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Structure calculations in *O nucleus
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Abstract. A multishell Hartrce-Fock calculation for ¥0O nucleus has been done
with the Tabakin and Hamada-Johnston interactions followed by pairing correla-
tions and angular momentum projection. The B (E2) transition rates have been
reproduced with an effective charge of 1.5¢ for protons and 0.5e¢ for neutrons, but
the fit to energy levels is poor. An approximate alternative formalism has then been
developed which casts the eighteen-particle problem into a two-valence nucleon
problem. The two valence nucleons interact through the RPA-type oscillation
modes of the core. Calculations with the two interactions mentioned above have
reprodquced roughly the uncorrelated projected Hartree-Fock spectrum. Lastly,
the excited band spectra of 180 have been examined in the TDA approach followed
by band mixirg.

Keywords. Oxygeu-18 nucleus; nuclear structure; nuclear spectroscopy.

1. Introduction

For low-lying nuclear states, the 80 nucleus may be simply viewed as an %0 core
with two valence nucleons confined to the s-d shell. The two-nucleon secular
matrix is diagonalised within this limited subset of states to obtain the level spec-
trum. Following Bruecknei’s prescription, the free nucleon-nucleon interaction
is replaced by the reaction matrix ¢ (Brueckner 1955). Though it is smooth and
well behaved, it is still toostrong tc counfine the valence nucleons to the limited
space, usually called the model space. A more straightforward way to have a better
representaticn is to include more configurations in the calculation, but then compu-
tational difficulties increase rapidly. To include the effects of the states left out
of the model space, a perturbative approach is followed which amounts to a renor-
malisation of the reaction matrix. This renormalised interaction between the
valence nucleons is called the effective interaction . The formal theory for eva-
luating the effective interaction matrix elements was given by Bloch and Horowitz
(1958). They ualink the valence nucleons from the core and then allow inter-
actions betweenr the valence nucleons through core excitatioes to infinite orders
of the perturbation theory. Formally, thisis done by expanding G in a power
series in the Brueckner-reaction matrix.

Kuo ana Brown (1966) and then others (Kuo 1967, Clement and Baranger 1968)
calculated matrix elements of G with realistic potentials (Hamada and Johaston
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Figure 1. (a) The 3p-1h diagram; (b)) The TDA diagram;
(¢) The RPA diagram; (d) Self screening; (¢) Vertex-renormalisation.

1962, Tabakin 1964). They stopped at the second order. One of the second-order
processes was found to be very important in bringing an impressive experimental
fit of the level spectra. This process is shown diagrammatically in figure I a.
Here one of the valence nucleons interacts with the core and then excites a nucleon
from. an occupied (hole) state to an unoccupied state (particle) just outside the model
space. A particle-hole (p-h) pair is then formed ; the excited particle then interacts
with the other valence nucleon and goes back to its original state thus destroying
the p-h pair. This particular diagram is known as core-polarisation diagram in
the literature.

(a) (b)

(d)

The second-order terms were found to be of the same order of magnitude as the
first-order terms and to test the convergence of the perturbation series, Barrett
and Kirson (1970) calculated all the third-order terms and a few selected fourth-
order terms. They found that nearly all the third-order terms were of the same
order of magnitude as the second-order terms. This particular feature does not
allow much confidence in the low-order calculations and also throws doubt on
the convergence of the perturbation expansion.

Selected sums of higher order diagrams in the perturbation theory were tried
by various authors (Ellis and Siegel 1970, Kirson and Zamick 1970, Osnes et al
1971), such as the TDA or the RPA type particle-hole excitation, self-screening
of the hole-particle interaction and vertex renormalisation. The results fluctuate
widely. A way of summing up all the important terms to iafinite orders was
obtained by Kirson (1971) through a set of self-consistent equations to be solved
in an 4terative manner. The results are equally disturbing.

In all these calculations, it is assumed that the valence states as well as the core
states are spherical harmonic oscillatior (HO) states. The valence states are
allowed deformation through configuration-mixing (shell-model diagonalisation)
and the core states are allowed partial deformation through particle-hole (p-h)
excitations. It is well known that even without recourse to the renormalisation
programme, effects of deformaticn can be included in a self-consistent Hartree-
Fock (HF) theory provided the basis in which the single particle orbitals are expanded
is large enough. We try to analyse the core polarisation problem in this alter-
native way. Through this procedure, not only the core states are allowed defor-
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mation in every possible way, but also the valence states are allowed polarisation
which in turn induces un extra polarisation of the core states.

The HE  wavelunction is the zeroth order wave function in the Rayleigh-Schra-
dinger many-body perturbition theory.  Perturbation corrections are built on the
HE solution to give o better description of  the core-polarisation phenomena.
Finally, states ot good angular momentum are projected out to compare the compu-
ted results with the experimental ones.  This is a tedious and time-consuming job
and it is diflicult to apply this procedure directly to heavier nuclei. To explore
core-poliarisation for all two-valence nucleon systems in the periodic table, an
alternative Tornudism hie been presented in this paper, which s in essence an approxi-
mation scheme to the HE theory, In practice, the HE single-particle Hamiltonian
is broken into a diggonal wnd o non-diagonal pact, and perturbation corrections
are built up vorresponding to the perturbative nondiagonal field. Ultimately,
the stundard RPA matun bomet with, diagonalisation of which yields p-h exci-
tation amplitudes, the miningamplitudes of the p-h states to the unperturbed sclu-
tion.  Lastly, anpalar momentum projection is achieved from this mixture through
simple decoupling wnd recoupling of angular momenta.

