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We present detailed results on the form factors of two-dimensional systems undergoing phase-
ordering processes, using both deterministic and stochastic cell dynamical systems. We show the
robustness of the asymptotic form factors against quench depth, noise amplitude, etc. The effect of
noise is essentially to delay the number of steps needed to reach the asymptotic behavior. In the
case with a nonconserved order parameter, we demonstrate that the form factor obtained by T.
Ohta, D. Jasnow, and K. Kawasaki [Phys. Rev. Lett. 49, 1223 (1982)] is asymptotically very accu-
rate. We also present preliminary results for off-critical quenches.

I. INTRODUCTION

In contrast to the dynamics of second-order phase
transitions, the dynamical aspects of first-order phase
transitions are not yet very well understood. A classic
representative problem in this field is the ordering kinet-
ics of thermodynamically unstable phases, e.g., spinodal
decomposition.! Many experimental,>® numerical,*~?
and analytical’ !> approaches have been applied to this
problem.

Numerical approaches include Monte Carlo simula-
tions*~® and simulations of phenomenological (stochas-
tic) partial differential equations (PDE’s).” These numeri-
cal simulations are useful but suffer from present day
computational limitations which impose the following re-
strictions: (a) it is difficult to study the long-time behav-
ior of the ordering process (e.g., the so-called scaling re-
gime in spinodal decomposition); (b) to date, there have
been no numerical studies of the effect of hydrodynamics
on the separation process. This is due to the long-range
nature of hydrodynamic interactions which requires a
huge system for an accurate simulation. Analytical ap-
proaches have the problem that the process of phase sep-
aration is highly nonlinear. Thus, especially for long-
time behaviors, the approximations used in analytical
theories have not been mathematically well controlled.

This paper is the second part of a two-part exposition.
Our first paper!* (henceforth called part I) proposed a
cell-dynamical-system (CDS) approach to phase-ordering
dynamics'® and provided a detailed methodological ac-
count. In that paper, we studied the general features of
our approach but we confined ourselves to deterministic
models. In this paper, we present detailed results from
our study (using these CDS models) of phase-ordering dy-
namics in two-dimensional isotropic systems with a scalar
order parameter and without hydrodynamic interactions.
Here, we make a detailed comparison of results from
both deterministic and stochastic models. We focus our
attention on form factors, and show that the determinis-
tic model and the stochastic model give indistinguishable
form factors. In the nonconserved-order-parameter case,
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the effect of the finite interface thickness on the form fac-
tor is analytically studied, and the comparison of this and
our CDS results strongly suggests that the form factor
given by Ohta, Jasnow, and Kawasaki (OJK) [Ref. 11 (b)]
is very accurate, if not exact.

This paper is organized as follows. In Sec. II, we
briefly survey relevant results (experimental and numeri-
cal) in this field. In Sec. III, we summarize our CDS
models (without and with noise). In Sec. IV, we present
detailed results for the case with a nonconserved order
parameter. In Sec. V, we present detailed results for the
case with a conserved order parameter under the condi-
tion of a “critical quench.” Preliminary results for the
case of a conserved order parameter with an “off-critical
quench” are presented in Sec. VI. Section VII is devoted
to a discussion and summary of this paper.

II. BRIEF SUMMARY OF EXPERIMENTAL
AND NUMERICAL RESULTS

As already stated in the Introduction, we consider only
systems with scalar order parameters without hydro-
dynamics. The mechanisms whereby ordering takes
place in such systems depends crucially on whether the
order parameter is nonconserved or conserved. In almost
all analytical approaches the starting point is a stochastic
PDE,

Wt __; opedHLUED]
at SY(r, 1)

where ¥(r,t) is the order parameter of the system at
point r at time #; L is a phenomenological parameter;
B=1 for the conserved-order-parameter case [called the
Cahn-Hilliard-Cook (CHC) equation®] and 8=0 for the
nonconserved case [called the time-dependent Ginzburg-
Landau (TDGL) equation]; H[v(r,t)] is usually the
coarse-grained ¢* free-energy functional

t), (2.1)
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with 7,g being phenomenological parameters greater than
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zero. The parameter 7 measures the depth of the quench.
The Gaussian white noise o(r,?) has the following expec-
tation values:

{o(r,t))=0,

2.3)
(olr,t)o(r,t"))=2L(iV)#8(r—1")8(t —1") .

In the conserved-order-parameter case, f driy(r,t) is a

constant. If this constant is zero, we say that the quench-
ing is critical. If this constant is nonzero, the quenching
is said to be off-critical.

Recent interest in the study of phase-ordering dynam-
ics is due to the observation of an approximate scaling
law in Monte Carlo simulations.*> These suggested that
the normalized form factor S (k,?) has a scaling regime in
which it behaves as

S(k,1)=1(1)%D(kl(1)) , (2.4)

where k is the wave vector; ¢ is the time; ® is a universal
function; /(#) is a time-dependent length scale (interpret-
ed as the typical domain size) which behaves as
[(t)~(t —ty)* for some positive number ¢, ¢, being a
“starting time”; and d is the spatial dimensionality. It
should be noted that, previous to these results, Binder
and Stauffer'%® and Furukawa!®® had discussed possible
scaling of the form factor.

Experimental studies on a number of different systems
have found the approximate scaling as described by (2.4)
and also the power-law growth law for the representative
domain size. For the case when the order parameter is
not conserved, the power-law growth rate with ¢~0.5
[called the Lifshitz-Cahn-Allen (LCA) growth law] has
been observed in a variety of experimental situations.’
As far as we are aware, Noda et al.?® were the first to
demonstrate (experimentally) the scaling of the form fac-
tor in the nonconserved case.

In the absence of hydrodynamics, the phase-separation
process with a conserved order parameter has been stud-
ied by a number of different groups.® In a recent letter,
Gaulin et al3'® reported results from their studies of
phase segregation in critically quenched samples of
Mn, 4,Cug 33. They observed a late-time regime in which
the form factors scaled well with an exponent ¢ ~0.33.
Prior to this regime, they saw a power-law growth with a
smaller effective exponent. These experimental results
suggest that different mechanisms (and combinations of
them) are responsible for domain growth in different time
regimes.

There are a number of numerical simulations of the
process. These are all without hydrodynamic interac-
tions. The nonconserved case was studied by Phani et al.
and others* via Monte Carlo simulations. They found
that dynamical scaling was satisfied and obtained the
form of ®. The result for the exponent ¢ is compatible
with the LCA value of ¢ ~ 1. For the conserved case, ex-
tensive Monte Carlo simulations (using a spin-exchange
kinetic Ising model) were performed by Marro et al’
They found that ¢ varies between 0.19 and 0.3 depending
on the depth of quenching, the off criticality, and the
time of evolution. As in the experimental case, there was

an approximate scaling in the sense that data for fairly
long periods of time could be fitted to master curves.
However, they found that the shape of the master curve
changed gradually in time so that data for very long time
periods could not be fitted to a single curve. Another
Monte Carlo study of the conserved case was done by
Mazenko et al.,®® who used a renormalization-group
method to extract the domain growth law. They original-
ly claimed a logarithmic growth rate asymptotically, at
variance with all other results. Huse®® criticized these
results and his Monte Carlo results for the conserved case
found (by extrapolation) a late-stage domain growth law
of I(¢t)~t'/3. In response, Mazenko and Valls®®’ have re-
cently stated that their previous claim of a logarithmic
growth law seems to be incorrect.

The CHC equation has also been the subject of consid-
erable numerical work. It was solved by Petschek and
Metiu’®’ and (without noise) by Miyazaki et al.”'® How-
ever, they did not study the scaling regime. Recently,
Gawlinski et al.”'® reported a two-dimensional (2D)
simulation of the CHC equation, and claim that ¢ ~0.33
for all time.

With the aid of our deterministic CDS model,'>!*
Chakrabarti and Gunton® unambiguously confirmed the
asymptotic growth exponent 1 (for about two decades
without extrapolation). Thus we can conclude that the
growth exponent for the conserved-order-parameter case
is 4 and that our CDS scheme gives this. This exponent
is the one theoretically predicted by Kawasaki and
Ohta.'?@»12¢¢) Thys in this paper, although the time
dependence of the length scale will be exhibited, our main
concern is the form factor. In the Appendix we give our
derivation of interface equations and exponents.

