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ABSTRACT. In this note we give a criterion for a finitely generated projective
module & of constant rank one over R[T] or R[T, T~!] to be extended
from R in terms of invertible ideals, when R is an integral domain. We show
that if I is an invertible ideal of R[T] or R[T, T~!] such that INR #0,
then I is extended from R if and only if 7N R is an invertible ideal of R.

1. INTRODUCTION

Let R be a commutative ring, and let 4 be the polynomial algebra R[T]
or the Laurent polynomial algebra R[T, T~!]. Let & be a finitely generated
projective A-module. We say that “? is extended from R” if there exists an
R-module & such that & ~ & ®gr A as A-modules. In this note we investigate
the question: when is a finitely generated projective module & of (constant)
rank one over 4 extended from R? It is easy to see that for this question
we can assume without loss of generality that R is a reduced ring. Hence,
throughout the paper we will assume that R is a reduced commutative ring.

If R has only finitely many minimal prime ideals (e.g., R is an integral
domain or R is a noetherian ring) then Q(R), the total quotient ring of R ,is a
finite direct product of fields. In this case, since all finitely generated projective
modules of (constant) rank one over Q(R)[T] and Q(R)[T, T~!] are free, it
1s easy to see that there exists an invertible ideal I of A4 such that

(1) INR contains a non-zero-divisor of R,
(2) I~ as A-modules.

See [1, Chapter II, §5] for details. Therefore, in this situation, one is reduced
to consider the following question:

Question. Let R be a reduced ring with only finitely many minimal prime
ideals. Let 4 denote the polynomial algebra R[T] or the Laurent polynomial
algebra R[T, T~!]. Let I be an invertible ideal of 4 such that INR contains
a non-zero-divisor of R. Then, when is I extended from R?

In this paper we settle this question as follows:
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Theorem (A). Let R be a reduced ring with only finitely many minimal prime
ideals. Let I be an invertible ideal of R[T, T~'] such that J = INR contains
a non-zero-divisor of R. Then I is extended from R if J is an invertible ideal
of R. Moreover, if R is an integral domain and I is extended from R, then
J =INR is an invertible ideal of R.

Theorem (B). Let R be a reduced ring with only finitely many minimal prime
ideals. Let I be an invertible ideal of R[T] such that J = INR contains a non-
zero-divisor of R. Then I is extended from R if and only if J is an invertible
ideal of R.

We also give an example of a reduced noetherian ring and an invertible ideal
I of A=R[T, T~'] suchthat J = INR contains a non-zero-divisor of R, I
is extended from R as an A-module, but J is not an invertible ideal of R.

In case of an ideal I of 4 = R[T] or R[T, T~'], there are naturally two
notions of extendibility, namely,

(1) ideal-extendibility, i.e., I = ¥ A for some ideal .¥ of R,
(2) module-extendibility, i.e., there exists an R-module M such that I =
M ®r A as A-modules.

Obviously ideal-extendibility implies module-extendibility, but the converse
need not be true.

Theorem (A) and Theorem (B) are proved by first showing that if 4 =
R[T,T'] (R a domain) or 4 = R[T] (R a reduced ring), then for an
ideal I of A the two notions of extendibility are equivalent if I N R con-
tains a non-zero-divisor (Lemmas 2.4 and 2.8). Example 2.7 shows that for
A = R[T, T~'], the two notions need not be the same even for an invertible
ideal I of A containing a non-zero-divisor of R if R is not a domain.

2. EXTENDIBILITY CRITERION

In this section we will prove Theorems (A) and (B) stated above (Theorems
2.11 and 2.13, respectively). We begin with the following definition:

Definition 2.1. Let 4 be a reduced ring, and let Q(A4) denote the total quotient
ring of A. An A-submodule M of Q(A) is said to be invertible if there exists
an A-submodule N of Q(A4) such that MN = 4.

We note that such an N is unique and we denote it by M~!. If an ideal I
of A is invertible, we say that I is an invertible ideal of A.

Let B be an A-subalgebra of Q(A4), and let I be an invertible ideal of A4.
Then it follows immediately from the definition that /B is an invertible ideal
of B.

Now we state a lemma, a proof of which can be found in [1, Chapter II, §5].

