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Cell-dynamical simulation of magnetic hysteresis in the two-dimensional Ising system
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We present results from numerical simulations using a “cell-dynamical system” to obtain solutions to
the time-dependent Ginzburg-Landau equation for a scalar, two-dimensional (2D), (®?)? model in the
presence of a sinusoidal external magnetic field. Our results confirm a recent scaling law proposed by
Rao, Krishnamurthy, and Pandit [Phys. Rev. B 42, 856 (1990)], and are also in excellent agreement with
recent Monte Carlo simulations of hysteretic behavior of 2D Ising spins by Lo and Pelcovits [Phys. Rev.

A 42,7471 (1990)].

I. INTRODUCTION

A proper understanding of the hysteretic response of a
magnetic system to a periodic external magnetic field is of
considerable technological interest since the area en-
closed by the hysteresis loop is directly proportional to
the energy lost in a magnetization-demagnetization cycle.
Early experimental studies by Steinmetz' on real magnet-
ic systems showed that the area of typical hysteresis loops
A is quite accurately given by 4 ~H}® where H, is the
amplitude of the oscillating external magnetic field,
H(t)=Hsin(27wwt). Experimental work on the frequen-
cy () dependence? of the area is less extensive.

Only recently have there been serious attempts to un-
derstand theoretically®* the phenomenon of hysteresis in
magnetic systems. The theory of Agarwal and Shenoy?
determined a range of frequencies within which conven-
tional hysteresis loops are obtained viz. the so-called
“hysteresis window.” The analysis was carried out for a
single-component order parameter which exhibits
Fokker-Planck dynamics within a double-well potential.
Fluctuations which allow the order parameter to scale
the barrier and shift from one minimum to another were
provided by a temporal, Gaussian, white noise. Bounds
were obtained for the derivative of the external magnetic
field for which hysteresis occurs by analyzing the mean
first-passage time for barrier crossing. However, in this
work the role of spatial fluctuations of the order parame-
ter was completely neglected. A systematic study of the
dependence of the area of the hysteresis loops on the fre-
quency and amplitude of the external magnetic field was
also not attempted. An attempt to address both these is-
sues was made by Rao, Krishnamurthy, and Pandit,* who
solved the full time-dependent Ginzburg-Landau
(TDGL)® equation for a (®?)? field theory with O(N)
symmetry in the N-— oo limit where the calculation
essentially reduces to the solution of two coupled non-
linear integro-differential equations. Quite extensive
studies by these authors have brought to light the follow-
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ing features.

There is evidence for a “dynamical transition” in this
system. At a given frequency, for low amplitudes the
time averaged magnetization M, (averaged over an in-
tegral number of cycles of the external field) is nonzero.
As the amplitude of the field is increased, M, goes to
zero. The shapes of the hysteresis loops depend on the
frequency and the amplitude of the external magnetic
field. For a fixed frequency, as the amplitude is increased
the loops evolve from elliptical to rectangular, and finally
to typical spindle-shaped hysteresis loops seen in labora-
tory systems. Most important, the results suggest that
the area of the hysteresis loop scales with the frequency
and amplitude of the external magnetic field. The scaling
law proposed by Rao, Krishnamurthy, and Pundit is
A~HZwP where H, and o are the amplitude and fre-
quency of the external magnetic field, respectively; and
where for the N— o model they obtain a=0.66%0.05
and $~=0.33+0.03.

For the finite values of N which are experimentally
relevant, an analysis similar to that of Rao, Krish-
namurthy, and Pandit is difficult because the special sim-
plifying features of the N— o limit are absent. In this
paper, we report results obtained by us for hysteresis in
the N =1, Ising, universality class using a ‘“cell-
dynamical simulation” which essentially solves a space
and time discretized version of the full TDGL equation.
Our discretization procedure is extremely efficient, ena-
bling us to obtain data for hysteresis over almost three
decades in frequency. Using this we have confirmed the
scaling law proposed by Rao, Krishnamurthy, and Pandit
with the values of the exponents being now given by
a=~0.4710.02 and 8~=0.40+0.01.