III. CELL DYNAMICAL SYSTEM MODELS

Given the numerical effort involved in simulating the
CHC equation or performing a Monte Carlo simulation,
it is desirable to have computationally efficient models to
study the scaling regime. Recent developments suggest
that CDS models may fill such a need.®

A cell dynamical system is a space-time discrete
dynamical system with a variable defined on each lattice
point, which is updated in discrete time steps. The state
of the lattice at a given time step is usually a function of
the state at previous time steps. Cellular automata!®®
(CA) and coupled maps'®®"16¢) are examples of CDS'’s.
The CDS approach has been successfully used for some
time; notable examples are those in Refs. 16-18.

A. Deterministic models (summary of part I)

In part I, we explained our motivation for our intuitive
construction of CDS models for phase-ordering dynam-
ics. We presented deterministic CDS models for both the
nonconserved- and conserved-order-parameter cases.
The essential idea underlying our modeling is that the
temporal evolution of the order parameter (¢, n) associ-
ated with a lattice site labeled by n at time ¢ is governed
by the following two mechanisms.

(a) The local driving force (which is due to the chemi-
cal potential).
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(b) The diffusive effect due to the difference of the
order-parameter values in the neighboring cells.

The first mechanism dictates the tendency of an indivi-
dual cell in the absence of connecting cells or other con-
straints (e.g., conservation of the order parameter).
Below the critical temperature, we expect the order pa-
rameter of an individual cell to approach either of two
nonzero values 1, (corresponding to the two symmetric
minima of the ¢* free energy below the critical tempera-
ture), depending on the initial value ¥(0,n). We model
this tendency on a coarse-grained time scale by an injec-
tion f on R (the set of real numbers) with two symmetric
(about the origin) hyperbolic sinks and one hyperbolic
source at the origin (corresponding to the unique high-
temperature minimum of the ¢* free-energy functional).

Thus the single-cell dyamics is described by
Yt +1,n)=f(Y(t,n)) . (3.1)

J

((Y(t,n)) )=13 (¢ in the nearest-neighbor cells)+ + 3, (¢ in the next-nearest-neighbor cells) .

The isotropic choice of the local averaging in (3.3) is cru-
cial in the conserved-order-parameter case so as not to in-
troduce an unphysical anisotropy into our results, as we
demonstrated in part I.

For the conserved case, we must respect the restriction
that order parameter cannot be created or destroyed in
exchanges between neighboring cells. Thus, in an ex-
change of order parameter between a cell and its neigh-
boring cells, there should not be a net change of order pa-
rameter inside the neighborhood of the central cell. Since
the net gain of the order parameter by the center cell is
given by F[¢(t,n)]—(¢t,n), the simplest (deterministic)
discrete model for the conserved case reads

Yt +1,n)=F[P,n)]—{(F[Y(t,n)]—(t,n)) ) .

In (3.4) the subtraction corresponds to the extra Lapla-
cian in the CHC equation.

Thus we have arrived at deterministic CDS models.
The models are intrinsically computationally efficient and
ideally suited to a parallel computation environment.
However, we did not use array processors for any of the
demonstrations in part I or in this paper. We were able
(due to computational efficiency) to get sufficiently long-
time behavior using a VAX-750 computer as we demon-
strate in this paper.

In part I, we used these models and demonstrated the
potential of our scheme. The salient points made in part
I were as follows.

(i) Asymptotic results are unchanged even if we change
the map f as long as we respect the conditions that it be
injective and that it have two hyperbolic sinks symmetri-
cally placed about one hyperbolic source. We call this
the “‘structural stability” of our modeling.

(ii) We proposed a class of new discretization schemes
for semilinear parabolic PDE’s which relate CDS models
and corresponding PDE models. We emphasize, howev-

(3.4)

We choose f(x) to be 4 tanhx throughout this paper.

We model the second mechanism by incorporating into
the update a diffusive contribution (in the absence of the
constraint that order parameter be conserved) propor-
tional to the difference of the order parameter in a cell
from the average order parameter in the neighboring
cells. Thus our deterministic model for the nonconserved
case reads

Yt +1,n)=fF(P(,n))+D[{{(P(t,n)) ) —op(t,n)]

=JF[yY(,n)], (3.2)
where D is a positive constant proportional to the phe-
nomenological diffusion constant, and ((%))—x% is
essentially the isotropized discrete Laplacian. We use the
following definition of ({#)) on the two-dimensional
square lattice:

(3.3)

er, that we do not require PDE’s to arrive at CDS mod-
els. By definition, any numerical simulation of a PDE is
a simulation of a CDS, so that by default no numerical
simulation of PDE’s can be faster or more efficient than
CDS simulations.

B. Addition of stochasticity to models of part I

It is generally believed that the noise effect is unimpor-
tant for late stages of phase-separation kinetics.!® As far
as we are aware, the issue has not yet been settled analyti-
cally or numerically and is of considerable interest. For
the conserved order parameter case, we addressed this
problem numerically in a recent letter?® and our results
indicate that the effects of noise are asymptotically ir-
relevant. In this paper, we expand on these results.
Specifically, we compare the form factors for both the
nonconserved and conserved cases without and with
noise.

We can put noise into our model for the nonconserved
case by analogy with the TDGL equation (2.1),

Yt +1,n)=F[Y(t,n)]+By(t,n) , (3.5)

where B (the noise amplitude) is a third parameter in our
model (the others being D and the parameter A4 in f).
The noise 7(t,n) is a random number (uniformly distri-
buted in [ —1,1]) assigned at each time ¢ to each lattice
site n[=(n,,n,)]. We have also performed simulations
in which noise has a Gaussian distribution and this made
no difference to our results.

If we regard our CDS models as arising from a discreti-
zation (albeit an unconventional one) of the correspond-
ing PDE as described in part I, the noise amplitude B is
related to the kinetic coefficient and the discretization
mesh size through the fluctuation-dissipation theorem.
Thus, changing B would correspond to changing the ki-
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netic coefficient, if we keep the mesh size fixed. However,
as in the usual deterministic TDGL equation, we simply
discard the noise while retaining the nonzero Kkinetic
coefficient, ignoring the fluctuation-dissipation theorem.
Thus our comparison in Secs. IV and V will be between
the deterministic case (which does not satisfy the
fluctuation-dissipation theorem) and the noisy case
(which satisfies the fluctuation-dissipation theorem). It
should be noted, furthermore, that irrespective of the pa-
rameters of the quenched thermodynamic potential we
expect the asymptotic behaviors to be universal. This is
borne out by our results in part I.

To add noise to our model for the conserved case, we
proceed in analogy with the CHC equation. In (2.1), we
can use for the noise

o(r,t)=V-q(r,t), (3.6)

where 7(r,1) is a vector white noise with Gaussian com-
ponents which satisfy the usual fluctuation-dissipation re-
lation

(mi(r,0)m;(r',t") ) =2L8,8(r—r')8(s —1t') .

] (3.7)

It is easily verified that o(r,?) as defined by (3.6) satisfies
the conditions (2.3). Thus, in our discrete space-time
model, we include noise as

Pt +1,m)=F[P(t,n)]— L F[P(£,m) ] —p(1,n) ) )
+B[n (t,n, +1,n)—n,(t,n,,n,)
(3.8)

where B is again a third parameter in the model. The
noise vector (7,7, )(¢,n) consists of two random numbers
distributed as in the nonconserved case. The one-sided
discretization used for the form V-7(r,¢) in (3.8) is not
crucial. We have confirmed that our results are not
affected if we use a center-difference scheme to discretize
V-q(r,t).

Our results in Ref. 20 and in Secs. IV and V support
the theoretical view that the effect of noise is irrelevant
for asymptotic results.

+n,(t,n,n, +1)—n,(t,n.,n,)],

C. Correspondence to reality
and to other numerical simulations

Strictly speaking, there is no fundamentally reliable
way of choosing parameters (including “real” values of
the lattice spacing and time step) in our models other
than comparing the results (for different parameter
values) from our models (e.g., the time evolution of pat-
terns) with experimental results. As will be clear from
the demonstrations in Sec. IV and V, a study of the
asymptotic regime does not (because of extensive univer-
sality) determine a unique set of parameters. To deter-
mine the parameters in our model which correspond to a
particular experimental situation, we have to look at the
nonuniversal behaviors. If we specify a functional form
of the map in our model beforehand, we can estimate
necessary parameters by analyzing experimental results
for nonuniversal quantities such as the interface thick-
ness, the wave vector of the unstable mode in the early

stages (viz., the Cahn-Hilliard regime), the rate of growth
of this unstable mode, etc. However, it is not our goal to
model nonuniversal features and so we do not try to
determine here a set of parameters that may correspond
to a particular situation. Notice that the statements
made above are also valid for the conventional models
such as the TDGL equation or the CHC equation.

