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This article explores the connection between the Ar-
chimedes principle in physics and Gauss’s divergence
theorem in mathematics.

Introduction

Recently, while teaching a university course in vector-calcu-
lus, I remembered and revisited the business of deducing
Archimedes’ famous principle in hydrostatics from Gauss’s
divergence theorem (which relates certain surface integrals
to volume integrals).(A well-known anecdote relates that
Archimedes — having felt fluid pressure on his body (as I
presume we all do) while immersed in a bathtub — under-
stood it all in a flash, jumped out of the tub and emerged on
the street in a state of nature, shouting ‘Fureka!’.) There
is indeed a very elegant and deep connection between the
Gauss divergence theorem and Archimedes’ principle about
the net effect due to pressure on any immersed solid. That
study has generated the present article.

The main point for us will be to analyze the resultant force
as well as the resultant torque (= turning moment) due to
the entire system of forces arising from fluid pressure acting
on the boundary surface of any three-dimensional body im-
mersed in a homogeneous fluid at rest. (As we shall remark
at the end of our calculations, the fluid need not even have
been homogeneous for a rather general form of Archimedes’
principle to be valid. )

I shall start by describing the resultant effect of an arbitrary
system of forces acting at arbitrary points in R?. The math-
ematically minded reader may find the following discussion
of three-dimensional statics independently useful.

Systems of Forces in R®

Let any finite (non-empty) set of force vectors F;,1 < ¢ <
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N, be assigned as acting at arbitrary points of application
P; € R3, in three-dimensional Euclidean space. For non-
triviality, we may assume each F; to be non-zero. The
precise points of application are actually irrelevant as long
as the line of action, say A;, for each force F; is specified.
(Namely, A; is the unique line passing through P; in direc-
tion F;; indeed F; may be chosen arbitrarily on \; in what
follows. )

Associated to any such system of forces, we consider two
fundamental vectors:

The resultant-force vector:

ﬁ:ZF,,-, (1)

Torque-vector with respect to an arbitrary origin O:

Torq(0) = Zo?@,-, x F; (2)

Clearly, Torq(O) is independent of the particular positions
of the P; along the A;. (Note: The X above denotes the usual
vector-product (‘cross-product’) for vectors in R?.) (See any
college-level mechanics text, e.g. French [2].)

Now, if we change the origin O to a different point O’ we
immediately deduce the following evident, but very basic,
relationship:

Torq(0) — Torg(0') = 00’ x R (3)

Thus, given the resultant force ﬁ, the vector Torq(O) deter-
mines uniquely the torque-vector Torq(O'), computed with
respect to any other choice of origin.

The discussion above shows that it makes sense to make the
following definition:

Mechanically Equivalent Systems: Two given systems
of forces in R?®: {System 1 : F; alonglines \;}, and {System 2 :
G along lines x;}, are said to be mechanically equivalent if
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the corresponding resultant-force vectors are equal, and also
the corresponding torque-vectors (computed with respect to
any origin) are equal.

Remarks: We note for future use two evident yet important
remarks:

(1) Torqg(Q), as a vector-valued function of the point @,
is constant on lines parallel to the resultant-force R - as is
obvious from equation (3).

(2) There exists @ € R® such that the torque-vector com-
puted with respect to @ is zero, i.e, Torq(Q) = 0, if and
only if the force system is equivalent to a single force acting
along some line in R?. The point @ can be chosen arbitrarily
on this line.

What Force Systems can be Reduced to a Single
Force Only? We inquire: under what circumstances can we
get a rye,cha,nically equivalent system consisting of just one
force R (assumed non-zero) acting along some specific line,
say A, in R3? By the remark number (2) above, we see that
we must be able to choose @ € R? so that Torqg(Q) = 0.
The equation (3) then implies that we must be able to solve
for the vector O@ from the equation:

Torq(0) = 0Q x R (4)

The equation shows, of course, (recall the defining properties
of the cross- -product), that Torg(O) must be orthogonal to
R. Consequently the necessary condition for a solution @

to exist is that: .
R - Torg(O) =0 (5)

A simple calculation now shows that if (5) is valid then the
solutions @ to (4) lie along the following line:

oQ = IRI (R x Torq(O)) +tR, anyrealt  (6)

The torque vanishes when computed with respect to any
point on this particular line. Consequently, subject to con-
dition (5), the equation (6) represents the line A along which
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R acts, and there is then no residual torque or any other
forces.