The HeJ and Tabakin intercations are chosen as the basic two-nuclcon poten-
tials, The H-b nutris elements are evaluated with the standard Kuo-Brown pres-
cription, mostly because of simplicity, and the'Tabakin matrix elements are evaluated
in the firstand second order (Kerman and Pal 1967).  In section 2, a brief descrip-
tion of the HIE theory hue been piven fogether with the associated projection tech-
nique and the approximation wcheme to the HIY approach.  Section 3 contains
the details of the numerical calculistions.  In section 4, the excited states of 80O
in the TDA approach are explored.  Section 5 contains the concluding remarks.

2. Theory
2.1, Pertwrbation theory, HEb- scheme and projection

The total Huamiltonian 4 is broken into two parts, the unperturbed Hamiltonian
G€, T 4 b and the perturbation term 0, v - V.o T s the kinetic energy
term, » the potential energy term and Jsome suitably defined single particle (s.p.)
potential. ‘The choice ol the HE potential as the s.p. potential is very useful because
it generites cancellation of many complicated terms in the perturbation expansion
and ensures in ogeneral arapid convergence of the series.  The definition of the
HI- potential in ghven by

-

Coi b it A,1: (CRN RNy (1)
where | A) stands Tor the occupied states of the unperturbed system.  The matrix
clements are antisvmmetric,  Ifuller details on the Rayleigh-Schrédinger pertur-
bation theery and the HE approximation are already available in the literature
(Day 1967, Ripki 1908).  Lor singular potentials or for potentials having a strong
short range repulsion, the general prescription is to replace » by the Brueckner
reaction matrix ¢ in cquation (1) (one should be careful to use only the “ on-
energy shell ™ matrix clements in this definition).

The HE single-particle Hamiltonian is not necessarily invariant under all the
symmetiy operations that keep the total Hamiltonian invariant. If the intrinsic
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HF wavefunction contains axial symmetry, states of good angular momentum are
to be projected out to calculate physically meaningful quantities. The necessary
formulae for energy, B (E2) rates, or quadrupole moments in projected states are
given extensively in the literature (see for example, Ripka 1968).

2.2. Approximation scheme to HF theory

Let | @,) be the determinantal ground state of *O comorising the s.p. orbitals
a), |B), eto. (figure 2)

| @0 =det(a, B - -» oB) @)

la), | B), etc. are the core states of the Os and Op shells. | o), | B) are the states

occupied by the two valence nucleons in the (1s-0d) shell, | @' ) etc. are unoccupied
states in the (1:-0d) shell and | a)'s arethestates above the (1s-0a) shell. 1In the
present calculation, these states are confined to the (1p-0f) shell. All the e un-
polarised states are the solutions of a Nilsson type Hamiltonian, i.e., each of them
arises from mixing of single-particle states in one major shell. Excitation of parti-
cles from the core states | a ) to the unoccupied states | ¢ ) causes a mixing among
these states thereby polarising the co:e states. The polarised single-patticle core
orbital is then written as

lap>=la>+%’<a!fla>|a> | (3)

where fis a one body operator exciting nucleons from core states to the particle
states. Polarisation of valence states is considered to be unimportant and is not
taken into account.

The polarised determinant for the interacting system can then be written as

I ¢F ) =det (aP> BP LA ; ;,é') (4)
=eF | Dy) (5)

where F is the operator defined as
F=Z.;(a|f|a)Ca*Ca (6)

Corresponding to the unpolarised and polarised s.p. states, we define the HF
Hamiltonians A and h, respectively, in the ucual way,

h, =T+ V, (7 b)
and

(A[V|B)=,22(Aa|v|Ba)-{~Z~I’(A(I|u|B:I) (8 a)

(A1 V0| B) = Z{da, |v | Bu,) + X(da'| v | Ba) (8 )

4 and B are any two arbitrary 8.p. states and v» is the two-nucleon * effective >’

potentigl. .Substitut.ing (3) in (82), we obtain, neglecting higher crder terms in
the excitation amplitudes,

T 4

e TR T T "

[ e
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(AL, T (A ! sy -y [(u | /| a) (A l v l Bu)

la | ST a) (da | v | Ba) 9)

We now introduce in (9) an approxinate expression for the matrix elements of
/. determined in the first order o approximation by looking upon h, as the result
of a snmall perturbation over an unperturbed s.p. Hamiltonian based on A.  Then

atrpey I

L L]

(10y

where A, v the perturbation terme contained in f, and ¢'s are the cigenvalues of
the unperturbed Hamiltonian,  Sinee It as defined in (7 @) and (8 ¢) cun produce
a nonvanishing matrix element connecting (e | and | «), the unperturbed Hamil-
tonian iy not fitsell, but i part of i that is diagonal within the limited subspace
of the individuwd major shells, ‘There is a part in i that connects states like ( « |
and o) iesstates belonging to different major shells, and that has to be included
in the definition ot i, To make the statements explicit, we split b in the aforesuid
< diaponal 7 and nondiagonal 7 components,

k&, h. (11)
and then write

h, h V. Voo h i (12)
where

hy By 'V, o F (13)

Substituting this expression for oy in (10), we finally obtain

| {t lll',‘"”g ‘V‘, V)

(a “ i u) Cg o by
(“ ‘hn 8 hnn I Vr -V l (L)
F(‘L C“
(a(l hu Ieu,) (14)

ar

(o el ey i Xl it el [ay)

