DEVIATIONS FROM PARALLELISM AND
EQUIDISTANCE IN FINSLER SPACE

By NIRMALA PrAkASH AND RaMm BeHARI, F.A.ScC.
(University of Delhi)
Received May 20, 1960

ABSTRACT

In the present paper the deviations from parallelism and equidistance
are studied for Finsler spaces in Cartan’s sense and for Finsler space
which is locally Minkowskian. By considering an orthogonal ennuple of
hypersurfaces in F, properties of associate curvature or angular spread
vector have been studied.

INTRODUCTION

PArRALLELISM and equidistance in classical differential geometry were studied
by Graustein (1932); the same notions were studied and extended for
Riemannian spaces by R. M. Peters (1935, 1937).

In the present paper the deviations from parallelism and equidistance
are studied for Finsler spaces. In first section the study is based on Finsler
space in the sense of E. Cartan (1934) and in second section the Finsler space
under consideration is as given by A. Kawaguchi (1953, 1956), H. Rund (1954,
1955) and other writers.

SECTION I

1. In Riemannian geometry the associate curvature or angular spread
is defined as the measure of deviation of vectors A* from parallelism, and is
given by

1 -
= = (gap'pd)? (1.1)
where
i ., dxk
= bl 1.
pt= Ak (1.2)

are perpendicular to unit vector A having A} as contravariant component.

The latin indices followed by a vertical bar denote a particular vector. )
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If we take Finsler space equipped with Euclidean connectién, then the
associate curvature (angular spread) vector u? given by the relation

r2

= &ij (%, x") piyd | (1.3)
is perpendicular to wunit vector A, as the co-variant derivative of fundamental
tensor gi; (x, x') vanishes. 1/r is the measure of the deviation of vector )
ata point P (%, d%) of a curve C-and the vector which has been transported

parallelly from P (x, dx) to P.

~ If n linearly independent congruences of curves C (k=1, 2, .., 1)
with tangent vectors Ay, = dx'/ds; are considered, then the associate ;
curvature vectors of the vectors Ag,* with reference 1o the curves

Cl=12,...,nk#])

are given by
iy = Xy Mg, . (1.3a)
This is called the associate curvature vector of the curves Cy with respect

to curves Cj and its length o
1

ﬁlzﬂ = &ij (x, x) Iizkzlﬂakl;

_is called the associate curvature of the curves Cx with respect to Cj.

Since

’af,i dxi
itV To=1 (k=1

- vectors pdy!| are perpendicular to N, (k£ D).

We take n independent families of hypersurfaces S; defined locally by
the equations f; (x4, x2, ..., x™, xV, .. X)) = Ci (I = 1,2, ...,%) such that
the distance between any two neighbouring points xt xi - gyt is given as
(E. Cartan, 1934) '

ds = £ (x, dx) 2.1
sy = [ & (x, dx). (2.2)

These hypersurfaces intersect in » linearly independent congruenées of
_curves C; whose unit tangent vectors are Ny, = dx¥/ds;. The famity of hyper-
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surfaces S; have (n — 1) independent congruences of curves Cy (k) on
them and the family of curves Cj are their transversals.?

If di be the distance measured along a transversal between two hyper-
surfaces S;: f1 =fi/ and fj = fit + f1° (where f;° is of the order 4 fi*) and
logarithmic directional derivative of 7 be taken in the direction of a curve
Cy on f; then this derivative as Lz. f1°— 0 is called the distantial spread of
the hypersurfaces S; with respect to the curves C; measured along Cr and it is
denoted by I/dkz

Thus

1 dlog dl ‘
e =Lt 5050 _b_s% (kD). (2.3)

If S;is the dirécted arc of an individual curve C; as defined by the
integral (2.2) then

~ M1
dﬁ—-ﬁﬁdsl |
where 3f1/38; is the directional derivative of f in the positive direction of Cj.

Therefore

1 d log (gjgl)
e e N (2 )
‘ BSZC |

If 1/dy; = 0 then log (3f1/2Sy) is constant and s; = F () is the common
directed arc measured from a ﬁxed hypersurface S; with congruence of trans-
versals Ci. '

Conversely when 1/dy; the distantial spread of hypersurfaces S; with
respect to curves Cj in the directions of the curves Cy (k+# I) vanishes for all
points then' each pair of hypersurfaces cut equal segments on transversals.