Algorithm for Reducing an Arbitrary Force System:
Our analysis demonstrates that, given an arbitrary system
of forces acting along specified lines in R?, we obtain a me-
chanically equivalent reduced system by following the simple
step-by-step algorithm below:

First step: Calculate R and Torq(O) (the latter w.r.t. an
arbitrary origin O)

Case 1: If R = 0, then equation (3) shows that the torque-
vector is independent of the origin. Thus the system reduces
to a pure ‘couple’, (representable (in infinitely many ways)
as a pair of equal and opposite forces acting along some pair
of parallel lines.)

Case 2: If R is non-zero then check the dot-product:
R Torq(O)

Case 2a: If R - Torq(O) = 0: then get a single force R as
the reduced equivalent system, acting along the line whose
equation was ezhibited in (6) above.

Case 2b: R-Torq(Q) non—zero: This is the generic case.
A reduced equivalent system must consist of the force R (say
applied at origin O), together with a couple representing the
torque Torg(O).

Interestingly enough, we shall demonstrate in a later section
that the system of forces arising from fluid pressure acting
on any immersed surface S in a homogeneous fluid, always
reduces to Case 2a above! Namely, there is no turning mo-
ment left over. That is part of the beauty of Archimedes’
principle — (although this matter is seldom explained in a
school or college course).

Some Remarks and a Question: Here is a query that the
mathematically minded among you may enjoy investigating,.
In the generic Case 2b, we saw that we can never choose
@ so that Torq(Q) vanishes. What then is the set of points
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@ € R? such that the vector Torq(Q) achieves its minimum
possible magnitude? This is an instructive calculus problem
of optimization. The reader will discover that this ‘best’ set
of torque-centers ¢ comprises either a line, A , or a plane,
II. In either case it is clear that the hne or plane must
be parallel to R (since, by Remark (1) after equation (3),
we know that Torq(Q) stays constant along lines parallel
to ﬁ) Prove that one gets a line or a plane consisting of
‘minimizing’ centers Q accordmg as the rank of the following
symmetric matriz, Quad(R), is 2 or 1, (respectively).

7‘22 -+ 1”32 ~T1To —T173
Quad(R) =| -—rory rg? 4+ 112 —ToT3
—r3r1 —Tarz 1%+

where R = (r1,72,73). Note that the above matrix, whose
entries are quadratic expressions in the components of the
resultant R, always has determinant zero (check this iden-
tity!). Its rank is therefore always strictly less than three.
Rank 0 is being ignored because that entails R = 0, (which
we disallowed for Case 2b).

Gauss’s Divergence Theorem

Let S be a smooth closed (= compact) surface in R? enclos-
ing (i.e., bounding) a three-dimensional region V. We shall
write 0V = S.

We let ii(z, y, z) denote the unit normal pointing outward at
the general point (z,y,2) € S. Let G be any vector field on
V' U S, possessing continuous partial derivatives on an open
set containing V'US. Then the well-known Gauss divergence
theorem states:

//SG-ﬁdS:///Vdiv(G)dV (7)

Notation: Recall that for a vector field G we set div(G) =
V- G and curl(G) = v x G where v = 0/0z + 70/8y +
k8/8z Therefore, div(G) = 0P/0z + 0Q/0y + OR/0z, if
= iP+ j5Q + kR. We shall also denote partial derivatives
by subscripts, where convenient. Finally note that 2, 3, k
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denote the usual orthonormal set of unit basis vectors in the
coordinate directions.

It is important to note that the divergence theorem relates
the integral of a derivative of G (namely div(G)) over a
three-dimensional region V/, to the surface integral (the ‘flux
through the surface S’) of the vector field G itself over the
boundary surface. The double integral on the left side is
with respect to the element of surface area on S, whereas
the triple integral on the right is with respect to the volume
element in R3.

The proof can, in fact, be reduced to several judicious ap-
plications of the standard fundamental theorem of calculus
(which asserts that integration is the inverse process to dif-
ferentiation). Karl Friedrich Gauss (1777-1855) discovered
the above theorem while engaged in his research on electro-
statics. The books by R Courant (a classic calculus text),
and that by M Spivak, listed in the Suggested Reading, are
good places to look for the divergence theorem. In Chapter
V, section 5 of his text Courant indeed explains ~ very briefly
- the idea that is behind what we are presently working out;
also Spivak’s last exercise (no. 5-36) on the last page of the
book talks about the idea being presented in this article,
(but, in both cases without mention of the possible turning
effects arising from pressure).