Y
ey ey Lo lad)] s~ (a || a) (15)

Equation (15) and its conjugate can be writlen in the matrix form,
‘ h
M) (05 19
s ~

./'au ToKd i/ l ), Hoa = (u |/T IU),

where

R =~ Ca [ 1], By = (|l a).
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The matrix M is the well-known RPA matrix,
A B

M = (__ b A) (17)
where |

Ana, Y — (Ea — &) 8ac S‘Ya, + {ca I v l vay

By, oy =(ca|v |ya) (18)
The unknown amplitudes f and g can then be solved by matrix inversion,

AVIRESVEVAY (A WIS B SNy ) 19
(g)‘" M (~h)‘“ ?lw,-[(y; (. y‘)(—h) (19

w;’s are the eigenvalues of the RPA matrix and x,, y,’s are the corresponding eigen-

vectors. 2(?) (x:* — y;®) is the complete set of states corresponding to the
4 i
non-Hermitian matrix M.
Once the s.p. polarised states are determined, states of good angular momentum

are projected out from the polarised determinant,

Ep=(¢D\3['PI’¢D)
BRI AN

(20)

P, is the projection operator. Now,
(Pp | Py [Py) =(Po | eFT PreF | By)
=(P|(A +FT+.. )P0 +F+..))| Do) 2D
(Do | PF| o) = I (a|f]a)(Pa| Py | Do)
where |
| Pead = aT Ca | Do)

The action of P, on |®,,) is simply to rotate its s.p. stales. If the unpolarised
s.p. states are solutions of A, which does not allow major shell mixing, the rotated
|@) state canmot be connected to any s.p. state comprising |P,). Consequently
rotated | @,,) has a vanishing overlap with |®,) and so

(Do |PF| Do) =(Dy |FT P, | §g) =0 (22)
when terms of second order in F are ignored (justified when f and g are small),
(@PlPJ‘ @p>=<@0‘PI‘®D) (23)

Following the same type of argument, the numerator of (20) reduces to
(Pp | HP; | D) =(Py | AP | Do)
+ I [alf|0)(@al TPy | o) +(a | f1 ] 0) (Bua | HP, | D] (24
Then |

Pz(@olgf‘f’,] Dy)
B =2%1p18y +

A T TS

I
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s agua | f1a) (Do | HP| Do) + (a| 1] a)(D,, | AP, | O)]
(Do | Py | D)
=E, + &7 : (25)

E{, the first term of (25), is the projected energy from the unpolarised Slater deter-
minant and &7 is the polarisation correction. Since f and g are already known
from (19), this cotrection term can be easily evaluated. Because of the very nature
of the problem (twe nucleons outside a closed shell) (Do | AP | Do) can be easily
evaluated through simple decoupling and recoupling of angular momenta. The
final formulae are given in Appendix 1. |

2.3. Choice of the unperturbed s.p. Hamiltonian

In the derivation given above, we have used the HF definition for the unperturbed
s.p. Hamiltonian and have proposed to determine the s.p. unperturbed states
through HF calculations in individual major shells. In actual computations, we have
followed an approximate procedure by taking the unperturbed s.p. states from the
solution of a Nilsson Hamiltonian confined to single major shells. In the usual
way, the Nilsson Hamiltonian is defined by (Nilsson et al 1969)

hy =T+ 3 mwe® (8) r* — £ /7[5 8 hw,o (8) £ (8) p? ¥,2
— 2khwy® Ls + 2kephors® (o* — (p%),). (26)

T is the kinetic energy operator, 8 is the deformation parameter and pis the dimen-
sionless spatial coordinate. p=r/b, b being the oscillator constant, b =
VRma",

wy (8) = w,o? f(9)

f(8) =1 —4/38% — 16/2783)V8,
The strength parameters k and p are chosen to be

k, =0-0641 — 0-0026 x 10~ A4, , = 0-0766 — 0-0799 x 103 4

pa =0-624 — 1-234 x 10-3 4, p, =0-4934-0-649 x 10-°4. (27)

A is the nucleon number.

3. Numerical Results

3.1. Intrinsic properties

The s.p. orbitals are expanded in the spherical harmonic oscillator basis. In the
initial calculation, the basis is truncated after the (1s-0d) shell. It is later extended
to the (1p-0f) shell to study the improvement of the HF wavefunction and to study
deformation and core-polarisation effects. Both the Coulomb interaction and
the centre of mass (cM) correction have beenignored. The relative matrix elements
are calculated with the oscillator energy parameter equal to 14 MeV.

The s.p. spectra for the Tabakin and the Hamada-Johnston (H-J) potentials
are presented in table 1. The orbitals are fourid to be more bound fo1 the T abakin
potential than for the H-J potential. The calculation in the smaller model space
produces about 6-0 MeV spin-orbit splitting for the occupied p-states for both
the potentials in close agreement with the experimental value (Tyren et al 1966),
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Table 1. The single-particle energics (MeV)