Comparison of our results with those of other numeri-
cal simulations also faces the same problems as those out-
lined above. Therefore, here we confine ourselves only to
making a few relevant comments on the real values of our
lattice spacing and time steps in the case with conserved
order parameter. Similar comparisons are possible for
the nonconserved case also, but we do not present those
here.

Our general goal is the simulation of coarse-grained
dynamics as in the conventional PDE and models such as
the CHC equation. Thus a single cell in our model
definitely does not correspond to a single atom in an ex-
periment or a single spin in a Monte Carlo simulation. A
rough estimate of the size of our lattice spacing in the
conserved case may be obtained in several ways as fol-
lows.

(a) We can compare our results for the crossover of the
growth exponent in the case of the critical quench (de-
scribed in Sec. VI) with the recent results of Gaulin
et al.*® (we should warn the reader that this is only a
very rough comparison because the experiment is in 3D,
whereas our simulation is in 2D). They see a crossover in
the exponent to its asymptotic value of $~0.33 when the
peak of the form factor is about 20 A”l.o Therefore the
length scale of the pattern is about 407 A, which is the
width of 30-40 atoms. In our deterministic simulation
with A4=1.3 and D=0.5, we see a crossover from
¢ ~0.28 to the asymptotic value of ¢ ~0.33 when the
pattern size is about ten lattice spacings. If we assume
that the exponent crossover occurs at the same represen-
tative pattern size in both cases, a single lattice spacing in
our model would contain about 3—4 atoms. Thus, a sin-
gle cell in our 2D model corresponds to about 32 (say, 10)
atoms.

An estimate of the time step in our simulation may be
obtained by comparing the crossover time in our simula-
tion with that of Gaulin et al.*® They observe a cross-
over to the asymptotic exponent at about 4100 sec. In
our simulation, the crossover is at about 2750 iterations.
Thus our time step is about 1.5 sec in the Gaulin et al.
experiment.

(b) We can also estimate the size of a single cell in our
model in terms of a Monte Carlo simulation by locking
at, say, the interfacial boundary structure. Since there
are only two values allowed to each spin in a Monte Car-
lo simulation (of the Ising model), one may be tempted to
say that the wall is always sharp. But this is not true be-
cause the walls in a Monte Carlo simulation are always
ragged on the microscopic scale (see, e.g., Gawlinski
et al.,* Huse®). The true thickness of the wall is ob-
tained after the raggedness has been averaged out. Thus
the amplitude of the raggedness is a measure of the actual
thickness of the wall. From the representative patterns
of, e.g., Huse®® for the conserved case, it is clear that the
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wall thickness is about 4-5 spins. In our deterministic
simulation with 4 =1.3 and D =0.5, the wall thickness
is about 1-2 lattice spacings. Hence a single cell in our
model has a width of about 2-3 spins (at least). Hence,
again a single cell in our 2D simulation contains about
ten spins.

To estimate the time step in our simulation (in terms of
Monte Carlo steps), we compare our results with those of
Grest and Srolovitz* for the conserved case. Grest and
Srolovitz obtain their results on a 400 X 400 lattice. They
define a Monte Carlo step (MCS) as 400% spin-exchange
attempts for the entire lattice, viz., an average of one
spin-exchange attempt per spin. At 3X 10* MCS, their
representative pattern width is about ten spins. In our
simulation, we reach a corresponding pattern width (viz.,
about three lattice spacings) at about 23 steps. Thus the
time step in our model corresponds to about 1300 MCS.
Again, if we assume that representative pattern sizes in
our simulation and the Monte Carlo simulation are com-
parable when the exponent crossover from ¢~0.25 to
~0.33 takes place, the Monte Carlo simulation of Grest
and Srolovitz would crossover into the asymptotic regime
at a pattern width of about 30 spins. Therefore,
3% 10*x 3* (=2.43 10% MCS are necessary for a cross-
over to the asymptotic regime.

Finally, we deal with the objection that the model used
in Monte Carlo simulations is far more realistic than the
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coarse-grained model used in CDS or conventional
partial-differential-equation models. At first glance, this
argument may appear convincing. But we do not believe
there is any hard evidence to support this. On the con-

trary, as pointed out by Binder,'*®), it is doubtful wheth-
er Kawasaki exchange dynamics is realistic because of
the difficulty of the two-particle exchange. This is be-
cause there is no local concerted movement of atoms
which could speed up the exchange of the atoms. Fur-
thermore, the Monte Carlo simulation does not account
for the presence of vacancies or lattice defects. We be-
lieve that metastable freezing encountered in Monte Car-
lo simulations may be a result of their being somewhat
unrealistic.

IV. RESULTS FOR CASE WITH NONCONSERVED
ORDER PARAMETER

A. Deterministic case

All of our demonstrations for the nonconserved case
are for a two-dimensional 150X 150 lattice with periodic
boundary conditions. All form factors are calculated as
averages of 20 independent runs. This sample size is not
sufficiently large to conclusively determine the form fac-
tor for small values of k, since there is no self-averaging
near k =0, but is large enough to study the exponent and

03 1.0
-03! oo %0

10 ~ - 1Op A — -
-1ol= = c ol = o

° 50 10 200
10— — - 10— —

: (b)
-0t — ——= ol - -
500 ° 1000

FIG. 1. (a) Evolution pattern for the nonconserved case (without noise) for a 150 X 150 lattice. The initial configuration (labeled by
0) has order-parameter values uniformly and randomly distributed between +0.125. The numbers denote necessary time steps from
the initial condition. Only points with positive order parameter are marked. This coding is also used in all subsequent evolution pat-
terns we display in this paper. (b) Evolution of the domain-wall structure for the situation shown in (a). The figures correspond to
the variation of the order parameter along the diagonal from (n, =1,n,=1) to (n, =150,n, = 150); the segment between adjacent hor-
izontal tick marks corresponds to about 14 diagonal lattice elements. The numbers along the vertical axes denote the order-
parameter values. Again, the integers denote the number of time steps from the initial condition. Well-defined walls (about 1-2 sites

thick) are formed by about 50 updates.
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the large-k behavior of the form factor. The parameter
values used in this section are always A4 =1.3 and
D =0.5. These parameter values correspond to a deep
quench. All calculations were done on a VAX-750 com-
puter (without using any array processors). For the non-
conserved case, a single update of the lattice took 3.60
CPU seconds. We have not, as yet, introduced a lookup
table for the local dynamics.

Evolution patterns and domain-wall structures

Figure 1(a) shows a typical evolution pattern using
(3.2) resulting from a random initial configuration, i.e.,
with order parameter values uniformly and randomly dis-
tributed between +0.125 (labeled by O in the figure). We
use the same random initial condition for evolution pat-
terns displayed throughout this section. As can be seen
from Fig. 1(a), well-developed patterns appear within 20
updates. By about 500 updates, the pattern has coar-
sened to such an extent that we expect finite-size effects
to be important. In Fig. 1(b), we show the change in
domain-wall structures for the evolution shown in Fig.
1(a). The pictures correspond to the variation of the or-
der parameter along the diagonal from (n, =1,n,=1) to
(n,=150,n,=150). The times at which these sections
are taken are the same as those for the patterns of Fig.
1(a). As can be seen from Fig. 1(b), well-defined walls
(which are 1-2 sites thick) are formed by about 50 up-

(k)2
150 200 250 300
1
T

100

50
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dates. Hence we may expect asymptotic behaviors
beyond 50 times steps.

Behavior of {k )(t)
We define (k )(¢) as

(k)= [ “dk kStk,) [/ [ Tdkston . @)

This is related to the typical domain size as (k )(¢)
«l(t)~1. Note that (k )(z) is not the true average with
respect to S(k,¢),

Ro=[akkisen [ [“akki sk . 42

In the case with infinitesimally thin walls, the quantity
k() is divergent as a result of Porod’s law,?’® which pre-
dicts that the tail of the form factor decays as k ~¢*1) in
d dimensions.