After our work was completed, a paper has appeared
in which Lo and Pelcovits® have studied hysteresis using
a conventional Monte Carlo simulation of the two-
dimensional (2D) Ising model. Our values for a and 8 are
in agreement with theirs, though their data covers less
than a decade in frequency compared to ours which cov-
ers three.
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II. THE CELL-DYNAMICAL SYSTEM

A cell-dynamical system (CDS)’ consists of an array of
cells each of which contains a continuous dynamical vari-
able ®; where i is a site index. This variable evolves ac-
cording to some rule which relates ®; at a discretized (in-
teger) time ¢ +1 to ®; (local part) and to ®; at neighbor-
ing sites j (nonlocal part) at a time ¢. The cell-dynamical
system is thus a continuous version of cellular automata
which have been used extensively to simulate nonequili-
brium phenomena in a variety of systems.® The CDS we
use for our hysteresis study, which is a generalization of
the model used by Puri and Oono’ to study domain
growth for quenches into the two-phase region in a scalar
(@?)? theory in the absence of any external field, is as fol-
lows.

We have a two-dimensional square array of cells with
the following update rule for the variable ®;,

®,(t+1)=0,(t)+D[LO,(1)], (1a)
and where
0,(t)=Ptanh[®,(¢)]+H (£)+Qn;(1) . (1b)

Here 7,(¢) is a Gaussian noise with zero mean and unit
standard deviation. The quantities P, D, and Q are pa-
rameters specifying the thermodynamic state of the sys-
tem. H(t) is the external periodic magnetic field of the
form H,sin(27t/T) with amplitude H, and integer
period T. The operator .L in Eq. (la) is essentially the
isotropized discrete Laplacian® with the following
definition for the 2D square lattice:

291’ =1(3¥ of 0 in nearest-neighbor cells)
+5(3, of 0 in next-nearest-neighbor cells)
—-0; . ()

For every value of the external magnetic field H (¢), the
corresponding magnetization M (z) is obtained as the
average of @ over the whole lattice. Periodic boundary
conditions are used throughout the calculation. It was
shown by Puri and Oono’ that the CDS described above
is equivalent to a space and time discretized version of
the standard TDGL equations for the Ising universality
class. The parameters P, D, and Q of the CDS are related
to the parameters of the Ising TDGL equations and the
spatial and temporal grid sizes. However, a knowledge of
their correspondence is not essential for understanding
the asymptotic behavior of the system and for calculating
universal quantities. Care must be taken, however, to en-
sure that the CDS does not introduce artifacts of its own
which are unphysical. It was shown by Puri and Oono’
that as long as the values of P and D lie within a so-called
“stability” regime, artificial effects of intabilities due to
the discretization scheme do not arise. We keep the
values P=1.3, D =0.5, and Q =0.5 throughout, which
are well within this stability range.

The CDS is extremely useful because a comparatively
small number of cells can be used to mimic the effect of a
large number of spins since we deal with a coarse-grained
field. This means that fluctuations of the order parameter
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are effectively averaged and accurate values for thermo-
dynamic variables can be obtained with ease.

III. RESULTS AND CONCLUSIONS

We have done extensive simulations using the CDS de-
scribed above for 30X30, 50X 50, and 100X 100 cells.
We have found that 30X 30 cells are sufficient to produce
extremely accurate estimates for the areas of the hys-
teresis loops. Increasing the number of cells beyond 900
does not significantly improve our results (this has to be
compared with Monte Carlo studies on Ising spin systems
where 50X 50 spins* did not produce data accurate
enough to extract scaling forms). We start the simulation
with random values for the variables ® in each of the
cells. The external magnetic field is then applied for a
few cycles without accumulating any values for the mag-
netization, in order to get rid of transients. After this we
start accumulating values for the magnetization at each
step of the field cycle for many complete cycles. This en-
ables us at the end of the simulation to calculate an aver-
aged (over many cycles) hysteresis loop which is further
smoothened using a polynomial data-smoothening rou-
tine to obtain accurate values of the area under the M-H
curve. We also keep track of the errors in the magnetiza-
tion which are seen to be negligible except at the points
where the magnetization changes somewhat abruptly,
which does not affect our estimates for the area. We ob-
tain hysteresis loops for values of T'=50, 100, 200, 500,
1000, 4000, and 16000 (almost three decades in 7), and
for several values of H, for every value of 7. As a result
of our calculations we come to the following conclusions.