Max. 1/2 1/2 3/2 1/2 1/2
Component OS1/2 Op3/2 Op3/2 0]‘)1/2 OdS/Z
Smaller 1 n —54-232 —25-453  —24-306 —19-111 —3-646
Model Tabakin
Space j p —56-521 —28-916 —25-764  —20-945 —8-113
. } n  —48.457  —22-486  —21-309 —16-051  —1-308
p  —50326 —24-664  —21-898  —19-308  —2-128
N —66-619  —33-325  —31-941  —23-275 —4-816
Extended  Tabakin }
Model p  —68-836  —36-679  —33:-501  —25.280  —9-053
Space . } n —€0-854  —30-620 . —28-828  —20-717  —4-422
P —62-305 —32.685  —29-332  —21.996 —7-983
Max. 3/2 52 1/2 1/2 32
Component Odsfz Odsﬁz 18115 0d3)5 0d3)5
Smaller n —3-267 —2-457 —~1-471 3-127 4-428
Model Tabakin
Space p  —5-048 —3-406 —2-862 1-163 3-389
. } no —1-725 —0-949 —2-505 4-371 5.707
p  —2-896  —1-207 —6-018 2- 602 5-016
n —4-078 —2.964 —0-993 4-476 6-029
Extended Tabakin} ' _
Model p —5876  —3.988 —2-509 2477 4.904
Space - } n —3.369 —2-046 —2:063 4-630 6375
P —4-475 —2.241 —2.781 2-906 5.719

6:60 MeV, for 1*0. Extension of the model space increases this splitting, and
also pushes down the s.p. states, particularly the Osy state.

The binding energy per particle for the Tabakin potential is calculated to be
6-$76 MeV in the extended basis, the corresponding quantity for the H-J potential
being 5:067 MeV. The binding energies in the (1s-0d) basis are 5-666 MeV and
3-812 MeV for the Tabakin and the HJ interactions respectively. These values
are quite lower in magnitude than the experimental value of ~ 7-5 MeV. This
inadequacy of the HJ and the Tabakin potential is by now quite well known.

A feW‘deﬁnitions will now be made for an understanding of some relevant
informations provided by the HF wavefunction. If a particular harmonic oscil-
lator state is corrected by the mixture of another state differing only by the nodal
quantum number, the correction would be called radial correction since this type
of mixture determines the radial distribution of the wavefunction; the correction
arising from mixing between states in the same major shell would be called defor-
mation correction, and the mixture between states of different major shells (barring
radial mixtures) would be called core-polarisation correction. Our HF results
show th'at the main correction arising out of the extension of the model space is
the. radial correction. The deformation correction is small, and the core-i)olari-
sation correction is smaller. Tables 2 and 3 illustrate this point.
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Table 4. The intrinsic quadrupole moments (Q), r.m.s. radii (R) and HF energy-gap.
Experimental r.m.s. radius = 2-55fm [value of r, has been taken from Preston (1965)]

Neutron Proton Total Neutron Proton Total HF
Q (0] Q R R R energy-gap
(fm?) (fm®»  (fm? (fm) (fm) (fm) (MeYV)
Tabakin (p—f) 5:-064 0-636 5-699 2-542 2-332 2451 0-739
Tabakin (s—d) 4956 0-129 5-085 2-788 2-658 2731 0-380
HI (p—1) 5-889 0-693 6-583 2:549 2-331 2-455 1-053
HI (s—d) 5-095 0112 5:207 2-804 2-654 2-739 0-780

effective charge of 1-5e for protons and 0-5e for neutrons reproduces the experi-
mental data nicely. The values of the effective charge parameters are consistent
with earlier calculation (Halbert et al/ 1971) in this region. The projection results
are summarised in table 5. The 4* states in the HJ projected spectrum in both the
model spaces go too high in energy. This strongly suggests the presence of a big
and repulsive hexadecapole component in the HJ potential.

3.3. Pairing corrections

Pairing corrections to the HF ground state have been treated by the method des-
cribed by Pal and Stamp (1967) which considers excitation of a pair of nucleons
from a pair of time-reversed occupied states to a similar pair of states above the
Fermi-sea. Preliminary computations of the excitation amplitudes by the first-
order perturbation formula confirmed that only the excitation from the last occu-
pied neutron-orbit (%) and its degenerate time-reversed partner (— 4*) to the five
similar unoccupied pair states in the s-d shell is important. Results for the energy
levels, obtained by angular momentum projection from the correlated ground state
(the HF state plus the correction due to pair excitation) are presented in table 6,
and figure 3. The 0+ — 2+ separation shows a further improvement towards the
experimental data.

4.0 -

a % . qt
>N - et |
i .

~p u 2+

A 2t

3 0.ok o* - ot L ot

(a) (b) (c)
o Figure 3. The projected spectrum for the Tabakin

) potential. The gradual improvement from the smaller
Figure 2. The unp‘ef.t“f' model space to the extended model space followed
bed single-particle orbitals by pair correlation has been demonstrated [(a)( 1s-0d),

used in the approximation b) (1p—0f), (&) (Lp-0f A i
scheme to HE theory. ( p-0f), ( p-0f) and correla ions].
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Table 5. The level spacing, B (E2) rates and quadrupole moments (Q) with effective
charge for protons = 1'5e¢, and for neutrons = 0-Se

0+ —2+ 2+—4+  B(E2)(2+—0%) B(E2)(4*—-2%) Q(2%) Q (4h)
Separation Separation e*fm* e*fm* fm? fm?
(MeV) (MeV)
Tabakin 0-879 1-291 6-48 7-15 —2-38 —3-64
(p—1) _
Tabakin 0:544 1-139
(s—d)
H) 1-004 3-076 8:12 9-88 —3-01 —4.04
(p—1)
HJ (s—d) 0-839 2-380
Expt. 1-98 1-57 7-5+1-4 <12-1

Table 6. Projection results from the correlated ground state. All energies are in
MeV

Energy Scp. (MeV)
Tabakin (s—d)  Tabakin (p—f)  Expt.