Lemma 2.2. Let A be a reduced ring and S be a multiplicative set of non-zero-
divisors of A. Let B = S™'A. If all finitely generated projective B-modules of
constant rank one are free, then given a finitely generated projective A-module P
of constant rank one there exists an invertible ideal I of A such that INS # @
and I ~ % as A-modules.

As a consequence of the above lemma we have the following:
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Lemma 2.3. Let R be a reduced ring with only finitely many minimal prime
ideals. Let S denote the set of all non-zero-divisors of R. Let A = R[T] or
R[T, T '], and let P be a finitely generated projective A-module of constant
rank one. Then there exists an invertible ideal I of A such that INS # @ and
I~%,

Now we prove Theorems (A) and (B) stated in the introduction. For the
proof of these theorems we need some lemmas.

Lemma 24. Let R be a domain, and let I be a finitely generated ideal of
R[T, T~"). Assume that J = I N R is nonzero. Then the following statements
are equivalent:
(1) I=JR[T, T"].
(2) I~J ®r R[T,T™'] as R[T, T~'}-modules.
(3) There exists an R-module M such that I ~ M ®gr R[T, T '] as
R[T, T~ '}-modules.

Proof. The implications 1= 2 and 2 = 3 hold for any ring R (not necessarily
a domain). So it remains to prove the implication 3 = 1.

Let M be an R-module such that I ~ M ®g R[T,T~'] as R[T, T7']-
modules. Since I is a finitely generated nonzero ideal of R[T, T~!] and
R[T, T~'] is a free R-module, it follows that M is a finitely generated torsion
free R-module of rank one. Hence there exists a finitely generated nonzero
ideal .# of R such that M ~._# as R-modules. Thus

FRIT, T |~5 @ RIT, T"'|~M @ RIT, T"'1~1

as R[T, T-']-modules. Let 6: #R[T, T~'] — I be an isomorphism. Let b €
# be a nonzero element of R. Then we claim that bI = 0(b).* R[T, T™'].

Let g € I and h € FR[T, T~ '] be such that 6(h) = g. Then bg =
bB(h) = 6(bh) = h6(b) and this proves the claim.

Let ¢ € I be a nonzero element of R. Then cb = 6(b)f for some f €
SJR[T, T~']. But since R is a domain, this shows that 8(b)T" = a € R for
some integer n. Now the equality bI = 6(b)FR[T, T™'] = a#R[T, T™']
gives that bJ = b(INR) = a¥ . Therefore bl = bJR[T, T~'] and hence
I=JR[T,T7']. O

Remark 2.5. Lemma 2.4 is true if R is a finite direct product of domains and
INR contains a non-zero-divisor of R.

Remark 2.6. The following example shows that Lemma 2.4 need not be true if
R is not a direct product of domains.

Example 2.7. Let R = k[ X, Y]/(XY) = k[x,y]. Let f = x+ yT be an
element of R[T, T-'] and let I = fR[T, T~']. Then it is easy to see that /N
R = (x2, y?), which contains a non-zero-divisor x?—y?. Moreover, since f is
a non-zero-divisor of R[T, T~'], the ideal I is a free module of rank one over
R[T, T~'] and hence it is extended from R as an R[T, T~']-module. But
obviously fR[T, T~'] # (x%, y*)R[T, T~'] as (x2, y?) is not an invertible
idealof R. O

In the case of a polynomial algebra R[7T] we get the following generalisation
of Lemma 2.4.
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Lemma 2.8. Let R be a reduced ring, and let I be a finitely generated ideal of
R[T]. Assume that J = I N R contains a non-zero-divisor. Then the following
statements are equivalent:

(1) I=JR[T].

(2) I ~J ®r R[T] as R[T]-modules.

(3) There exists an R-module M such that I ~ M ®g R[T] as R[T]-
modules.

Proof. As above the implications 1 => 2 and 2 = 3 are obvious. Thus it remains
to prove 3= 1.

Let s € J be a non-zero-divisor of R. Then it is easy to see that M is a
finitely generated torsion free R-module and M; is a free R;-module of rank
one. Therefore there exists a finitely generated ideal ¥ of R such that ¥ ~ M
as R-modules. Moreover, since .% is a free R;-module of rank one, without
loss of generality we can assume that ¢ = s” € .# for some positive integer n.
Let 0: FR[T] — I be an isomorphism of R[T]-modules. Then we claim that
tl = 6(t).#R[T].