The Resultant of Pressure Forces: A Generalized
Archimedes’ Principle

Let a solid region V, (a compact region of R*® with non-
empty interior), having a smooth boundary surface 8V = S,
be immersed in a tank of liquid. We fix the zy plane to be
the horizontal surface of the liquid, with the positive z-axis
pointing upwards. Thus the fluid region is the lower half-
space: {(z,y,2) € R3: 2z < 0}. (Note Figure 1)

From basic physics we recall that the pressure at any point
P(z,y, z), which is force per unit area, appears due to the
weight of the column of liquid above that point. This force
always acts in the direction that is normal to any element
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of surface that sits there at P(z,y, z) (precisely because a
liquid in equilibrium cannot support any shearing stresses)
and its magnitude is independent of the direction of the
normal to the area element.

Note on units: We shall identify the units of weight with the
units of mass in what follows, i.e., we measure unit magni-
tude of force to be the gravitational force acting on one unit
of mass. This eliminates the g factor in our. equations.

Let p denote the density of the fluid. (Note:The perceptive
reader will notice that in what follows, Theorem Eureka.R
will go through for even a general inhomogeneous fuid (i.e.
the density p could as well be a function of (z,y, z) varying
from point to point), while Theorem Eureka.Torq. will go
through for certain inhomogeneous fluids — for instance, if
the density is a function of z alone.)

The fluid pressure, call it u(z,y, z), at any point (z,y,2), is
obtained, as explained, from the weight of (an infinitesimally
thin) vertical column of liquid standing above that point.
Consequently:

(z,3,0)

,LL(IE, Y, Z) = / de (8)
(:c,y,z)

the line integral being along the vertical line segment. In a

homogeneous liquid, one has simply p(z,y,2) = —pz.

The General Mathematical Problem: Forgetting all
the physics now, the chief mathematical problem we propose
is to analyze the system of forces arising from a pressure
of magnitude 1 per unit area, acting in the inward normal
direction all over any immersed surface S. This system of
forces is therefore obtained by partitioning the entire surface
S into tiny area elements, typically denoted AS, with AS
containing the point P(z,y,z) € S; the force acting at P
on the area element AS is of magnitude equal to w(P)AS
in the direction of the inward normal to the surface element
AS. Namely,

Force at P on surface-elementAS = —pu(z, y, z)ASA(z,y, z)

(9)
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(The minus sign arises because we defined fi(P) as denoting
the outward unit normal to S at P.)

The mathematical ‘Archimedes problem’ is to now find the
resultant force and the resultant torque due to these forces
acting over the entire closed surface S. (Of course, we must
in our calculations, proceed to the limit — as the partitioning
of S becomes finer and finer — in the time-tested tradition
of integral calculus.)

The Resultant Force R: R is the vector sum of the forces
(9) over all the area elements in the partitioning of S. Pass-
ing from Riemann sum to integral (replacing AS by d.S), we
deduce that the three components of R are:

- // (z,y,2)i - AdS (101)
/ / 7.y, 7)) AdS (105)

—//Su(x,y,z)l%~hd5 (10k)

But the above three are precisely the surface ‘flux’ integrals
for the following three vector fields, respectively:

| i

Gy = —pi, Go=—pj, Gy=—uk (11)

where the G; are vector fields defined in the entire fluid
region {z < 0}. Therefore, the Gauss divergence theorem
(7) implies that the resultant force is:

—3 / / /V div(G1)dV+
j / / /Vdiv(crg)de”c / / /V div(Ga)dV  (12)

But clearly we have: div(Gs) = —8u/8z = p (see the defini-
tion (8) of u). Consequently we have proved a basic result:

e
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Theorem Eureka.R. The resultant-force ﬁ., which is the
vector sum of all the pressure forces acting on the compact
immersed body V', is:

Reif [ [ v 3] [ | ook | [

The k component is thus ezactly equal to the weight of the
fluid displaced by the immersed body, acting in the upward
direction. The © and 57 components vanish since the pressure
depends only on depth (i.e., pe = py =0).

I surely need not remind the reader that the assertion above
regarding the k component is exactly what they teach you
in school physics as Archimedes’ principle.

Analysis of the Resultant Torque: As we have learnt
earlier, the resultant-force is not by any means the entire
story about any given force system in 3-space. We need
to understand also the torque-vector Torg(O), and thence
obtain a reduced mechanically equivalent system. That is
the goal we now pursue.