Numerically, we compute {k )(¢) by considering all k
values up to half the reciprocal lattice size. Notice that k
can take values (for a lattice of size NXN)
2m(m,,m,)/N, where m, and m, have integer values be-
tween —N /2 and (N/2)—1. We should point out that,
in the deterministic cases of this section (and Sec. V), the
tails of the form factors decay rapidly enough that the

0 200 400

FIG. 2. Plot of {k)(#)~?% vs t for the nonconserved case (without noise) for a 150X 150 lattice. The times are from 80 to 800 in
steps of 80. As is expected, up to ~ 500 data lie on a straight line, but beyond this finite-size effects make the effective exponent larger

1
than 5.
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value of (k )(¢) is almost unchanged even if we include
the entire reciprocal lattice in our calculation. (In the
noisy case of this section, viz., the nonconserved case
with noise, the value of {(k )(z) is again almost unchanged
if we include the entire reciprocal lattice.) In the con-
served case with noise, the value of {(k )(¢) is slightly
changed if we include a larger fraction of the reciprocal
lattice size, but the exponents (and their crossovers)
remain unchanged. From the various experiments and
numerical simulations already described, we expect the
characteristic domain size to behave as (t —t,)!/? be-
tween 50 and ~ 500 updates. This is demonstrated in Fig.
2. Beyond this time domain the completion of the order-
ing process is speeded up because the average curvature
increases due to the finite-size effect. This was confirmed
by our simulations on smaller lattice sizes, which showed
a transition to an exponent greater than } at earlier times
than the 150X 150 lattice.

Scaling of form factors

We should point out that, in what follows, we always
demonstrate scaling in the form [different from (2.4)]

S(k,t)=[(k)t)] 4Dk /{k )2)), 4.3)

where d is the dimensionality. This should be satisfied as
long as there exists a unique characteristic length scale in
the evolution process.

In Fig. 3(a), we have plotted S (k,t){k )(¢)? as a func-
tion of k /{k )(t) for times 160, 480, and 800. For small
values of k, S(k,t) does not have the self-averaging prop-
erty, so that we cannot get a reliable functional form near
the origin. However, this does not affect appreciably the
normalization of the form factor and the calculation of
(k). The raw data of the form factor are defined as a
function of vector k rather than scalar k. To scalarize
our data, we average it over shells of inner radius
(n —1)8k [with 8k=(27/N)Xx0.5, N being the lattice
size] and outer radius n&k (where n is an integer) in the
Brillouin zone. The scalar function thus obtained is what
we term S (k,t) and the corresponding k value is assigned
as (n —1)8k + 6k /2 (except in the case n =0, where the
corresponding k value is assigned as 0). The first few
S (k,t) values represent averages over very few k values.
For example, S(0,z) has a contribution only from the
k=2m(0,0)/N value. Thus the statistics for the small-k
values is not good. However, as is demonstrated in Sec.
IV B, our numerical results combined with an analytical
discussion can provide a strong support for the OJK
functional form'!® for the form factor.

Porod’s law and Tomita’s sum rule

Tomita?!® studied the real-space form factor S(r,?)

for the late stages of phase-ordering dynamics. From
very general considerations (applicable to both the non-
conserved and conserved cases), he derived a small-» form
of S(r,t) from which he derived Porod’s law,2®’
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S(k,t)= [dre™"S(r,1)

A1)
kd+1

for k— o0 , 4.4)

~

where A (t) is positive. He also derived the following
sum rule (known as Tomita’s sum rule):

fo“’dk[k“*S(k,t)—A (1)]=0. 4.5)
It should be noted that in the present context large k im-
plies that k/(¢) is large. Hence the absolute value of k
can be very small. Here we show that even a very small
finite thickness of the domain walls results in a gross
violation of Porod’s law and Tomita’s sum rule.?!(®’

Consider the interface between two regions which are
rich in the opposing phases [respectively labeled by
Y(r,t)==11g]. The position of the interface is labeled by
r;(a,t), where a is a (d —1)-dimensional vector which
parametrizes the interface. The position of the interface
is defined through (r;(a,?),t)=0. Let n be the local
coordinate which is perpendicular to the interface in its
tubular neighborhood. Then we can locally write

a(n,t)
on

where 1i(r,?) is the unit vector locally normal to the in-
terface which points in the direction of r. If we assume
that the structure of the interface is translationally in-
variant along the interface (this is compatible with a sub-
sequent assumption), we have

Vi(r,t)= fi(r,t), (4.6)

Y(n,t) | d(n,t) o A

2 _ ’ ’ .

V(r,t)= an? + n V-i(r,t) . 4.7)

Let us introduce a field u(r,?) through
Y(r,t)=yYon(u(r,t)/8) , (4.8)

where 7(x) is a smooth, invertible function such that
7(0)=0 and 7(x /8) weakly converges to sgn(x) in the
6—0 limit. The position of the interface also satisfies
u(r;(a,t),t)=0. Following Allen and Cahn,*® we as-
sume that the interface has only a small curvature and
that the domain wall locally (along the normal) has an
equilibrium, static profile. Hence the TDGL equation (in
the tubular neighborhood of the interface) has the form

a‘(!}(n,t) =L a¢(n’t)v.ﬁ(r’t) (49)
ot an

or (returning to Cartesian coordinates)

91‘%2=L[v¢(r,z)-ﬁ(r,x)]v-ﬁu,t), (4.10)
where the unit normal vector 1i(r,?) is given by
~ Viu(r',t)
—_Vulr,) , 4.11)
n(l‘,l) |V'u(l",t)| r'=ri (

where r; is the point on the interface which lies on the
normal (to the interface) through r. Clearly, for points r
on the interface, we have r;(a,,z)=r. Using the non-
linear transformation (4.8), we can write (4.10) as an
equation (still nonlinear) for u(r,t),
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FIG. 3. (a) Scaled form factors for the nonconserved case (without noise) for a 150X 150 lattice. Data from times 160, 480, and
800 are denoted, respectively, by X, A, and O. The solid lines denote the results of (4.16). For each time step a(?) is adjusted as fol-
lows: for t =160 (X), € =0.963; for t =480 (A), =0.988; and for t =800 (0), a=0.994. The top curve is for a=1, i.e., the OJK re-
sult, and the + for «=0.999. (b) a necessary to fit the numerical results [as explained in (a)] as a function of time. The figure
demonstrates (4.17).
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%n’(x)

ou(r,t) =Ll/}£

x= MED Ty 5

7'(x)

x=

8

In (4.12), the term

%n‘(x)

u(r,t)
)

x=

Vu(r',t)

v*_u(,,,)Vu(r,t)- ‘ | V'ulr',t) |

Viu(r',t)
r=r.(a t)] ’V [ | Viu(r',t) |

i°p’

r’=r,(ap,t)]

(4.12)

is sharply peaked about u(r,z)=0 in the §—0 limit (when it weakly converges to the & function). Furthermore, u(r,?)
is a rather slowly varying function, even in the tubular neighborhood of the interface. Thus we can drop the
r'=r;(a,,t) condition in the definition of fi(r,¢). This yields (near the interface)

du(r,t) _

at L

a,B

where f,(r,t) is the projection of fi(r, ) along the x, axis,
V,=98/3x,, and h(u,t) is a function of u(r,t) and ¢
which weakly converges (in the §—0 limit) to a tempered
distribution satisfying h (u,#)8(u)=0. The term h(u,t)
can only be neglected asymptotically (as we see later).
The function A (u,t) must be odd in u since (4.13) must be

Vau(r,t)— 3 Ao(r,)Ag(r, 1)V, Vgu(r,t) | +h(u(r,t),t),

(4.13)

—

that u is maximally smooth, so that A (u,t) is analytic in
u. Then, near the interface (where u is small) we may as-
sume that h (u,t)=g (¢)u, where g (¢) is determined by the
requirement that the wall thickness be invariant in time.
(After all, the wall thickness should be independent of
time in the asymptotic regime.)

invariant under the transformation ¥ — —u. We assume Following Ohta et al.,''® we linerize (4.13) by replac-
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FIG. 4. Test of Porod’s law (and Tomita’s sum rule) for time 160 (), 320 (A), 480 (), 640 (0), and 800 (®). The upper curve is
the result of the OJK theory, and the lower curve is due to (4.16) with =0.97. The tail of our data decays faster than the Porod tail
as a result of the finite thickness of the wall, and neither Porod’s law nor Tomita’s sum rule is satisfied, but the hump in the data is
clearly the precursor of Porod’s law. If we extend it to the left, Tomita’s sum rule is also satisfied.
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ing f,(r,t)fig(r,1) by the corresponding average over an
ensemble of initial conditions, viz., (ﬁa(r,t)fl‘ﬁ( r,t)).
For an isotropic system,

8,
(Ry(r,0fp(r, ) = =22, (4.14)

where 8,5 is the Kronecker 8. Thus (4.13) reduces to

(near the interface)

d—1
d

du(r,t)
a

L V2u(r,t)+g(tu(r,t) . (4.15)

From the solution for u(r,t) from (4.15), we see that
g(t)~(d +2)/4t ! is required asymptotically to keep
the wall thickness independent of time.