Levels
o+—2+ 1:074 1-204 1:98
2t —4+ 1-364 1408 1-57

Because only the excitation of the last neutron pair is important, only the 77 =1
pairing concerns us here. A more general pairing with also the 7' = 0 interaction
(Padjen and Ripka 1970) causes insignificant change in the particular case of 180.
This point has been checked by detailed computations.

The strength of the HF state in the correlated ground state is found to be nearly
85 per cent and charges very little with the inclusion of more pair excited states.
However, when the computation is done in the restricted (i.e. up to the 1s-0d shell)
basis, the strength of the HF state is only about 45 per cent and it improves to
nearly 70 per cent with theinclusion of the full set of pair-excitations. This merely
shows the instability of the HF solution in the smaller model space, while in the
larger space the inclusion of the Of-1p shell gives the required stability.

3.4. Results by the approximate method

The Nilsson Hamiltonian (expression 26) is diagonalised in the spherical harmonic
oscillator basis in single major shells. The oscillator energy parameter is chosen
to be hw,® = 38412 MeV for protons and equal to 444-%3 MeV for neutrons.

The expectation value (h,) shows a minimum for the deformation parameter
8 equal to 0-175. The entire calculation is done with the s.p. wavefunctions and
energies coiresponding to this value of the deformation. The states |a) (figure 2)
are confined within the (1p-0f)-shell and the states |a) are confined within the
(Op)-shell. The eigenvalues and eigenvectors of the RPA-matrix (expressions (17)
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Table 7. Nilsson projection results and polarisation corrections. All energies are in MeV.'

Nilsson Polarisation Correction Total HF (p — 1)

Levels Tabakin H-J Tabakin H-J Tabakin H-J Tabakin H-J

0+  —98-325 —65-168 —17-736 —11-292 —116-061 —76-460 —124-855 —92-455
2+ —97-456 —64-201 —17-712 —11-396 —115-168 —75-597 —123-978 —91:451
4+  —-96-082 —62-134 —17-528 —11-028 —113-610 —73-162 —122-684 —88'375.

Table 8. Projected results after adjustment of two-body matrix elements. The energies arcin MeV

Nilsson Polarisation Correction Total
Levels Tabakin H-J Tabakin H-J Tabakin H-J
o+ —~83:913 —47- 640 —4.- 689 —3-035 —388-602 —50-675
2+ —81-918 —45-716 —4- 639 —3-036 —86-557 —A48-752
4+ —80-380 —44-084 —4- 642 —3-049 —85:022 —47-133

and (18) ) have been obtained by the procedure described in Appendix 2. The posi-
tive energy eigenvectors are normalised by requiring X, (x;2 — 3,3 = 1.

The excitation amplitudes f and g are obtained from equation (19). The small-
ness of the calculated values of fand g confirms that the approximation of treating
the model Nilsson Hamiltonian as the unperturbed Hamiltonian is very good and
consequently, the omission of higher order terms in f and g is justified.

Good angular momentum states have been projected out from the Nilsson deter-
minant. The resulting spectrum is more stretched than the one obtained from
the HF determinant, the model space remaining the same. Polarisation correc-
tions after inclusion of states outside the model space are then evaluated from eq.
(25). The Nilsson projection results and the polarsiation corrections are presented
in table 7. Fot both the potertials, binding energy obtained from the Nilsson
determinant is nearly 5 MeV less than that obtained from the HF wavefunction
computed in the smaller model space. The polarisation gain in energy is nearly
J-independent. It is nearly 17-7 MeV for the Tabakin potential and nearly 11 3
MeV for the HJ potential. The spectrum, even after the polarisation correction
has been included, does not give a good fit to the energy level data. Core polari-
sation in the HF calculation gives a gain in the oinding energy ~ 22 MeV for both
the potentials. In the approximate calculations, the core polarisation gain in
the binding energy is somewhat smaller. The total binding energy after the core
polarisation correction is nearly 9 MeV less for the Tabakin potential and nearly
16 MeV less for the HJ potential than that obtained from multi-shell HF calcu-

lation. This is because of the neglect of the polarisation correction of the (0s)-
nucleons of the core,
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It has been found that the specira can be reproduced accurately by arbitrarily
multiplying the J =0 and 2 matrix elements (T =1) for the Tabakin potential
by 14 and 0* 6 respectively. For the Hamada-Johnston potential we also needed
a change in the J =4, T = 1 matrix element by a factor of 1:2. The total binding
energy of the nucleus then decreases by an appreciable amount (~12 MeV) and
it is found that the binding energy is quite sensitive to the J =2, T =1 matrix
elements, but quite insensitive to the J =4, T =1 matrix elements. The Nilsson
projection results and the polarisation corrections with the changed matrix elements,
as described above, are presented in table 8. The amplitudes f and g decrease
by about 509 and the core polarisation corrections by about 75%,. But the inde-
pendence of the core polarisation corrections on the J-values is demonstrated
again. If the change in the two-body matrix elements could have reproduced
the binding energy properly, it would have been more interesting, but it is found
that one cannot be done without some sacrifice to the other.

4. The excited bands

Besides the 0*, 2+, 4+ states so far dealt with, the experimental spectrum of 0 shows
several other states. A programme for an understanding of the origin of these
states was also undertaken. To generate excited bands built upcen the original
HF solution, the Tamm-Dancoff Approximation (TDA) was used. Ground state
correlations have been neglected for simplicity.