(1) For every value of T checked by us there is a range
of values of H, for which the average magnetization
within a cycle M, fluctuates around a nonzero average
value M,, and the hysteresis loop is restricted to the
upper or lower half of the M-H plane (depending on the
initial condition). As H, increases, M, starts to oscillate
between positive and negative values and the hysteresis
loop makes significant excursions from one-half of the
M-H plane to another. For larger H,, M, obtained by
averaging M, over many cycles is zero. It is interesting
to note that this value of H, where the oscillations of M
start is fairly independent of system size, a fact which we
checked by simulating 10X 10, 50X 50, and 100X 100 lat-
tices. Our result for this “transition” boundary is shown
in Fig. 1 and corroborates the existing evidence for a
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FIG. 1. Transition boundary between the dynamical states
characterized by M,70 and M,=0 in the H,-o plane. The
black circles are obtained from our simulation data with the cri-
terion M, >0.001, and the line is a guide to the eye. Note: All
quantities plotted in Figs. 1-4 are dimensionless.
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FIG. 2. (a)-(d) Typical hysteresis loops obtained for a
30X 30 system with 7=100 and H,=0.06 (a), 0.08 (b), 0.20 (c),
and 1.0 (d). In these figures we have plotted M —H vs H since
this quantity, rather than M alone, saturates for large H in our
model where ®; is not bounded. Note that we have shown only
the first few cycles for clarity. The data plotted in Figs. 4(a) and
4(b) was obtained by averaging over many such cycles; also the
loops shown in (a) and (b) belong to the left of the transition
boundary in Fig. 1 and were not considered in our analysis.

dynamical “transition” #%1%1! in this system. The hys-

teresis loops change in shape as H, is increased for any
value of T. The typical sequence of shapes we obtain in
the region where M,=0 in Fig. 1 are shown in Figs.
2(a)-2(d). Elliptical hysteresis loops as obtained by Rao,
Krishnamurthy, and Pandit* in the O(N) system with
N — « were not seen by us in the range of T and H,, ex-
amined.

(2) The area of the hysteresis loop A increases with in-
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FIG. 3. Log-log plot of area of the hysteresis loops vs. H, for
T =50, 200, 500, 1000, 4000, and 16,000. The linear regions of
these curves are obtained for H, and « well within the region
characterized by M, =0 of Fig. 1.
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creasing Hy and T as shown in Fig. 3. A also scales with
H, and @=1/T, in the form proposed by Rao and co-
workers,* namely that it is a function of the single (scal-
ing) variable x =Hgw? with «=0.47+0.02 and
B=0.40£0.01. The scaling function can be well fitted to
a quadratic form ax +bx? with the values a =5.9+0.1
and b =30.71+0.9. All error bars quoted above were cal-
culated with 99% confidence limits. A scaling plot using
the scaling function given above gives a near-complete
collapse of all our data points as shown in Fig. 4(a) and
4(b). The exponents a and 3 are well within the error
bars of the estimates for the same quantities obtained
from the recent Monte Carlo calculations of Lo and Pel-
covits.® This makes it clear that there is a dynamical
universality class manifest in the magnetic hysteresis of
spin systems, and that the CDS used by us belongs to the
same universality class as an Ising model in two dimen-
sions.

In summary, we have shown that our simple CDS can
accurately and efficiently model the dynamics of an Ising
magnet in an oscillating external magnetic field and ob-
tain reliable results characterizing its hysteretic response.
In future, we hope to extend our work to model thermal
and magnetic hysteresis in ferroelectric systems!? and
hysteresis in systems with multicomponent order param-
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FIG. 4. (a) and (b) Area of the hysteresis loops vs H)* 0% %.
Note two different scales are used for (a) and (b) to cover data
points with values of T ranging from 16 000 to 50.
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eters which are difficult to tackle using conventional
Monte Carlo techniques.
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