Assuming that the initial u field is Gaussian as in the
OJK theory, and following exactly the OJK theory, we
can calculate the correlation function from which we
have obtained the scaled form factor in the deterministic
nonconserved case with a finite domain-wall thickness,

1 (27)47?

Px,t)=—"
sin a X

(xR)!—472
[alt)" 2R’ 1]

where ®(x,t) is defined analogously to ®(x) in (2.4). In
(4.16), J (x) is the Bessel function of the first kind and

(4.17)

x f:dR R“ Jy(xR),  (4.16)

a=a(t)=(14+c/0)~ !,

with ¢ being a numerical constant which we cannot calcu-
late within the present theory. With a=1 we recover the
OJK analytic form.!'® We can choose an appropriate ¢
in (4.17) for all sufficiently long ¢ as demonstrated in Fig.
3. Thus we may conclude that our CDS results asymp-
totically agree with the OJK theory result. From Fig. 4
we can actually recognize the precursor of the Porod’s
tail and Tomita’s sum rule. The OJK result agrees with
the result of Kawasaki er al.!'® asymptotically. One
may then be tempted to say that the present approach is
equivalent to that of Kawasaki et al.''® This is not true.
In the case of Kawasaki et al.,!'® the ratio of the wall
width and the pattern size goes to O exponentially fast,
which is unphysical. In our present approach, the wall
thickness is maintained constant, so that the ratio decays
algebraically.

B. Effect of noise on the nonconserved case

Evolution patterns and domain-wall structures

Figure 5(a) shows the evolution pattern for the case
with 4=1.3, D=0.5 (as before), and B =0.3 (noisy
case). A comparison with Fig. 1(a) shows that the
domain boundaries for the noisy case are somewhat more
ragged than in the noiseless case. In Fig. 5(b), we show
the evolution of the domain-wall structures for the situa-
tion shown in Fig. 5(a). This time, the section is along
the horizontal line in the middle. Here, the domains are
not well formed and noise has the effect of introducing
fluctuation even in the interior of a domain. (However,
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FIG. 5. (a) Evolution pattern for the nonconserved case with
noise B=0.3 for a 150 lattice. The initial configuration is the
same as in Fig. 1(a). The domain boundaries are somewhat
more ragged than those of the deterministic case. (b) Evolution
of the domain-wall structure for the situation shown in (a).
However, this time the section is along the horizontal line in the
middle. For numbers see the legend for Fig. 1(a). The segment
between adjacent horizontal tick marks corresponds to about 14
lattices. The noise amplitude used is unrealistically large and
the domains are not very well formed.
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FIG. 6. (a) Semilogarithmic plot of the data corresponding to Fig. 5(a). In this case, the tails decay slower than the Porod tail and
have the same qualitative behavior as in the Monte Carlo case due to the raggedness of the interface. The time steps are as follows:
1, t =160; 2, t =320; 3, t =480; 4, t =640; and 5, t =800. Although for small k the results for later times are not reliable due to the
finite-size effect, for k /{k ) larger than about 10 there is no problem. The thick line denotes (4.16) with @=0.97, and the dashed line
denotes the OJK theory [i.e., (4.16) with a=1]. (b) Test of Porod’s law (and Tomita’s sum rule) for the data corresponding to Fig.
5(a). The numbers and notations are the same as those in (a). The upward trend of data in the tail is the result of noise-induced
raggedness at small length scales.
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notice that B =0.3 is an unrealistically large noise.)

To demonstrate that the raggedness of the domain
boundaries [seen in Fig. 5(a)] is not the result of a cumu-
lative effect of the noise, we have performed a simulation
in which we start with a noiseless evolution and then turn
on the noise (with amplitude B =0.3) after 195 updates.
Within a few updates, the domain boundaries become
ragged again. Alternatively, we can demonstrate that the
presence of noise is crucial to maintain the raggedness.
Within a few updates after turning off the noise, the
domain boundaries rapidly become smooth.

Scaling of form factors

In Figs. 6(a) and 6(b), we compare the scaled form fac-
tors for the noisy case (at times 160, 320, 480, 640, and
800) with the analytic form of Ohta et al.''® and the
form (4.16) with a=0.97. As before, the tails of the
curves do not satisfy Porod’s law?!®’ (or Tomita’s sum
rule?!®) and decay slower than x ~3, where x=k/
(k )(2) (as in the Monte Carlo case). This is borne out by
Fig. 6(b), where we have plotted S(k,t){k)(1)?
X[k /{k )t)]® versus k /{k )(t). The upward trend of
the curves for large values of k /{k )(¢) is a consequence
of noise-induced raggedness at very short length scales.
A similar effect is seen in the Monte Carlo results.*

1553

Asymptotically, we expect that both Porod’s law and
Tomita’s sum rule will be satisfied, because the effect of
noise are not cumulative and becomes less perceptible
with increase in the representative pattern size.

V. RESULTS FOR CASE WITH CONSERVED ORDER
PARAMETER

A. Critical quench, deterministic case

A single update of (3.4) for a 100 100 lattice with
periodic boundary conditions took 1.77 CPU seconds.
Throughout this section, the parameter values we use are
A=1.3, D =0.5, unless otherwise mentioned. As in the
nonconserved case, we use 20 independent runs to calcu-
late all form factors shown in this section. We can get
sufficiently accurate form factors with this number of
samples; an independent check of results in this section
with more than 30 samples has been done by Yeung.?
The case of critical quenching is the most interesting one
and is analytically the least tractable. In our discrete
case, this corresponds to 3, ¥(¢,n)=0.

Evolution patterns and domain-wall structures

In Fig. 7(a) we show a typical evolution pattern result-
ing from (3.4) for long times. The initial condition used

(b)

~ ok = -

-lok — '
5000

6000

FIG. 7. (a) Evolution pattern for the conserved case (without noise) with a critical quench for a 100 100 lattice. The integers
denote necessary updates. The initial configuration consists of order-parameter values randomly and uniformly distributed between
+0.125 as in Fig. 1(a). Of course, this corresponds to a different initial condition because of the different sizes of the lattices. (b) Evo-
lution of the domain-wall structure for the situation shown in (a). The numbers along the vertical axes denote the order-parameter
values, and the interval between the adjacent tick marks corresponds to about 13 lattice spacings. The times are the same as those in
(a) except for the figure in the upper-right corner. It is taken at 1000 updates and indicates that well-formed domains appear by that
time. The section is along the diagonal form (n, =1,n,=1) to (n, =100,n, = 100), as in Fig. 5(a).
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(labeled by 0) is one where the order parameter is uni-
formly and randomly distributed between +0.125. We
use the same initial condition for all the evolution pat-
terns in this section, unless specifically mentioned other-
wise. In Fig. 7(b), we show the change in the domain-
wall structures for the evolution shown in Fig. 7(a). The
pictures correspond to the variation of the order parame-
ter along the diagonal from (n,=1,n,=1) to (n, =100,
n,=100). The time at which these sections are taken are
the same as the times for the patterns of Fig. 7(a) except
for the picture in the upper-right corner. It is taken at
1000 steps and shows that well-formed domains appear
by about 1000 steps. The domains are fairly well defined
and the wall thickness is about 2-3 sites.

Behavior of (k )(t) and growth exponents

We plot [in Fig. 8(a)] In{k )(¢) versus Int for this case
for times 300-4500 in steps of 300. It is already known
18

that the asymptotic exponent of our CDS model is 1.

The curve shows that before reaching the asymptotic

slope there is a regime with smaller exponent. The inset
picture shows the data affinely transformed so as to clear-
ly exhibit the crossover behavior.?2 There is a crossover
at t ~2750 iterations from an exponent of ¢ ~0.28 to the
asymptotic value. The earlier time exponent ¢ ~0.28 is
compatible with a deterministic surface diffusion mecha-
nism'® which gives ¢=1, independent of the spatial
dimensionality. A preliminary 3D simulation, however,
does not exhibit this early regime, but only the asymptot-
ic 1 exponent.

In Fig. 8(b), we show a plot of (k)(¢)~! versus ¢t!/3
from early through late times. Up to about 80 iterations,
a Cahn-Hilliard behavior is seen with (k )(¢#)~! being
more or less independent of time.® This crosses into a re-
gime where ¢ ~0.28 (deterministic surface diffusion re-
gime), and this changes into the asymptotic regime with
¢ ~0.33 at about 2750 iterations. This plot should be
compared with Fig. 1 of the experimental results of Gau-
lin et al.,*® where a similar behavior is depicted.