The calculations have been limited to the (1s-0d) model space to reduce ‘the
computational labour. Since the s.p. states have axial symmetry, the Tamm-
Dancoff calculation yields excited bands having a definite band quantum number.
For the generation of excited positive parity bands, excitations from the last two
occupied neutron orbitals to the unoccupied neutron orbitals in the (1s-0d) shell
has only been considered and the other neutron and proton excitations, namely
excitation from the Os-shell has been neglected. The K = 0 excited band arises
from the superposition of four particle-hole determinants, the X =1 from four,
the K =2 from three and the K =3 band is a single determinant. Calculations
with the Tabakin matrix elements yield the band heads of the above bands at 224,

Table 9. The projected energy values from difierent bands. The results are in MeV. The
ground state energies (J=0%) are —102-682 (Tabakin) and —69- 744 MeV (HJ ) respectively.

K = 0 band K =1 band K = 2band K =3 band

E;(Tab.) E;(HI) E;(Tab) E;(HJ) E,(Tab) E,(HJ)) E;(Tab) E;H))

0+ —100-760 —67-805

1+ — 92:217 —58-677
2+ —~99-017 —67-316 —101-795 —68-707 —99-008 —67-259
3+ — 99-011 —66-104 —98-930 —66-245 —98-637 —66-399

4+ —97-504 —64-880 —101:197 —65:249 —96-746 —63-266 ~—97-982 —65-746
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Table 10. The energy cigenvalues after bandmixing (in MeV) and the bandmixing
amplitudes. The results are for the Tabakin interaction.

J Ey K=0 K=1 K=2 K=3
o+ —100-760 1-0

1+ — 92217 1-0

2+ —100- 611 0- 69782 0-49176 —0-52077

2+ — 99-963 0-81348 0- 00916 0- 58151

2+ —~ 85-633 062344 0- 70634 —0-33525

3+ — 99-433 0- 60879 —0-71052 —0-35288
3+ — 92:560 0- 74576 0- 66044 0-08746
3+ — 87-132 0- 60020 —0-18234 0-77878 -
4+ — 98555 0- 74730 0-58777 —0-05482 —0-30505
d+ — 92:406 0- 60037 0- 68978 —0-30555 0-26530
4+ —~ 90-117 0-28250 —0- 04063 0-92467 —0-25204
4+ — 89-985 0-34959 —0- 08669 —0-39813 0-84365

0:83, 1-39 and 1-71 MeV respectively above the HF energy. The same energies
for the HJ potential are 1-36, 1-25, 1-98 and 2-23 MeV. ’

States of good angular momenta are projected out from the intrinsic band wave
functions. The results are given in table 9. There are one 0+, three 2+, three 3+
and four 4+ states, all crowded in a narrow energy interval of about 4 MeV. The
1+ state projected from the K= 1 band lies at about 10 MeV above the ground
state. The result follows from calculations with both the interactions. This
agrees with the observation that there is no 1+ excitation at low energies.

Since the band heads and projected energies are very close to each other, band
mixing is quite important and has been taken into account. The O+ and 1+ states
are pure projected states from the K = 0 and K = 1 bands and their positions re-
main unchanged. The K =0, K =1 and K =2 bands mix for the determination
of the 2+ states, the K =1, K =2 and K=3 bands mix for determining the posi-
tion of the 3+ states, and for the determination of the 4+ states all the four
bands mix. When band mixing is taken into account, the Schrédinger equation

‘7['1[’M’ = E‘/’mj
transforms to
Ha = EQOa (28)

where a is the eigenvector, and O is the overlap matrix, any matrix element of which
is the overlap between states of same J and M projected from states of different

or the same band.
If we choose

b= OE a (29)

equation 28 reduces to

O-t700%p = Eb (30)
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Table 11. The energy eigenvalues after bandmixing (in MeV) and the bapdmixing
amplitudes. The results are for the HJ interaction.

J E; K=0 K=1 K=2 K=3
o+ —67-805 1-0 .

1+ —58-677 1-0

2+ —67-699 0-95646 0-21752 0-19459

2+ —66-803 —0- 69260 —0-23876 0- 68065

2+ —55-932 0- 68309 0-61288 ~0-39717

3+ —66- 884 0-75773 0-11876 0-64166
3+ —58-936 0-16851 —0-14748 0-97460
3+ —52-135 0-57293 ~0-22414 0- 78835
4+ —64-019 0- 95461 0-25763 —~0-04569 0-14232
4+ —58-634 0-64354 0-76457 —~0:03435 —0-00998
4+ —~56-591 0-25272 —0-13936 0-85049 —0-43973

4+ ~53-773 0- 68637 0-22993 —0-17052 0- 66853

Diagonalisation of the symmetric matrix O-t ' O-? yeilds the desired eigenvalues.
The eigenvectors a can then be obtained from equation (29). They give a measure
of the bandmixing strengths.

The energies of different states, computed with band mixing, are presented in
tables 10 and 11. The interesting feature of bandmixing is that one 2+, two 3+
and three 4+ states are pulled up quite high in "energy. This makes it easier to
compare (figure 4) the calculated spectrum with the experimental one because as
many states as are observed experimertally at low energies remain present in the
calculated spectrum in that energy range. For the Tabakin interaction, the fit
to the spectrum is quite fair when the whole excited band spectrum is pushed up
a little as has been done in figure 4. For the HIJ interaction, the general ordering
of the indivdual states is maintained properly except for one observation that the
3+ state lies a little below the second 2+ of the excited spectrum. The 4+ state shoots
high up like the projected 4+ state from the ground state band.

