.
E = A%B,). Therefore ‘

§07)=[det(P+ On(x)]™, 7eSp(24,2), 17, “)

is the factor of automorphy (with respect to the canonical trivialization) on Torelli space
representing the Hodge bundle E over M.

Remarks. (a) One can directly verify for formula (4) the cocycle condition

S0172,7) =E£01,72(0)) €02, 7) (5)
using the fact that the canonical period matrix at y(r) is
m(y(z)) = (R + Sn())(P + Qn(z))~ . (6)

(b) To see whether a line bundle represented by a factor of automorphy &(y, 1) is
trivial, one has to find whether it has a nowhere vanishing global holomorphic section.
Such a section exists if and only if there is a nowhere vanishing holomorphic function
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@ on the covering space (7, here) such that
¢, 7)= oy e(t), foryel, ted,. (D

In particular, we can think of Pic (.#,) as equivalence classes of factors of automorphy
for the Teichmiiller modular group I' = Mod (g) on T,, where £, and &, are equi-
valent if £,-£5 1 is trivial in the above sense. This remark will be invoked in the next
section.

3. The isomorphism K = E**' in low genus

The canonical bundle K(M) of a complex space M is the determinant line bundle of
the holomorphic cotangent bundle of M. It is a basic fact that the holomorphic
cotangent bundle of the moduli spaces (T,, 7, or .#,) is identifiable, by Teichmiiller’s
lemma (see [5]), as the bundle B,.

Since the symmetric tensor product of two 1-forms on a Riemann surface X is a
2-form, we have a natural vector bundle map v of the second symmetric tensor power
of B, to B, (say over Torelli space):

S%*B,)>B,. (8)

By Max Noether’s well-known theorem one sees that the .map v is a surjection over
all of 7 and 7 ,, and over 7 = T 4—#, for g =2 3. Note that, for g > 2, S%(B,) is
of rank g(g + 1)/2 but B, is of rank (3g — 3). (These two numbers are equal precisely
when g = 2 or 3.) The fiber above X of the kernel of the above bundle map v corresponds
to linear dependence relations amongst the g(g + 1)/2 quadratic differentials

0j=0;®w; onX. ®

These “Noether relgtions” are actually nothing but differential versions of relations
amongst the x;; which describe the Schottky locus (i.e. the image of I g In &)
We can now state

Theorem 1. There are canonical analytic isomorphisms of line bundles:
() K=E?on .4,
(i) K=E*on.#,
(i) K=~ E*on M3~ Ay =M.

Proof. The global holomorphic frame o = (@y,...,w,) for B, over 7 o Bives rise (via
z;)~ ;o a global holomorphic frame ﬂij=coi®(uj (G,)=1,...,9(g + 1)/2) for B, over
%ogr fl(l)r g=d1,12, 3. (For g=1,2 we get 77=7,) Any element yeSp(2g,Z) of the

elli modular group acts on (wy,...,w,) by the matrix A, of formula (3).
Consequgntly, the corresponding automorphism on the 6,;-frame for B, is the second
symmetric power 5%4,) of A,. The question therefore reduces to relating the
dctemynant of §*(4) to the determinant of a linear automorphism A. Indeed, the
following general algebra lemma shows that det (S%(4)) = (det (4))*? where A
operates on a g-dimensional vector space. We are through. ’ (]
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Multilinear algebra lemma. Let A:V —V be a linear automorphism of a g-dimensional
vector space. Let S*(A):S¥(V)— S*(V) be the corresponding automorphism on the kth
symmetric tensor powers of V. Then

+k-1)

AL

g+k- 1).!‘_
g.

s4) = [A%(4)1C x (10)

k-1
Remarks. S¥(V) has dimension (g + ' >; so the left side of (10) is det (S*(4)). Also

note that the product of the exponents on the two sides of (10) match! [It is quite
instructive to write down the rather pretty (functorially determined) matrix for S*(4)
from the matrix for a general A. The relation between det(4) and det(S*(4)) then
appears rather remarkable.]

Proof of lemma. We can choose a basis (e, , ..., ,) of V such that 4 has upper triangular
matrix in this basis (assume first that V is a complex vector space). Then, in the
corresponding induced basis of S¥(V) one recognizes that §¥(4) has again upper
triangular matrix! Thus now det (S*(4)) is the product of just the diagonal entries in
S¥(A)-and these depend only on the diagonal entries of A. One therefore sees
that det (S¥(4)) must be some (universal) power of det (A). It is now easy to verify that
the exponents are as in (10). (For example, it is now enough to just check the result
for A=diag(d,d,...,d). Or one can do some combinatorial counting of exponents
here.)

Finally note that, once having proved this over complex vector spaces, we are
through in general because (10) is nothing but a polynomial identity with integer
coefficients, (this is a “principle of permanence of analytic relationships™) O

COROLLARY 1.