Scaling of form factors

In Fig. 9(a) we have plotted S (k,t){k )(¢)* as a func-
tion of k /(k )(t) for times 1800, 2400, 3000, 3600, and
4200. The data points can be seen to lie on a smooth
master curve. The master nature of the curve is insensi-
tive to the value of the growth exponent after ~ 2000
steps. Even for much earlier times we can achieve a
reasonable master curve by this kind of superposition, as
we have shown in Fig. 6 of part I. However, very long
times cannot be fitted to this master curve.

Unfortunately, there is no theoretical prediction for us
to make a comparison with. Our numerical curve does
not satisfy Porod’s law?!® (or Tomita’s sum rule?!®).
We do not even see a precursor to Porod’s law. This is ,

however, consistent with the consequence of the finite
thickness of the wall discussed in Sec. IV. Finally, for
completeness, we plot [Fig. 9(b)] the real-space form fac-
tors. This is not for the demonstration of scaling, since
the appearance of scaling is enhanced in this plot. This is
because the small-k behavior is confined to the small am-
plitude tail of the real-space form factors. Recent papers
from Gunton and co-workers’ "% have plotted S(r,?)
versus R, (1), where R, (?) is the value of r at which S(r,)
first goes to zero. We suspect that such plots see scaling
considerably earlier than in our plots, as a result of the
insensitivity of the real-space form factor.

B. Critical quench, noisy case

We have performed simulations using (3.8) with
B <0.5.

Evolution patterns and domain-wall structures

In Fig. 10(a) we show the patterns obtained for the
noisy (with B =0.3) case. A comparison with Fig. 7(a)
shows that the boundary walls are considerably more
ragged than in the noiseless case (as in the nonconserved
case). In Fig. 10(b), we show the change in the domain-
wall structure. Again, as in the nonconserved case, the
internal structure of the domains is made considerably
ragged by the noise. (As we have pointed out before, the
noise amplitude of B =0.3 is unrealistically high.)

To demonstrate that the raggedness is not the result of
a cumulative effect of the noise, we studied the results of
a simulation in which we started off with B=0.0 and
then switched to B =0.3 after 3990 updates. The pattern
quickly acquires ragged boundaries within ten updates.
Alternatively, we studied the case where we turned off
the noise (initially of amplitude B =0.3) after 3990 itera-
tions. The boundaries become smooth within a few up-
dates. Thus, as we have observed, it is highly unlikely
that noise changes the asymptotic behaviors.

In Fig. 11, we show the evolution pattern for the
strongly noisy (with B =0.5) case. This pattern is consid-
erably more ragged than that for the case with B=0.3
and is similar to previously published patterns from
Monte Carlo simulations>*® or simulations of the CHC
equation.’

Behavior of { k )(t) and growth exponents

In Fig. 12, we show In{k )(¢) versus Int for the noisy
(B =0.3) case for times 2000-6200 in steps of 300. As in
the deterministic case, the inset shows the data affinely
transformed so as to accentuate the crossover. Here, the
crossover to the asymptopia is delayed to ¢t ~3700 itera-
tions. Initially the exponent is ¢~0.27. The general
trend is that the crossover is delayed to later times for
larger amplitudes of noise. We believe that this is be-
cause the ragged boundary of the pattern in the noisy
case is equivalent (after coarse graining) to a ‘“soft”
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FIG. 8. (a) Plot of In{k )(¢) vs Int for the conserved case (without noise) with a critical quench for a 100X 100 lattice. The times
shown are from 300 to 4500 in steps of 300. The inset data shows the data affinely transformed so as to clearly exhibit the crossover
behavior (Ref. 20) at about 2750 iterations. (b) Plot of {k )(z)~! vs ¢!/? for early through late times (i.e., from 6 to 4500 iterations) for
the critically quenched conserved case (without noise). The early times exhibits the linearized Cahn-Hilliard behavior.
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FIG. 9. (a) Scaled form factors for the consecutive case (without noise) with a critical quench for a 100X 100 lattice. Data from
times 1800 (X), 2400 (A), 3000 (O), 3600 (C1), and 4200 (@) are superposed. These times correspond to both sides of an exponent
crossover shown in Fig. 8(a). The master curve is different for earlier times, being sharper and with a larger amplitude (compare this
figure with Fig. 6 of part I). (b) Real-space form factors for the data in (a). The symbols are the same as in (a).



38 STUDY OF PHASE-SEPARATION ... . IL ... 1557

0.4 o 1.5
-0.4 ' -5l

0 2500

1.5 1.5

-1.5 -1.5
3000 4000

1.5 1.5

: (b)

-1.5 -1.5

5000 6000

FIG. 10. (a) Evolution pattern for the conserved case (with
noise B =0.3) with a critical quench for a 100X 100 lattice. The
integers denote necessary updates. The initial configuration is
the same as in Fig. 7(a). (b) Evolution of the domain-wall struc-
ture for the situation shown in (a). For the numbers and tick
marks in the figure see the legend for Fig. 7(b). The section is
the same as in Fig. 7(b). As pointed out in the text, the noise
amplitude used is unrealistically large and the domains are not
well formed.

boundary wall. As we see in Sec. V C, the “soft-wall’ evo-

lution results in a delay of the exponent crossover. This

is because the presence of soft walls enables the surface

diffusion mechanism which has an associated exponent of
=1 in any dimension.

Scaling of form factors

In Fig. 13, we have superposed S(k,#){k)(¢)* as a
function of k /{k )(z) for times 2000, 2900, 3800, 4700,
and 5600 for the noisy (with B =0.3) case. As in the
deterministic case, the master curve does not depend sen-
sitively on the value of the exponent for these late times.
The resultant master curve is indistinguishable from the
deterministic results [Fig. 9(a)]. For earlier times
(500-2000), there is a different master curve with a
higher peak which we do not show here. It is similar to
the early-time master curve obtained for the deterministic
case.

FIG. 11. Evolution pattern for the critically quenched con-
served case with “strong” noise B=0.5 for a 100X 100 lattice.
The integers denote necessary updates. Once again, the initial
configuration is the same as in Fig. 7(a). The pattern is similar
to previously published patterns from Monte Carlo simulations
[Refs. 5 and 6(b)] or Langevin simulations of the CHC equation
(Ref. 7).
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C. Critical quench, deterministic “soft-wall” case

As mentioned earlier, our parameter values correspond
to a deep quench. This quickly results in sharp domain
walls, whose thickness is negligible in comparison to the
representative pattern size. This is the so-called “hard-
wall” case. We can also simulate the so-called *‘soft-
wall” case by considering a quench which is not so deep,
i.e., by choosing A closer to 1. In this case, the domain
wall thickness stays appreciable compared to the
representative pattern size for a considerably longer time.

Evolution patterns and domain-wall structures

In Fig. 14(a), we show a representative evolution pat-
tern for the deterministic soft-wall case, obtained by us-
ing 4A=1.2 and D =0.5 in (3.4). The corresponding
change in the domain-wall structure is shown in Fig.
14(b). Comparing the domain-wall thickness in Figs. 7(b)
and 14(b), one sees that the walls are somewhat thicker in
Fig. 14(b). The effect is not strongly marked, though.
The crossover occurs at about 4000 steps from ¢ ~0.27

S. PURI AND Y. OONO

to ~0.33. The earlier exponent is compatible with a sur-
face diffusion mechanism.

Scaling of form factors

In Fig. 15, we show the scaled form factors for the
later times 4000, 4400, 4800, 5200, and 5600. This gives
a master curve indistinguishable from the one we got for
the deterministic case [Fig. 7(a)]. As expected, Porod’s
law does not hold and the decay of the tail is stronger
than x ~3, where x =k /{k )(1).