80~ — —
a* 4t
6.0} 3+ —_—at
= ot -
> - at —_—3 2+
() N 21" 31’
= 4.0~ ——— 2,. - 2+ L 2+
| = — ot o*
ul
2.0k 2t L »
0.0L ot L L
EXPT TABAKIN H-J

Figure 4. The projected spectrum from the excited bands with the inclusion of
bandmixing. The figure has been drawn so that the first excited 0+ of the computed
spectra coincides with that of the experimental spectrum.
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'S. Concluding remarks

5.1. On the numerical results

There are several aspects of the numerical results, presented in this paper, which
require elucidating comments. It is clear from the results that there is a syste-
matic improvement in the (0+, 2+, 4%) spectrum as one goes from the smaller to the
extended basis, and then one further includes the effect of pairing. This is what
is to be expected. The HF solution in the extended basis is more stable, produces
a larger energy-gap between the occupied and unoccupied states, and hence decreases
the moment of inertia. Similarly the effect of pairiag in reducing the moment
of inertia is quite well known and well understood.

The discrepansy in the spectrum that still remains has to be attributed partly
tc the deficiencies of the two-body matrix elements, and partly to the static nature
of the HF computation. It is well known that fairly stable deformations in the
(1s-0d) shell occur at 2°Ne and persist for several nuclei above it. The nucleus
180 belongs to the transitional region Jeading to this region of deformation. Some
amount of dynamics of the deformation will be needed in order to produce a com-
plete agreement with the experimental spectrum in this nucleus. This dynamical
effect will enhance the B (E2) transitions further and will bring them into closer
agreement with the experimental values without the introduction of a high value of
the effective charge that appears in table 5. Some preliminary results along this

direction, obtained by one of us (M K P), confirm the above conjecture and will
be published elsewhere.

The approximate method, as it is described in section 2 (and #not with the Nilsson
potential, which has been used here in actual computations), consists basically
of starting with an approximate single-particle density matrix p,, confined to single
major shells, and then obtaining the first-order correction p, to it when RPA-type
hole-particle excitations are allowed. By diagonalising the new (= po -+ py)
and then using the eigenstates to define a new set of occupied states, one can repeat
the process of generating the new correction p, to the new p, and so on. In princi-
ple, therefore, the approximate method described here is the first step of a new
method of iteration towards the correct Hartree-Fock solution in an extended
space, starting with a more limited space. This method of iteration is quite dis-
tinct from the conventional method of iteration emlopyed in obtaining the HF
solution. It canbeshown that, except in certain pathological cases, this new method
of iteration guarantees faster convergence, and in that semse the first iteration,
which has been described as the approximate method in this paper, is already very
close to the correct HF solution. Schiffrer and Collaborators (1973) have been
working in details on a method of fast convergence of the Hartree-Fock calcula-

tion, and the remarks on the convergence, made above, follow as a direct corollary
to the proof by these workers.

The formulae of Appendix 1 reveal that, had the first two terms inside the square
brackets in (A. 1.2) been small compared to the last term, then the core polarisa-
tion correction computed by the approximate method becomes nearly independent
of J. Numerical results show that this is so. This is somewhat in contrast to
what was found in the exact HF computation when the basis was extended. How-
ever, this discrepancy between the exact and the approximate computation can be
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Figure 5. Diagrams that eoter into the approximate HF calculation.

understood in the following way. As observed earlier, the spreading of the spec-
trum for the extended basis in the HF calculation is due to the extra stability
acquired by the HF solution. By contrast, the Nilsson potential used in the approxi-
mate solution already produced a fairly stable solution with a larger energy gap.
Therefore, when the density was improved by the RPA contribution to the p,,
the gain in the stability of the solution was not as spectacular as in the case of the
‘ HF calculation. Hence the moment of inertia remained more or less the same.
1 Presumably, the results would have been different had the HF solutions restricted
ﬁ to major shells, been used instead of the Nilsson states in the approximate method.

s S B B B

5.2. Comparison with the diagrams of the renormalised two-body potential

In the shell model approach the interaction between valence nucleons is renorma-
lised through selected higher order sums of diagrams in perturbation theory, the g
selected processes being 3p-1h, TDA and RPA type of core excitations, screening
of the particle-hole (p-h) interaction and vertex renormalisation (figure 1). It
has been mentioned in the introduction that when all these processes are summed
up to all orders, the resulting spectrum is in poor agreement with the experimental
levels. it

T e s

In the present paper the HF approach has been used for the exploration of the
spectral properties of 80. Results obtained with the multi-shell HF calculation
has been compared with those using an approximate version of the HF theory.
The latter has the agreeable feature of a close parallel with the diagrams of the
shell-model approach, mentioned above. The diagrams that enter into the approxi- i
mate calculations are shown in figure 5.