Now

1 n
fz(xl,xz,-.-,x”,%, .. dx) Ci

S————

1 The word transversal does not stand here for the generalisation of' orthogorality, it xrerc]y
indicates the curves which interesct the remaining (z — 1) families of curves Cj,. k=1,2,....n
k#1),
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and
oy _ Wi g’_x_‘ + _b_fi@_"_l
3y wxidS; ' i dS,
or
—jé“_flzll +flz)‘l| . (2.4)

As g7 is the arc parameter for the transversals Cy, Ay} = dx¥/dS; denotes
the unit tangent vector to the curve. The dashed suffixes throughout denote
the partial derivative with reference to x* and A,¥ = dx'i/dSy,

Now

dlog gfsl
‘—‘b’—l f [fl zg/\h Aklj ""fl,'z)t ll:J}‘k|g +fl zgkh )‘kl
57
+ freAty, i1 (2.5)
Also
O V2 T . .
Ju iy Ng? = —ﬁ‘a’s-zk'— = 1,011, " (2.6)
Substituting this value in (2.5) and simplifying it we have
1
2 log =+ .
S; b} 2‘/\ J
"‘“‘5‘5"1;‘! 7‘ [fl z(A ll,gAk|] - }\tkha)‘l;y) + flsleL
Sz
| + fri0 e+ fr, e :z;,j)&kf"] (2.7)
or from (1.3)
_}—z [f ( — )+fl:?kl_[_f A A
da o1 Li (ks — B Lt My
;
+ fi N, i) ] : (2.8)

Thus we conclude that if the difference between the associated curvature
vectors p'ye,, p'ky, 18 zero and the 2nd, 3rd and 4th terms vanish the hyper-
surfaces are equldlstant

Ay s
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In particular if the vector field A is null the last two terms vanish.
In this case the hypersurfaces will be equidistant if the sum fj, ,Akl? is con-
stant and the vector difference (uiix, — p te,) is zero.

Equation (2.8) reduces locally to equations in Riemannian space as
given by R. M. Peters (1935).

From above considerations, we have a necessary and sufficient condition
that the hypersurfaces of each family be equidistant with respect to the con-
gruence of curves not contained in them is that the vector p', is identical

to whiK, fl,:,)\kl? 1s invariant with respect to differentiation along their trans-
versals and vectors Ayt are zero (I=1, 2, ..., n).

3. E. Cartan (1934) has shown that a curve in Finsler space with Car-

- - -
tesian basis (e, €, ..., ey) can be chosen so that at any point P we have

>->
eiej = gij.

We also assume that the independent hypersurfaces form an orthogonal
ennuple thus

Enimi =289 MNi=0 (hstk)
and
Mo PAnij = it

We define the projection of the derived vector of Ay, in the direction of Ay
on Ak, as

My, i T = v | (3.2)
which are known as Ricci’s coefficients of rotation.
Now

B Ay =0 (3.3)

and directions of the curves C; coincide with the system of normals to the
surface thus fi;utx, =0 and (2.9) reduces to

1 _ 1 fighe? _ o
o= E—E_{—gg;'" Suiptey + L0000 At + fredt ll,g)‘kf’} :
dSy
(3.4)
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Furthe;_ o
El = Z yeridet
and- .
B, = Z v b (3.5)
Thus equation (2.8) can be put in terms of coefficients of rotation.

If we take the derivative of Ay *Ag,; = 0 with respect to x! and then
multiply by ;7 we have the relation

Yhkl = — Ykhl;- (3.6)
Putting &=k we get (3.7) ykky, = O in conformity with (3.3).

With the help of (3.5) we put (3.4) as

1 1 ofyade] - i N g n
(715 = ‘D:“‘fi {—SST—_ +fl,12 Vrkl)‘ﬂ +fl,z’gAl|z Ak:’
297 4

+ fl,i’Ai ‘llsjhkij} .

Thus if y=0(0C=1,2, ..., n), ’\l]i = 0 and fl,i)‘k;i ‘is invariant
with respect to differentiation 3/dS; the orthogonal ennuple of hypersurfaces
is equidistant each hypersurface being so with respect to the congruence of
curves not contained in it.