VI. PRELIMINARY RESULTS
FOR OFF-CRITICAL QUENCH

It is also possible to quench the system off-critically,
i.e.,, |driy(r,t) has a nonzero value. Depending on

whether the system is in an unstable state or a metastable
state after quenching, the phase ordering proceeds via ei-
ther spinodal decomposition or the so-called “nucleation
process.”
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FIG. 12. Plot of In{k )(¢) vs Int for the critically quenched conserved case (with noise B =0.3) for a 100< 100 lattice. The times
are from 2000 to 6200 in steps of 300. As in Fig. 8(a), the inset picture shows the data affinely transformed so as to show the cross-
over in the exponent from ¢ ~0.27 to ~0.33 more clearly. Here, the crossover is delayed to about 3700 iterations as a result of the
softening of the walls by noise.
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FIG. 13. Scaled form factors for the critically quenched conserved case (with noise B =0.3) for a 100X 100 lattice are denoted by
X . Data from times 2000, 2900, 3800, 4700, and 5600 are superposed. O denotes the scaled form factor without any noise given in
Fig. 9(a). The master curve is indistinguishable from the one for the deterministic cases, demonstrating the irrelevance of noise.
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integers denote necessary updates. The parameters used are 4 =1.2 and D =0.5. The initial configuration is the same as in Fig. 7(a).
(b) Evolution of the domain-wall structure for the situation shown in (a). For the numbers and tick marks see the legend for Fig. 7(b).
The section is the same as in Fig. 7(b). The domain walls are somewhat softer than those in Fig. 7(b).
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The figure demonstrates the irrelevance of the quench depth to the asymptotic behavior.

In Fig. 16 we exhibit a noisy case (B =0.3) of off-
critical spinodal decomposition. Brownian coagulation
makes a well-developed pattern by 50 updates (which
does not exist in the deterministic case). This mechanism
corresponds to growth by the noise-induced diffusion and
coalescence of small droplets of the minority phase. In
Fig. 17, we plot the scaled form factors for this case from
times 1200, 1600, 2000, 2400, and 2800. The exponent is
still gradually increasing. The earlier exponent is compa-
tible with the Brownian coagulation of humps on the
domain boundaries. This mechanism has an associated
exponent of ¢=1/(d +3) in d dimensions, so that
¢=0.20in 2D.

In a highly off-critical quench, the uniform state of the
system is a metastable state. Segregation of phases can
occur only if nucleation centers exist. In our determinis-
tic model, we have to put in nucleation centers (“‘seeds”)
by hand. We simulate the nucleation regime by consider-
ing random initial configuration uniformly distributed be-
tween —0.610.125 with randomly placed seeds (each
consisting of at least four sites each and adding up to
about 10% of the lattice) of order-parameter value
+ 0.98. We then bias the sites with negative order pa-
rameter so that the average order parameter at each site
is —0.6, corresponding to a minority species concentra-
tion of 20%. We study the noisy case by using (3.4)
(B =0.3). Figure 18 shows the evolution pattern for this
case. Here, it is evident that noise enables an
evaporation-condensation mechanism and, in the later

FIG. 16. Evolution pattern for the off-critically quenched
conserved case (with noise B =0.3) for a 100X 100 lattice. The
initial configuration corresponds to the order parameter at the
sites being randomly and uniformly distributed between
—0.3+0.125.
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FIG. 18. Evolution pattern for the off-critically quenched
conserved case (with noise B =0.3) with quenching in the nu-
cleation regime. The integers denote necessary updates. Again,
the lattice size is 100x 100. For the initial configuration see the
text.

stages, some droplets grow at the expense of others. The
scaled form factors for this case (from times 1200, 1600,
2000, 2400, and 2800) are plotted in Fig. 19. The data
points lie on a reasonable master curve. After the initial
transition regime, the exponent is ~0.30.

VII. DISCUSSION AND SUMMARY

In part I of this exposition of the cell-dynamical-
system modeling of phase-separation kinetics, we have (a)
explained in detail how to construct CDS models, and (b)
demonstrated the stability (or insensitivity) of our results
to details of our models; and in this second part we have
(c) exhibited the asymptotic form factors and their insen-
sitivity to noise elements, and (d) presented preliminary
results for the conserved case with an off-critical quench.
We have also discussed in detail (in part I) a relation be-
tween the conventional PDE models and our CDS [or
partial difference equation PAE)] models. We emphasize
that discretized stochastic PDE’s with unjustifiably large
time increments should be regarded as CDS’s rather than
as approximations to the continuum.

In this paper we have given a detailed study of the ki-
netics of phase ordering in 2D both without and with sto-
chastic elements. We have provided evidence supporting
the theoretical belief that stochastic elements are not im-
portant in the asymptotic regime. However, noise does
have the effect of delaying the onset of the asymptotic re-
gime. Larger noise amplitudes delay further the cross-
over from the earlier nonasymptotic regime to the later
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asymptotic regime. Consequently, we expect it to be nu-
merically very expensive to reach the asymptotic regime
(if it is the same as that for the coarse-grained models) by
means of Monte Carlo simulations. Of course, the Monte
Carlo and Langevin models need not be in the same
universality class.

Let us briefly summarize our results below.

Nonconserved case (1). The growth exponent ¢ is 0.5
but the finite-size effect is important at later times. The
nonconserved dynamics is very rapid, so that the pattern
rapidly covers an appreciable fraction of the lattice size.
This leads to an increase in the average curvature, and an
exponent larger than ] is seen for later times.

Nonconserved case (2). We have analytically explained
the discrepancy between the form factor obtained by our
CDS simulation and the theoretical result by Ohta,
Jasnow, and Kawasaki. This comparison strongly sug-
gests that the OJK result is accurate asymptotically, if
not exact. Also this analytical study clarified the relation
between numerical results and asymptotic laws such as
Porod’s rule and Tomita’s sum rule.

Conserved case (1). The exponent ¢ for the conserved
case exhibits a crossover from ¢~0.28 to ~0.33. Our
early-time exponent may be compatible with the ex-
ponent ¢~0.25 seen by Mazenko and Valls®® in their
Langevin simulation of the CHC equation. It can be ex-
plained by a deterministic surface diffusion mechanism
(see Furukawa’s review article in Ref. 1). Recently,
Gawlinski et al.”'® claimed to always see an exponent of
0.33 in their Langevin simulation of the CHC equation.
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This may be due to the differences between the quantities
they used and those we used to analyze the raw data.

Conserved case (2). The master curve also shows a
crossover from its earlier form to an asymptotic form.
The crossover point seems to be always earlier than the
crossover time for the exponent. (Notice, however, that
an approximate master curve can be constructed well be-
fore the crossover time.) For the case with the critical
quench, the early-time form is sharper than that for later
times. (The opposite is true for the off-critical quench we
study). We do not observe Porod’s law (or Tomita’s sum
rule). This is not surprising because the evolution of the
pattern is slow in the conserved case and the pattern size
is not very large compared to the wall thickness.

Conserved case (3). For the critical quench, the quench
depth affects only the crossover time; the asymptotic ex-
ponent and the master curve are insensitive to the quench
depth (which determines wall thickness).

We believe that our models for the nonconserved case
are in the same universality class as the TDGL equation,
and those for the conserved case are in the same univer-
sality class as the CHC equation. This belief stems from
our being able to derive our models by an appropriate
discretization scheme, as described in part I. As we dis-
cussed briefly in the Appendix, we suspect that the
Monte Carlo models of the conserved case (with
Kawaskai exchange) are not precisely in the same univer-
sality class as the CHC equation, if they are quenched
deeply. Rather, they may be in a different universality
class along with what we have termed the Langer (or
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FIG. 19. Scaled form factors for the off-critically quenched (in the nucleation regime) conserved case of Fig. 18. Data from times
1200( % ), 1600 (A), 2000 (0), 2400 (0O), and 2800 (@) are superposed. The master curve is quite different from that for the correspond-

ing deterministic case.
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Langer-Kitahara) equation. There is reason to believe
this in the deeply quenched case (see Appendix). Prelimi-
nary results obtained in a simulation of a CDS version of
the Langer (or Langer-Kitahara) equation by Yeung®'®
are very similar to the results obtained in the Monte Car-
lo simulation of Huse.*® There is still a possibility that
the Monte Carlo results for Kawasaki exchange dynam-
ics (in the very deep quench case) would give an asymp-
totic exponent of § and not 1. It seems that most exist-
ing numerical results can be made compatible with ours if
we account for nonasymptoticity (shortness of simula-
tions), freezing into metastable states, the delaying effect
of noise, and the special features of Kawasaki exchange
dynamics. The last point will be dealt with at length in a
forthcoming paper.?¢’
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fdnfda'fdn'G(r(a,n>,r')u(r',z)3‘%';,+” | =2LK(r(a,0)),

n'=n

where K is the mean curvature (times spatial dimen-
sionality) of the interface, the integration range for n and
n' is an appropriate tubular neighborhood of the inter-
face, and v(r’,t) denotes the normal displacement veloci-
ty of the iso-y surface on which the point r’ lies,

oY(r;(a,t),t)
ot

=-—-V(l’,~(a,t)’t)'v¢(r:t)|r=rl.(a,lb * (A4)