Let F(z,y,2) =zt +yj + zk denote the position vector OP
for P(z,y,z) € S. Since the force on the element AS at P
is —p(z, v, z)ASH(z,y, z) (see (9)), we observe that:

Torq(0) = — / /S F x (uh)dS (13)

When decomposed into components we get:

Torq(0) -7 = / /S F x () - 2dS, (14)

and, of course, two other similar expressions for the 7 and k
components. (Each integrand is a ‘scalar triple product’.)

The Gauss divergence theorem again applies immediately to
each of these three integrals, and we obtain:

Torq(0) -4 = / / /V dv(Ex (A)dV (151

26

\/\/\/\/\/\r RESONANCE | November 1998




GENERAL | ARTICLE

Torq(0) 5= [ [ [ divEx (u))av (50
Torq(O)- k = / / ' /v div(F x (uk))dV (15k)

We are now admirably positioned to state and prove the
basic and final theorem:

Theorem Eureka.Torq. The resultant torque-vector about
the origin, owing to all the pressure forces on the surface of
the immersed body V', is

Torq(O)=i///v[yp+zuy]dV—5///‘/[prrzuz]dV-F
& [ [ e~ oplav

Since py = by = 0 throughout the fluid region, the torque
simplifies to:

Torq(O) :i//lfypdV—j///V:cpdV (16)

But the resultant force R (vide Theorem FEureka.R) acts
vertically upward, whereas the torque vector lies in the hor-
izontal plane - namely R is orthogonal to Torq(O). The
system of forces arising from pressure therefore falls under
Case 2a of the first section. Consequently, the entire system
of forces is equivalent to a single upward force equal to the
weight of the fluid displaced — acting (as we will prove be-
low) in a vertical line passing through the center of mass of
the region V' of fluid displaced.

Proof: We need simply calculate the divergences of each of
the vector fields appearing on the right sides of equations
(151,j,k). One obtains:

div(F x (pt)) = yp + zuy

div(F x (1)) = —zp — 2p1e
div(F x (uk)) = —zpy + Y
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[Note: The computation is greatly facilitated by the identity:
div(F x G) = G - curd(F) - F - curl(G), and the fact that
curl(F) = 0.] That proves the main equation (actually for
any general choice of the density function p — see remarks
below). Thus (16) immediately follows, as desired.

The rest is easy. Clearly, R Torq(O) = 0 - so we are
indeed under the purview of Case 2a of the first section, as
asserted. Therefore, the system reduces to a single force:
R = fc(wez'ght of fluid displaced), acting along a vertical
line. The position of that vertical line is immediately verified
to pass through the ‘center of mass’ (of the fluid displaced ~
not of the immersed body, of course (!)). This point (CM)
is the point whose coordinates are:

[ JyzpdV [ J [y ypdV
ST fvpdV ] fyedV 2

I v pdV

That the final line of action passes through CM follows by
applying either equation (3) (which checks that Torq(CM) =
0), or, alternatively, by working out equation (6). That com-
putation is simple, and we are through.

Center of mass(CM) = (

The Fish with the Turning Stomach: We have arrived
at a rather satisfying and general statement of Archimedes’
principle — with the added insight that the pressure forces
always constitute a system under the special Case 2a. Let
us note that if the poor fish (see Figure 1) experiencing all
this pressure happens to have its own center of mass not
in a vertical line with the center of mass of the fluid that
it has displaced, then, (though fishy it may sound), it may
well feel a certain turning effect in its stomach (and wonder
what it had had for lunch). The fish is then advised to turn.
to either Dr. Archimedes or Dr. Gauss for help.

An Important Remark: A most interesting point in the
mathematical derivation above is that we can just as easily
carry out our analysis in a possibly inhomogeneous liquid of
varying density, namely we may take the density at P(z,y,2)

28
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to be a function p = p(z,y,z). (For technical reasons one
must assume that p has continuous partial derivatives with
respect to the first two variables, while p is merely assumed
to be continuous in the z variable.) If we now assume further
that the density p depends only on the depth z (and not on
z, y), we clearly have the same equations (i.e. equations 8
to 16) valid throughout. (since, in this case, ygy = py = 0.)
Thus even in this generality we derive the same conclusion
that the final effect of all the pressure is mechanically equiv-
alent to a single force of magnitude equal to the weight of
displaced fluid, acting upward along the vertical line passing
through the center of mass of the fluid in the region displaced.
Remarkably enough, there is no residual turning moment!

One may also note that the dot product R - Torq(O) has a
very suggestive formula even with the most general density
function p. We leave the interested reader to pursue further
that line of investigation.

I wish you many happy returns of ‘Bureka’!

-

Figure 1. Immersed body

of
bit

topological genus 2 ( a
fishy?).
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