4. Distantial spread of one congruence of curves with respect to another
congruence i—

We consider the n independent congruences of curves as obtained by
the intersection of # independent families of hypersurfaces S;,

. dxt dx? dx™
1 2 n
f;(x,x,...,x B I ...,«-——ds)——-—Cz

the curves C; being the transversals of _the hypersurfaces S;.
Upon a two-dimensional surface fi=Cli=1,2 ..., n; ik

there are oo! curves Cj defined by the equations Jr = Cg and oot curves Cy
defined by the equations f; = Cy.
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Upon an arbitrary surface we consider these two sets of curves and take
the logarithmic directional derivative of the distance measured along a curve
of congruence C; between the two neighbouring curves given by

Si=fi fi = fit + fi° (where fiis of the order 4f;%) of the congru-
ence Cy. The limit of this derivative as fj%—0is the dlstannal spread of
the curves Cg with respect to the curves Cj.

From (2.12) the distantial spread of the congruences of curves to one

" another can be put down as

1 — [Qﬁukm
g1

da ~ 55—+ (W — st + At d]
25t
+flai'xi ll:.’i)\klj]
and
1 1 [f,iA
dpe Sf;’[ f'%’sgkl' + fie,s Wity — i) + S, wjdig,| ,\,I
Sk
+fk,i'Ak1i:Al|j] ‘ (4.1)
Thus . .

If the curves of each of two congruences are parallel with respect to one
another, A;,* and Ag,' are null and the terms

WiMe  Yeght?
205 PN

vanish then the curves of each congruence are equidistant with respect to
the curves of the other.

Conversely if the first, third and fourth terms of both the brackets vanish
and the curves of each congruence are equidistant with respect to the curves
of another then their associate curvatures with respect to one another are
identical.

Finally if the first, third and fourth terms of (4.1) vanish and the curves
of each of the two congruences are equidistant with respect to another and
the curves of one of the congruences are known to be parallel with respect
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to another then the curves of latter congruence are also parallel with respect “‘;
to the curves of first. ‘ ¢
If the congruences form an orthogonal system, equations (4.1) simplify E
1 1 (ofyidd ; .
ik S EC LA P R PN
‘a"'S'TL i
+fued, 3}
Vo1 (dfyingd . s
da~ U {*fk?sj?h“ T Ti 2 vrtedet + fio, e, Py, 0
Sy,
+f,ed gy 50,7 } - (“4.2)
Thus if

M ? W, d
0 Sk

are zero and the coefficients of rotation

H Aliz > /\klz’

vrit=0 for r=1,2, ... »n

then the curves of each of the congruences are equidistant with respect to
another.,

Conversely if

Af1,iMe, 9 e, i, 9 i i
-TSZ_, "'b“s;'_: Al,: Akl

are zero and the curves of each congruence are equidistant with respect to
another, then the coefficients of rotation y,; must be zero for all ».

Now

oAt
All“ = &%{ =X, lAlxa

= Xbml:jAllg
where m may stand for any number L2, ..., n.
Therefore,

"‘I»: ij = f‘imll'
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and
F‘iml. =2 ')’mrlAﬂr;i
= -2 'y,,.m;/\,-,i.
Putting this value of A;* and Ag,' in (4.2) we have

1 _ 1 Ykt - o
d—k—i - E [ b:'sl —Lj —l_fl;l ? ')’rkl)‘ﬂz —fl,i'j 4::: Vrmlhﬂzhkly
Sy

‘"fl,i’ﬁ(rz VrmlAni) > jAk,j] .

Hence we have, if
yet=0 for r=1,2, ...,n
and

Wit Vsl
0 ? 5k

are zero the curves of the orthogonal congruences are equidistant with respect
to each other.

Conversely if the curves of two congruences are equidistant with respect
to each other and |

W 0k

are zero the coefficients of rotation y,;; must be zero for all r.
SECTION II

5. In the first section our findings in Finsler spaces were based on ele-
ment of support and, therefore, on Euclidean connection.

In the present section we make a general approach by considering the
Finsler space which is locally Minkowskian.

The metric function of n-dimensional Finsler Space F, is derioted by
F (x, X%) where X? is the vector attached to the point P (x) of Fy. The func-
tion F is restricted by following assumptions: '

(i) F is analytic in its 2n arguments (x%, x2% ..., x*; X1, X2, ..., Xm).