Let us now examine the role played by the different vertices of figure 1. The 3p-1h
vertex is shown diagrammatically in figure 6 a and the corresponding HF diagram
is shown in figure 6 5. In figure 6 a the vertical line represents a valence state
and the diagram involves a matrix element of the type (1s-0d, Op|¢|1s-0d, 1p-Of).
This means that the core state is being mixed with 1p-0f state and is thus
_ being polarized. Such matrix elements enter in the multi-shell HF calculation

‘ in a very natural way. The HF procedure achieves one thing further, the
{? positive parity core states as well as the valence states also get polarised. Referring
to figure 6 b, we note that this diagram (summed over all occupied states including
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Figure 6. (a) The 3p-1lh vertex; (b) The HF analogue of the 3p-1h vertex; (c)
The TDA vertex; (d) The RPA vertex ; (¢) The self-screening vertex ; (/) Diagrams

that should have been included in self-screening; (g) The Pauli-violatingself-screen-
ing diagram entering into the HF calculation.

the valence ones) equals zero when the p-h states are determined in the self-con-
sistent manner. Thus not only that the daigram like figure 6 a is present in the
HF calculation, the latter method also makes use of an exact cancellation of its

contribution when summed with the same diagram for the remaining occupied
states.

The TDA and RPA vertices are shown in figure 6 ¢ and figure 6 4. The TDA
vertex involves a matrix element of the type (1p-0f, Op | 7 | Op, 1p-0f) and the RPA
vertex involves a matrix element of the type (Ip-Of, 1p-0f]|z|Op, Op). These
matrix elements also enter into the HF calculation very naturally. The presence
of these diagrams becomes more explicit in the approximate method described
in this paper where the TDA and RPA modes of excitation of the core come as a
natural consequence in the determination of the p-h excitation amplitudes.

The self-screening vertex is shown in figure 6 e. This vertex involves matrix
elements of the type (Op, Op | ¢| Op, 1p-0f). They are clearly present in the HF
calculation in the determination cf the negative parity s.p. energies and wavefunc-
tions and diagonalisation of the HF Hamiltonian essentially means that the self-
screening diagrams are present to all orders in our calculations.

In drawing the self-screening diagrams, a few cautions are worth keeping in mind.
We must remember that nesting within the primary 3p-1h bubble cannot go to all
orders. If n be the number of particles in the core available for excitation, the
number of bubbles within the primary bubble cannot be more than n—1 and this
restricts the nesting of the self-screening diagram to all orders. This restriction
would reduce the effect of screening on the core polarisation to some extent.
Furthermore, itis not at all apparent why diagrams of the type shown in figure 6 f
should not be present in self-screening. The number of such diagrams would
increase enormously as the number of secondary bubbles within the primary one

increases and it is difficult to work out what role they would play in the compli-
cated process of core polarisation.

Referring back to our Hartree-Fock procedure, the type of diagram shown in
figure 6g enters in our calculation since the particle energy is the self-consistent
energy. The particle is excited leaving a vacancy in the occupied states, but since

T s
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the presence of a bubble means the sum over all occupied states, this type of dia-
gram has the inevitable effect of violation of the Pauli principle. It is clear that
the nested self-screening diagram of the same order has the effect of compensation
for that violation. Itis thus difficult to understand why one particular set of dia-
grams correcting for the Pauli principle be given importance in the renormalisation
of the two-body matrix elements. In the absence of a suitable expansion para-
meter, the summing of all such diagrams to all orders, however elegant the resul-
tant equation may be, is likely to be an inconsistent and erroneous procedure.

The vertex modification graphs play a central role in damping the core-polari-
sation contribution. Most possibly, these graphs are not included in our multi-
shell HF calculation.

Appendix 1

Since the unpolarised wave functions are Nilsson wavefunctions determined in
single major shell diagonalisation, the °O core wavefunctions couple the total core
angular momentum to zero. The O determinant can then be represented as

| &) = cit ¢t | 0) (A. 1.1)

| 0) is the Q core determinant, | i) and |j) are the two valence nucleon states
related to each other through time reversal symmetry. The sum of the projection
quantum numbers of the valence states is then zero. When these states are
expanded in spherical HO basis

| i) = fx;l% iy = %‘xma,

(B | TP, | Oy =[1 + (=) ) | 2 gJ X
4]

Mg 11y

X [ xg! 12xyt*(an [ v | ai) + | x¢' |2 x) * (any | v | @f)
+ [ xg B xy [2la | o | o)) (A. 1.2)
h, is the core s.p. operator defined as

(alholﬁ>=(alTIB>+gwklvlﬁr\) (A.1.2)

(Py | HP, | Do) and (D, | P, | D are evaluated following the same procedure.
— [ ¥ jé j77 J7?
(Do | HP; | Doy =[1 + (—)] X
&

mg my 0

X [ %0y |2t (| ho | &) + [ g 12Xy (G 1R | )y + x4 g’ (i | 0 |Em)

+ | xd 2 X 12{E (0L|ho|oc)——%mzﬁ,7 (af | v | ¢8)}] (A.1.4)
e .
(@3 Py | B =1+ (=) ) EERREU P
£y

Appendix 2
The RPA equation is given by

(i3 DG =) (A2
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Let I'=X+4 Yand A=X—-Y
then
A BN /rT'4+ AN I+ A A. 2.2)
(—-B _a) P-A)”E(r-a ¢

From (A. 2.2), we obtain

(4A—B)A =EI (A. 2.3)
and

(4+B)I'=EAN

Substituting the value of A obtained from (A. 2.4) in (A. 2.3), we get,
d—BAd+BI'=FETI

(A. 2.4)

(A. 2.5)

Thus diagonalisation of the matrix (4 — B) (4 + B) gives the squares of the energy

eigenvalues and the eigenvectors I'. A is then obtained from (A. 2.4). These
in turn give the eigenvectors X and Y.
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