Let E be the Hodge line bundle over M.

(a) The bundle E*° on M, is globally analytically trivial.

(b) The bundle E® on M+ is the line bundle of the divisor given by some integer
times the hyperelliptic divisor %5.

Proof. These facts follow by combining our Theorem 1 with Mumford’s [3] theorem
that K > E* on , for g >2. It is to be remembered that #; is a codimension 1
connected analytic subvariety in .4 5. O

Remarks. Mumford in [4] finds that Pic(4#,)= Z/10Z by looking at the geometry
of the Teichmiiller modular group. Our present corollary (a) confirms this from quite
a different angle. Since we know explicitly from formula (4) the factor of automorphy
for E, hence for E'°, it may be interesting to prove directly the triviality of E*° on
M, by finding the nowhere vanishing holomorphic ¢ on n(7 ;) (from theta-nulls)
which exhibit that &% = p(y(z))/e(t). (See (7) of §2.)*.

*Note added in proof

(G Gonzales-Dies has answered this (thesis, King’s College, London) by showing that ¢(r)=
[T, even 0°[£ (0, m(z))—i.e., the product of the squares of the 10 even theta-nulls—gives a nowhere vanishing
section of E'® over .#, (Private communication.)
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A question. To describe K on ./ ,, for g > 4, by a factor of automorphy for Sp (2¢, Z)
we need to know whether the canonical bundle (or better still B,) over Torelli space
is trivial. We have seen above that K (and B,) over J§ is trivial for g =1,2,3. Does
this phenomenon persists in higher genus?

4. A canonical measure on ./ for all g

The Hodge bundle E, and more so B, itself, carries the completely intrinsic Hodge
hermitian metric on its fibers. This is given by pairing any two holomorphic 1-forms
¢ and ¥ on a Riemann surface X as follows:

(¢,¢)=ifjx¢/\l/7- (11)

Theorem 2. The Hodge hermitian metric on E°*! (g=1,2,3) pulled back b y the
isomorphisms of Theorem | produces a hermitian metric on K (over M |, M, and #3).
This gives a volume form on M ¢ (9=1,2,3) which can be explicitly written down as

glg+1)/2

‘/)\ . (dﬂ'u/\dﬁu
d(vol) = =
(vol) [dot (m ) T (12)

in period-matrix coordinates m;; for 7 ¢ ©& - (Thus, d(vol) is a volume form on Siegel
upper half-space &, which is invariant under the Torelli modular group.)

Remarks. (i) For g=1. d(vol) is just the hyperbolic (Poincare volume) measure:
(dr.f\ d7)/(Im 7)* on upper half t-plane.
(ii) For any g the formula (12) as a volume form on &, is nothing but (apart from

a coqsicant factor) the Riemannian volume form obtained from Siegel’s symplectic
hermitian metric on Ly

ds” = trace [ (Im m;;)~ !(dr;;)(Im m;) " A7) (13)

This met_ric, and hence its volume element (12), is invariant under the Sull real
symplecpc group Sp(2g, R) (and not just Sp(2g, Z)). The volume element for (13) can
be seen in Siegel [8], p. 130. It is 1/29 times the volume element from (12).

Proof of Theorem. Tl_le canonical frame (w,,. -.,@,) for B, and the induced frame
b= 0;®@ o, for Bz, give holomorphic trivializations of B, and B, over 77 for these
low genera. Pulling back the Hodge norm from E?*! to K we see that !

glg+1)/2
A8,
1

2
= [det (v, wj)]g+ L

The induced modular-i i 0
Invariant volume form on 7~ o 1s therefore

g(g+1)/2 _
A (0 A 8;)
dvoy=—21___
[det (w,, ;) 3777 (14)
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By Riemann’s bilinear relations one sees that the denominator is the same as the
denominator in (12). Now, the quadratic differentials 6; have to be interpreted as
cotangents to Torelli space, using Teichmiiller’s lemma. A famous variational formula
of Rauch does precisely that (for g > 2) and says

wi®a)j=d7tij. (15)

See [51, pp. 260-263 for a proof. Therefore, (15) and (14) prove (12) (for g > 2 at least).
In genus 1 it is directly possible to identify w? =6, as the cotangent vector dz,
where the upper-half t-plane U is the Teichmiiller and the Torelli space T; =7 ; = U.
The normalized w, on a torus X, = C/L(1,7) is clearly dz (here the a-loop is the
projection of the segment [0, 1] and the f-loop is the projection of the segment [0, 7]).
Now one writes down the affine (Teichmiiller mapping) f of X, onto X, and calculates
its Beltrami coefficient y = 0f/df on X,. The formula for y is