(ii) F is positive unless all the X* vanish simultancously.
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(iii) It is positively homogeneous of the first degree in Xi.
(iv) The quadratic form &ij (x, X) €& > 0 for g =£ 0

where

_ 1P (x,X)
8ij (%, X) = %W

From assumption

(iii) and by Euler’s théorem on Homogeneous functions
it follows:

2 (0 X) v _ 2235 (£, X) o5 - ]
Tk =T X =0 G-

8igk (% X) XF = gy 1 (3, X) X9 = 0. - (1a)

In particular if Xi = 51 ;g contravariant component of the tangent .
vector then (5.1) takes the form

i (6 x) e dgy (6, %) ;- ~
Tk o X7 =0. G2

The co-variant derivative of g vector Ab

. dAE .
Ay g = %c + Pri* (x, X) AR

is given by

(5-3)
and the condi'tion of parallelism §s
AL =0

In analogy to Riemannian s
of A* with respect to X¥ a5 it

}li, XK = “i.

pace we define the associate curvature vector
derived vector in the direction of Xk, that is

The measure of the associate curvature (angular spread) vector ;ﬁ is given
by the relation . ' ‘
1 .. )
72 = 8ij (%, ) pipsd (5.4)
and 1 /f is called the associate curvature of )i with respect to curve c

XK are the contravariant components of the vector which is intrinsicaﬂy
attached to the point in question. - ‘ ~
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It is to be noted that in Riemannian space and locally Euclidean Finsler

space the co-variant component ui of the associate curvatulc vector p* can
be put as

| Aok
Ai,k-d% =

whereas in this case on account of non-vanishing of gj; % (x, X) it cannot be
put in the above manner.

We call the vector
\ ok
, 'L,k dS = Mg
as 'the secondary associate curvature vector and-the corresponding length -
given by
. o v 1
87 (x, p) pins =

as the secondary associate curvature of the vector A with respect to the
curve C. :

" Obviously gij (x, ) and g% (x, u) are not the counterparts of each other.
Corresponding to each associate curvature vector at a point of the curve
we shall have the secondary curvature vector too.

As the contravariant components At belong to a unit vector we have

8ij (x, X)A/V“‘ 1
and the co-variant derivative with respect to x¥ gives
gt (%, X) XN + 235 (x, X) Ny M = 0
or .
i, 1 (%, X) MNx'E + 235 (x, X) A, pedix’® = 0. o (5.5)
Thus we observe that unlike Finsler manifolds. with Euclideanconnec-
tion Here the vector ut is not alwiys perpendicular to At;'it is perpendicular

only when first term of (5.5) vanishes, i.e., when X* are replaced by A* in
gis (x, X) or Xt = x't,

If n hnearly 1ndcpendent congruences of curves Cp (k=1, 2, ..., n)
with tangent vector .

. dxt
T T
M= T



230 NIRMALA PRAKASH AND RAM BEHART

are considered then the associate curvature vectors of the vectors Ak, with
respect to curves Cy (k, /=1, 2, ..., n, k1) are given by

W, = Nt (5.6)

This is called the angular spread vector or the associate curvaturc vector
of the curves Cg with respect to C; and its length

1 .
g = i 06 ) B
is called the associate curvature of the curves Cy, with respect to C.

Here again we notice that u%;, are not necessarily perpendicular to A s
they will be so only when

gin (0 X) e P = 0, de, XP= gt or Xi= 25 (5.7)

If Fp is a subspace embedded in a Finsler space Fm. (m > n) the vectors
in F,, are specified by A! whose contravariant components in F,, are &= thus

) Lk =1,2,...,n
= X, ‘&8 oBy=12...,n } (5.8)
X=Xt ue, L u)

Its ordinary differentiation gives

A adie R
s = & ST QU up & das - (5.9)

The associate curvature vector of M are denoted by p then

. dd .
B=75 i (5.10)

On account of (5.8) and (5.9) it takes the following form

X iy &d”ﬁ (bzfj;" I Xahx,gk) . (5.11)
Since
-m(u,u)—gu (x, x") X 7(bm 2 + Pri*¥ (x, x') X hxﬁk)
We have
8ij (x, X) Xy J_gayf“,g%zgw(u, u') e (5.12)
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where we have put

duf
&% a5 = 7n®
which is the associate curvature vector of £* with respect to the same
curve C. ' -

Thus the relation (5.12) shows that the associate curvature vector of
vectors in subspace and the embedding space with respect to same curve is
not necessarily the same.

. The associate curvature of the vector Xt with respect to curve C is essen-
tially its measure of the deviation from parallelism with respect to curve C.

6. Equidistance of families of hypersurfaces with respect to congruences
of curves.—Let n independent families of hypersurfaces S; be defired in F)
by the equations f; (x4, x2, ..., x% xL ..., xXM=C(I=12,...,n).