We can perform the integration over n’ on the left-hand
side of (A3) to cancel 2¢,. This yields

[dn [da'G(r(a,n),r,(a’,)(x(a’,1) =LK(r;(a,1),

(AS)

which is the required equation of motion for the
conserved-order-parameter case (without noise). In the
above derivation products of 6 functions are avoided, but
strictly speaking, it is still best to regard (A5) as a phe-
nomenological equation which may be plausible in the
thin wall limit. If the integration over n is appropriately
approximated, (AS5) reduces to the one originally derived
by Kawasaki and Ohta.!?®

In the CHC equation the Onsager kinetic coefficient L
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APPENDIX

In this Appendix we derive the interface kinetic equa-
tions as systematically as possible to make the involved
mathematical difficulty explicit. We follow the treatment
of Allen and Cahn?® (given in the context of the deter-
ministic nonconserved case) to reduce the Cahn-Hilliard
equation in the tubular neighborhood of the interface to

WD — LYV, A IV AT ],
where 7i(r,?) is the unit vector locally normal to the in-
terface. The interface position is defined through
Y(r;(a,t),t)=0. Introducing the Green’s function
G(r,r'), where V?G(r,r')=—8(r—r’') with appropriate
boundary conditions, we can rewrite (A1) as

(A1)

[arGien 20 —L[9y,080,0198(5,0)

(A2)

Since Vi(r,t)-fi(r,t)=0v(n,t)/dn and is sharply peaked
about n =0, we can integrate both sides of (A2) over n
near the interface to get

f

is a constant. The validity of this assumption must be
carefully studied. The dependence of L on the order pa-
rameter has been discussed briefly by Langer et al.,”'®
who considered the following form:

L=Lo{1-[y(r,0)/¢. T}, (A6)
where L, and 3, are positive constants. An equivalent
form was also discussed by Kitahara and Imada.?*® If
we faithfully model Kawasaki exchange dynamics, the
simplest continuum model has L of the above
form.23®»23(¢) The diffusion of matter across bulk phases
is considerably decelerated and the diffusion along the
phase boundary becomes relatively more important.
Thus there is a possibility that the CHC equation and the
equation [which we would like to call the Langer (or
Langer-Kitahara) equation]

agér,t) —L,v- ] 1— ly(r,t) }z}
t

Ye

v(‘SH[g(r,t)]
SyY(r,1)

+o(r,t) (A7)

may be in different universality classes. The parameter
Y. plays a crucial role, however. If ¢, is large compared
to the equilibrium value ¥, (as a result of, say, vacancies),
then (A7) virtually reduces to the CHC equation. In the
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deep quenching case, diffusion through bulk phases be-
comes prohibitively difficult. In effect, the Langer (or
Langer-Kitahata) equation takes the form

where L denotes the Onsager coefficient for diffusion
along the interface and V2 is the Laplacian on the inter-
face with respect to the metric induced by the flat metric
in the bulk. Proceeding as before, (A8) reduces to (on the

Oy(r, 1) =L”V,2, SH[Y(r,1)] , (A8) interface)
at Sy(r,t)
PPN A LU R 2§ e LN R YR N (A9)
on n=0 on n=0 l,

where all symbols have the same meaning as previously.
But (by assumption)

oY(n,t)
an

n=0

varies only along the normal to the interface. Hence

dy(n,t)

=0
an

v

n=0

and (A9) reduces to

v(r;(a,1))=LViK(r;(a,1)) . (A10)
Equation (A10) is the required interface equation which
corresponds to the deeply quenched Langer (or Langer-
Kitahara) equation. Equation (A7) and its CDS counter-

part will be discussed in detail in a forthcoming
paper.23(¢)

If we apply dimensional analysis to interface equations
we can get asymptotic exponents. Let / be the length
scale of the pattern and 7 be the time scale. The kinetic
coefficient L does not depend on this length scale, so that
we may regard it as dimensionless, viz., [L]=1. We have
(notice that the integration near the interface with
respect to n does not depend on /) [a]=1?"!, [G]=1>"¢,
[v]=1/7, [K]=1/l. Replacing these in (A5) yields
19-"%1?2=4x1/r=1/1=71~13, so that ¢=1 for con-
served dynamics. For the surface diffusion in the con-
served case (without noise) described by (A10), we have
1/7=1/1>=71~1% so0 that =1. This exponent is possi-
ble asymptotically only when there is strictly no diffusion
through the bulk phase; if there is a small bulk diffusion,
the exponent will eventually crossover from ; to 1.
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FIG. 1. (a) Evolution pattern for the nonconserved case (without noise) for a 150 150 lattice. The initial configuration (labeled by
0) has order-parameter values uniformly and randomly distributed between +0.125. The numbers denote necessary time steps from
the initial condition. Only points with positive order parameter are marked. This coding is also used in all subsequent evolution pat-
terns we display in this paper. (b) Evolution of the domain-wall structure for the situation shown in (a). The figures correspond to
the variation of the order parameter along the diagonal from (n, =1,n,=1) to (n, = 150,n, = 150); the segment between adjacent hor-
izontal tick marks corresponds to about 14 diagonal lattice elements. The numbers along the vertical axes denote the order-
parameter values. Again, the integers denote the number of time steps from the initial condition. Well-defined walls (about 1-2 sites
thick) are formed by about 50 updates.
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FIG. 10. (a) Evolution pattern for the conserved case (with
noise B =0.3) with a critical quench for a 100 100 lattice. The
integers denote necessary updates. The initial configuration is
the same as in Fig. 7(a). (b) Evolution of the domain-wall struc-
ture for the situation shown in (a). For the numbers and tick
marks in the figure see the legend for Fig. 7(b). The section is
the same as in Fig. 7(b). As pointed out in the text, the noise
amplitude used is unrealistically large and the domains are not
well formed.



FIG. 11. Evolution pattern for the critically quenched con-
served case with “strong” noise B=0.5 for a 100X 100 lattice.
The integers denote necessary updates. Once again, the initial
configuration is the same as in Fig. 7(a). The pattern is similar
to previously published patterns from Monte Carlo simulations
[Refs. 5 and 6(b)] or Langevin simulations of the CHC equation
(Ref. 7).
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FIG. 14. (a) Evolution pattern for the *‘soft-wall”” conserved case (without noise) with a critical quench for a 100 100 lattice. The
integers denote necessary updates. The parameters used are 4 =1.2 and D =0.5. The initial configuration is the same as in Fig. 7(a).
(b} Evolution of the domain-wall structure for the situation shown in (a). For the numbers and tick marks see the legend for Fig. 7(b).
The section is the same as in Fig. 7(b). The domain walls are somewhat softer than those in Fig. 7(b).



FIG. 16. Evolution pattern for the off-critically quenched
conserved case (with noise B =0.3) for a 100 100 lattice. The
initial configuration corresponds to the order parameter at the
sites being randomly and uniformly distributed between
—0.310.125.
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FIG. 18. Evolution pattern for the off-critically quenched
conserved case (with noise B =0.3) with quenching in the nu-
cleation regime. The integers denote necessary updates. Again,
the lattice size is 100X 100. For the initial configuration see the

text.
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FIG. 5. (a) Evolution pattern for the nonconserved case with
noise B=0.3 for a 150 lattice. The initial configuration is the
same as in Fig. 1(a). The domain boundaries are somewhat
more ragged than those of the deterministic case. (b) Evolution
of the domain-wall structure for the situation shown in (a).
However, this time the section is along the horizontal line in the
middle. For numbers see the legend for Fig. 1(a). The segment
between adjacent horizontal tick marks corresponds to about 14
lattices. The noise amplitude used is unrealistically large and
the domains are not very well formed.
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FIG. 7. (a) Evolution pattern for the conserved case (without noise) with a critical quench for a 100x 100 lattice. The integers
denote necessary updates. The initial configuration consists of order-parameter values randomly and uniformly distributed between
+0.125 as in Fig. 1(a). Of course, this corresponds to a different initial condition because of the different sizes of the lattices. (b) Evo-
lution of the domain-wall structure for the situation shown in (a). The numbers along the vertical axes denote the order-parameter
values, and the interval between the adjacent tick marks corresponds to about 13 lattice spacings. The times are the same as those in
(a) except for the figure in the upper-right corner. It is taken at 1000 updates and indicates that well-formed domains appear by that
time. The section is along the diagonal form (n, =1,n,=1) to (n, =100,n, = 100), as in Fig. 5(a).