U= <T— ‘i)% on X, for any 7,0€U. (16)
c—17/)dz

We compute the Teichmiiller pairing [{uf,, of u and 6, =dz* to get

(1611) = J J(“‘i)-mdz 1)
xJ\o—7

=-2i (r i )-(area of period parallelogram for X ).

g—1
Setting now ¢ = 7 + ¢dr, and letting £ —0, we get
(1,611) =ede + O(e?). (18)
This shows that 8,, corresponds to dz, as required. ]

From Theorem 2 and Remark (ii) we now see the correct generalization of the
measure we are getting in low genera. Take the Riemannian metric induced on
T=T ,— H, from the symplectic metric (13) on &, (T3 is immersed in &, by the
period mapping ), and then take the corresponding volume formon 73 (which is certainly
modular-invariant). We thus get a volume form on .# for every g.

Siegel [9], p.6, computed the (finite) volume of &,/Sp(2g,Z) with the volume
element of (13). Thus our measures give finite total mass to .4, at least for g=1,2,3.
We do not know at present whether the volume of .#, will be finite for g > 4 because
the Schottky problem (7, < &,) complicates matters thoroughly.

Remark. Note that no simple expression like (12) was possible for the Polyakov
measure on ./, because the Mumford isomorphism is inexplicit, so one does not
know which wedge of holomorphic quadratic differentials should correspond to
(g A= A p)t3.

5. Another related canonical metric on T,

The Riemannian metric on T induced from Siegel’s metric (13) on Siegel's upper
half-space came up, as we saw, very naturally in the calculations of this paper. This

oy
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"

metric had previously been given consideration by Royden [7]. This metric on moduli
has a close connection to another completely natural hermitian metric on T, induced
via the metric on the Riemann surface X obtained from the embedding of X in its
flat canonically polarized Jacobi variety.

We conclude with some explanations and open questions regarding this last metric
mentioned above. Notice that given any canonical choice of a (conformal) Riemannian
metric on a (varying) Riemann surface X , there is a naturally induced metric on the
Teichmiiller space T(X). Indeed, to define a hermitian (co-)metric on T(X) one needs
to assign a hermitian inner product on the space of holomorphic quadratic differentials
on X (since these comprise the cotangent vectors to T(X)). Such a pairing is always
definable by the formula

<<p,t/f>=f f¢!/7H“ (19)

where ds® = H(z)|dz|? is the chosen conformal metric on X. For example, when ds?
is chosen as the hyperbolic metric, we obtain the Weil-Peterson metric on T(X) by
this construction (see, for example, [5], p. 404.).

Our idea is to use the metric on the compact Riemann surface obtained from the

Abel-Jacobi embedding X < J(X), where J(X) is equipped with its canonical flat
metric. In fact,

J(X) = A(X)*/H,(X, ), (20)

where A(X) is the g-dimensional vector space of holomorphic 1-forms on X. The
Hodge inner product (11) on A(X) gives a dual inner product to the dual vector
space, and this makes J(X) a flat torus in the canonical way. The pull-back metric
on X is a conformal (Kihler) metric which assigns total area g to X, and has
non-positive curvature everywhere on X. These assertions are very easy to verify.
Indeed, note that the curvature inequality follows from general principles because X
is embedded as a minimal surface in J(X); (any Kihler submanifold of a Kihler
manifold is a minimal variety). So the two principal curvatures are equal and opposite
(mean curvature must vanish) — hence the Gaussian curvature is non-positive on X,
as stated.

A computation shows that the local expression for this Jacobian-induced metric
on X is ds® = H(z)|dz|? where

HE= kf___ RICY e 21)

Here (col,...,wg) is the standard Riemann normalized basis for A(X) (see §2), and

the A-matrix is the inverse of the positive-definite (Im ;) matrix. H(z) can also be
expressed as k(z,z) where

Ha0= § w@n® 22)

is the repn_)ducing kernel for A(X) with respect to the Hodge pairing (11). Here
(4y,...,u,) is any orthonormal basis for A(X) with respect to (11). (Note: k(z,¢) is a
“bi-Abelian differential” on X and H(z)=k(z,z) is an area form.)

e,
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Using this H in formula (19) we thus obtain a natural “Jacobian-induced” hermitian
metric on T,. One checks that this metric is modular invariant on T, because of the
naturality of the construction.

The Jacobian-induced metric on T, and the Siegel-space-induced metric are
comparable via the expressions shown for each. Therefore, in order to study questions
like finite volume for .#, in the Siegel metric, and also for many other reasons as
well as for its own sake, it would be interesting to find out whether this Jacobian-induced
metric on T} is (i) complete or not; (i) has negative curvature or not; (iii) gives finite
volume for .#, or not. We hope to report on these matters in the future.
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