The n linearly independent congruences of curves which are the curves
of intersection of these hypersurfaces are denoted by Cg k=12,...,n)
and their unit tangent vectors are
_a
T dS T
The hypersurfaces S; of the family f; = C; contain (n — 1) congruences of
curves Cg, (k5= I) and the congruence Cj is their transversal.

A,

We define the distantial spread of the-hypersurfaces S; with respect to
the curves C; measured along Cy in the same way as we did in Section L.

Thus )
1 it dlog dy

e = P, == k £1
dkl F1%>0 dSg (ke # )
or | -
, EIL . _ ‘
1 w | 6.1)
dx1 Sk )

I 1/dyy = 0 then log 3f3/2S; is constant and Sy = F ( f1) is the common
directed arc measured from a fixed hypersurface. S, of all the curves Cy.

Conversely when 1/dy,; the distantial spread of hypersuifaces S; with

-respect to curves Cy in the directions of the curves Cy (k5 1) 1s zero at all

points then each pair of hypersurfaces cut equal segments cn transversals.
A3
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Now

fl (xls xz’ MRS ] xn; X’l,} .oy x’n) = Cl‘

and
ot oy dxt L oy dx't
®; WXEdS; T dx'E Sz
= fiid + frad,
where we have put
o dx’t -
Allz - d_"s"i‘ . (6 2)
Therefore
1 1 . . .
Io=— gfl-(fz,i/\zﬁ + /18410 ), 5,
257
1 . : : _ .
= = gy Voah® Fouides Fnednd + ity ) Ml 6.9)
25; .
Also

iy, 3 f1,iA i s .
1,17, = lg’gf-'- — J1,iN5, 30,

Substituting this value of f1,1520, "X, in (6.3) and taking into account
(5.6) we have - ‘

L1 S 2 j
‘7—7;1 = '372' [fl,i (.U*Zkll - au'llkl N— B’S'l"(fl;j}‘klj)
D_S_l -

— A eI ~fz,i'7\iz,,5/\k;j] . (6.4)
From (6.4) we obtain the following theorems:

THEOREM 1.—The hypersurfaces are equidistantial with respect to the
curves Cx, If the difference vector of the associate curvatures of curves Cy with

respect to Cy and curves Cy, with respect to Cyis null and the last three terms
reduce to zero.

In particular if the congruence of curves C; are geodesics, A% will be
Zero.

w
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THE‘,QREM 2.—Similarly if the unit tangent vectors N, * and Ny,* are parallel
with respect to the curves Cy and Cy, respectively and the last three terms are
zero the hypersurfaces Sy will be equidistant with respect to curves Cy.

Now
Ayt o= x40
= Nm,,iA0 = pimi,.

. Thus A;,% is actually the associate curvature vector with one of the super-
script suppressed meaning thereby that it stands for the associate curvature
of all the curves of the congruences C,, (m=1, 2, ..., n).

Therefore
1 1 i ; d X
a—l—c-i = '57“1" [ fl,i (‘u, ki, — & lk|) - —D—S-—l (fl,.’iAklg)
25
"‘fl,i’.’”"imll’\kxj "‘fl,i’#iml[,jhk!j] . (65)

Thus we have

TaEoREM 3.—The hypersurfaces Sy are equidistant with respect to the
curves Cy, if the associate curvature vectors of all the curves of the congruence
with respect to the fixed congruence Cy are zexro, the associate curvature vec-
tors of Cy with respect to Cy are zero and the sum fl,,-)\klj is independent

Of St
7. We choose an orthogonal ennuple of hypersurfaces in F,, such that if

o . dxd
[——Jn— ) — 2
Mei" dasy’ A dSy

be the contravariant components of the unit tangent-vectors of the trans-
versals Cy and Cy of the family of hypersurfaces fx = C; fi=C then we
have the relations o .‘ L

g M) ANy = 8= Neyihnd ,
g3 (%, M) A e, = 8 = Dy | (7.1)

It is to be noted that 8% 8! in general, though of course S and &l
are both zero or one according as kstlor k=1 '
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The projection of the derived vector of Ap, in the direction of Az, on A,
is given by |
N, iy g | (7.2)
we put it as ypy and call it Ricci’s coefficient of ‘rotation.
Since
Xy My i # My, ke,

the coefficient of rotation so defined is not anti-symmetric in the first two
indices. '

We call the invariant defined by
i i et = vhia 4 (7.3)
as the relative Ricci’s coefficient of rotation.

