

AN INDUCED LEAF DIFFERENTIATION MUTANT IN *SESAMUM INDICUM* L.

B. R. MURTY* and F. OROPEZA

Facultad Agronomia, Universidad del Zulia, Maracaibo, Venezuela.

*Present address: Nuclear Research Laboratory, Indian Agricultural Research Institute, New Delhi 110 012, India

DEVELOPMENTAL mutants affecting laminar growth are of interest as they influence the plant form and growth rate^{1, 2} and may involve only a small number of genetic substitutions³. In addition to the use in the genetic manipulation of plant architecture amenable for combine harvest and improved yield at higher densities reported in various crop plants the modified leaf types are valuable for basic studies on source-sink relationships, relative distribution of assimilates between vegetative and reproductive parts² and the evolution of leaf form in relation to distinct adaptive differences as in some geographical forms of *Sesamum*⁴.

In a mutation breeding programme on *Sesamum* for resistance to charcoal rot using locally adapted cultivars in Venezuela, a narrow lamina mutation with only vestiges of lamina around the veins was detected in 1985 in a progeny in the M₄ generation of a variety Ven-52. The material was derived from an initial seed treatment of a dose of 60 kr of radiation from a ⁶⁰Co source. The secondary and tertiary veins of the lamina were disorganized in growth similar to the leaf mutants in cotton reported by Dilday *et al*⁵. The number and the size of capsules and seed size in the mutant were comparable to its normal counterpart. However, seed set in crosses with the mutant as female was low. This mutant is of practical interest as chemical defoliants and dessicants are sprayed on the crop before harvest for easy mechanical harvest to get seeds free from tiny leaf bits. This mutant can reduce the cost of such a treatment. The genetics of this character was analysed in the subsequent generations and reported in this paper.

The selfed progeny Ven 52-4-N₄-H₃₂ in the M₄ generation segregated with 236 plants with normal lamina and 22 with narrow lamina, χ^2 (1df) for 15:1 being 2.8539 (*P* 0.05–0.10) indicating that the mutant genotype is duplicate-recessive. To confirm the segregation pattern, the next generation was examined with the selfed progenies of 44 randomly selected normals and 33 narrow lamina segregants (table 1) and six crosses, including reciprocals between

Table 1 Segregation for narrow leaf in selfed progenies in *Sesamum*

Group segregation ratio	No. of progenies	No. of segregants			χ^2 (1 df)	P	χ^2 (heterogeneity)	P
		Normal lamina	Narrow lamina	Total				
A (15:1)	15	1339	85	1424	0.2394	0.50-0.75	12.4980 (14 df)	0.50-0.75
B (3:1)	12	486	159	645	0.0419	0.75-0.90	8.5884 (11 df)	0.50-0.75
C (all normal)	17	1160	0	1160				
	42	2985	244	3229				
D (all narrow lamina)	33	0	1820	1820				

Table 2 Segregation for narrow leaf in crosses between sibs in *Sesamum*

Cross	No. of segregants			Segregation pattern	χ^2 (1 df)	P	Genotypes of cross
	Normal lamina	Narrow lamina	Total				
86/4 Normal × narrow	22	8	32	3:1	1.5000	(0.20-0.50)	$l_{n_1}l_{n_1}l_{n_1}l_{n_1} \times l_{n_1}l_{n_1}l_{n_1}l_{n_1}$
86/6 Narrow × normal	28	12	40	3:1	0.5333	(0.30-0.50)	$l_{n_1}l_{n_1}l_{n_1}l_{n_1} \times l_{n_1}l_{n_1}l_{n_1}l_{n_1}$
86/7 Narrow × normal	16	8	24	3:1	0.0159	(0.70-0.90)	$l_{n_1}l_{n_1}l_{n_1}l_{n_1} \times l_{n_1}l_{n_1}l_{n_1}l_{n_1}$
	11	22	93	3:1	0.0896	(0.75-0.90)	
					χ^2 heterogeneity (2 df) = 1.9596 (P, 0.25-0.50)		
86/8 Narrow × normal	23	18	41	1:1	0.6090	(0.30-0.50)	$l_{n_1}l_{n_1}l_{n_1}l_{n_1} \times l_{n_1}l_{n_1}l_{n_1}l_{n_1}$
86/8 Narrow × normal	46	0	46	(1:0)			$l_{n_1}l_{n_1}l_{n_1}l_{n_1} \times l_{n_1}l_{n_1}l_{n_1}l_{n_1}$
86/9 Narrow × narrow	0	25	25	(0:1)			$l_{n_1}l_{n_1}l_{n_1}l_{n_1} \times l_{n_1}l_{n_1}l_{n_1}l_{n_1}$

normal and narrow lamina sibs and one cross between two narrow lamina sibs (table 2). Standard χ^2 analysis was used to test for deviations from the expected segregation ratios for heterogeneity.

Assuming duplicate recessive control for the mutant phenotype, the pattern of segregation of the 44 random progenies, the observed and expected distribution of the groups, segregating for normal vs narrow lamina in the ratios of 15:1 (A) and 3:1 (B) and the non-segregating (C) classes revealed good fit and homogeneity within each group. All the 33 progenies of narrow lamina segregants (D) bred true for the same as expected. The relative proportion of the 44 progenies of groups A, B and C was as expected in the ratio of 4:4:7 under duplicate recessive control of narrow leaf (χ^2 2df = 1.0556; P 0.50-0.75).

The segregation in the crosses between narrow lamina and normal sibs revealed no reciprocal differences and confirmed that the abnormal leaf

mutant is homozygous-recessive for two loci. The normal phenotype could be homozygous dominant or heterozygous for one or both the loci. The two loci are designated as l_{n_1} and l_{n_2} .

The vascular system in the lamina of the mutant was poor with only 1-2 vascular bundles/microscopic field ($\times 900$) compared to 8-10 in the normal plants. This effect was not evident in the vascular system of the main stem, branches or the inflorescence indicating a localized pleiotropic effect on the leaf only. The incorporation of the narrow lamina alleles into the genetic background of superior yielding phenotypes could be useful for improved higher harvest index and for basic physiological studies.

2. Marx, G. A., *Annu. Rev. Plant Physiol.*, 1983, **34**, 389.
3. Gottlieb, L. D., *Philos. Trans. R. Soc. London*, 1986, **313**, 197.
4. Bedigian, D., Smyth, C. A. and Harlan, J. R., *Econ. Bot.*, 1986, **40**, 353.
5. Dilday, R. H., Kohel, R. J. and Richmond, T. R., *Crop Sci.*, 1975, **15**, 393.