Taking the co-variant derivative of the relation (7.1) with reéﬁect to x™m
multiplying it by A;,™ we have

(Ahl.’j;mhkﬂ 'l' Ah]j)‘ik{,m) Al|'m' = O
(Mny,mMej + M Meyi,m) A, ™ = 0. (7.4
In view of (7.2) and (7.3) we have

Yhkl + Ykhi = 0
Yhkl + vich1 =0 | (7.5)

This shows that the relative coefficient of rotation and coefficient of
rotation are connected by a reciprocal relation.

From (7.2) and (7.3) we have relations for associate and secondary
associate curvature vector, thus,

X, 00,7 = Jg")’hkz/\k,i = phpy,
Ahli:jAZIj = 4:-7 YhilMe i = Bhli- (7.6)

We may remark here that if X’s are constant multiples of each other then in
view of condition (iii), the distinction between two types of associate cur-
vatures and Ricci’s coefficient of rotation will vanish.

The derived vector of Ay, in its own direction is called the first curvature
vector and is denoted by

T
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Nhy,idn,d = %'thh)‘kli = pp, "

Mit,iMe = Z yhindes = pni 7.7
Applying (7.6) to (6.5) we have

I T a5 i i — Ay 0 N d

T = ofy L6\ 2 venidn® — 2 vinkdn, )- 55; (J1%%%)

Sy
-—fl,irth' Ymhidh, e, T — fl,i (%"/mhv\h.i) ,)\k,j]-
_ ¥
(7.8)

Hence we have

THEOREM 4.—If for an orthogonal ennuple of hypersurfaces the Ricci’s
coefficients of rotation ypyy, =0 k,1=1,2,...,n) and ?/S; (fl,jhklf)
is also zero then the family of hypersurfaces fy = Cy must be equidistant with
respect to the family fi. = Cy.

On account of (7.5) the relation (7.8) can also be put as

L1 [fz '(ZVhlk’}/hi"‘ Z Ankitn ’) — = (fi i)

G = o LI\ & Ttk — 2 ‘)~ 5 e
BN

+ fL {J YhmiM, e, d — fu (%‘ 'J’hml)‘mi) ; Aklj] .
Hence

THEOREM S5.—The family of hypersurfaces fi = Cy will be equidistant
with respect to fi, = Cy if relative coefficients of rotation ypyy are zero and
/381 (f1,j21,7) is zero.

8. We define the distantial spread of the curves of the congruences on
the same lines as in Section I, thus the distantial spread of the curves of the
congruence Cy with respect to the curves of the congruence C; can be put as

1 1 I NS BN
o= S_f:l-[ Fri (Wl — B'x1y) S (fl’f}fk' )
5

— fruittmu A — fristmu, it ] : 8.1)
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Similarly we have e b

1 1 . , d o
o= 'b'ﬁ:"[fk,i (g, —pher,) — Ec(fk,jhz;’)
S
A ”_'_‘fk,iv"’jl""im'kl)‘lij‘ffk,'i'#iﬁi‘kl,iahjj- I (8.2)

The distantial spread of congruence of curves Cy with respect to the con-
gl‘llenge's-Cl_ will ‘be zero if1/dy; is- zero. -~ - . .

" Thus we have

THEOREM 6.—If the curves of all the congruences are parallel with respect
fo the curves of congruences Cy and curves of congruence Cy are parallel with
respect to Cy, and fi,;\,7 is invariant with respect to the differentiation 338
then the curves of congruence Cy, are equidistant with respect to the curves of
congruence Ci.

As (8.1) is equivalent to the following equation

o= Sz-l—[fl,z(:“« Kl = Bk = 55 (fi,52%,7)
S
S = fay P d — £ ll;jxkla‘] N @39

We have

THEOREM 7.—If the curves of two congruences Cy, Cy are parallel with
respect to each other, 3[3S; ( J1,52%,7) is zero and the vector Az,i is null then the

‘curves of congruence Cy, are equidistant with respect to the curves of congru-
ence Cy. ‘

Considering (8.1) and (8.2) together we have

THEOREM 8.—If the curves of two congruences Cy and Cy are parallel
with respect 10 ‘:’fwh other 38y (fi,Ak,%), ¥[8k (fk,j?\i.j) is zero and the
vectors N,b, At are null _tﬁfen_ »bq‘z“h‘j the -congruences are equidistant with
respect to each other, : . L o /
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