Let g €I and f € FR[T] be such that 6(f) = g. Then tg = t0(f) =
0(tf) = f6(¢). This proves the claim.

Since s € I, the equality ¢/ = 6(¢).# R[T] shows that ts = 6(t)g for some
g € R[T]. Now by Lemma 2.9 (stated below) we have 6(¢) € R. Therefore

tJ=tINR=0()FRTINR = 0(1).7 .

Hence ¢I = tJR[T]. But ¢ is a non-zero-divisor of R. Therefore I =
JR[T]. O

Lemma 2.9. Let R be a reduced ring and s be a non-zero-divisor of R. Let
f € R[T] be such that s € fR[T]. Then f€R.

Proof. Let s = f(T)g(T) for some g(T) € R[T]. Write f(T)=ag+a;T +
-+ +a,T" for some a; € R, 0 < i< n, with a, # 0. We want to show that
n=0.

Since s = f(0)g(0) = apg(0) and s is a non-zero-divisor, a is either a unit
or a non-zero-divisor in R. If n > 0 then since R is reduced there exists a
minimal prime ideal p of R such that a, ¢ p. Since a¢ is a unit or a non-
zero-divisor, obviously ap ¢ p. Let ‘bar’ denote “modulo p”. Then we have
5= f(T)g(T) in R[T]. Butsince f(T) is a polynomial of positive degree this
is absurd and hence n=0. O

When R is reduced (but not necessarily a domain) one has the following
weaker version of Lemma 2.4.

Lemma 2.10. Let R be a reduced ring, and let I be a finitely generated ideal
of R[T, T'] such that J = I N R contains a non-zero-divisor of R. If I is
extended from R as a module, then there exists an element f of R[T, T~!]
such that f is not a zero-divisor of R[T, T~'] and fI is extended from R as
an ideal.

This easily follows from the proof of Lemma 2.4.
Now we prove the main theorems.
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Theorem 2.11. Let R be a reduced ring with only finitely many minimal prime
ideals. Let I be an invertible ideal of R[T, T~'] such that J = INR contains
a non-zero-divisor of R. Then I is extended from R if J is an invertible ideal
of R. Moreover, if R is an integral domain and I is extended from R, then
J =INR is an invertible ideal of R.

Proof. Let I be an invertible ideal of R[T, T~!] such that J = INR contains
a non-zero-divisor s of R and J is an invertible ideal of R. If I = R[T, T™!]
then clearly I = JR[T, T~'], where J = INR = R. So we can assume that
I is a proper ideal of R[T, T-']. Now we will show that I = JR[T, T"'].
Clearly JR[T, T~!] C I and to show the equality it is enough to show that for
every maximal ideal 3 of R, JsRy[T, T~ !]=1;. Butthen L,N Ry = J5,
and as J; is an invertible ideal in the local ring Ry, J;5 is principal and hence
Jy = tRy for some ¢ € R which is not a zero-divisor of R. Thus by replacing
R with Ry we are reduced to proving the following:

Let R be a reduced local ring with only finitely many minimal prime ideals. Let
I be an invertible ideal of R[T , T~'] which is a proper ideal such that INR = tR
for some non-zero-divisor t of R. Then I =tR[T, T™].

Since I is an invertible ideal of R[T, T~'] containing a non-zero-divisor
t of R, it is easy to see that the canonical epimorphism I/(T — 1) — I +
(T —1)/(T —1) is an isomorphism and hence

(%) I(T-DI~I+(T-D/T-1)~I/In(T-1).

This shows that I+ (T —1)/(T — 1) is an invertible ideal of R which contains
the element ¢ of R.

If I # tR[T, T~'] then there exists an element g, € R[T, T~'] such that
g € I\ tR[T, T~']. Without loss of generality we may assume that g; is
a polynomial in R[T] and is of least degree (among such elements of I).
Let us write g, as gy =ay+a (T —1)+---+a, (T — 1) with a; € R and
a, # 0. Obviously ¢ t ap. Otherwise ap = ta for some a € R. Hence
gi—ay=g —ta=(T-1)f for some f € R[T]. As T — 1 is a non-zero-
divisor modulo I (by (x)) we have f € I\ tR[T, T~']. But deg f < degg,
contradicting the minimality of degree of g, . Hence t{ap.

Let {t,81,8,.--,8} C R[T, T~'] be a set of generators of I, where
g €R[T) for 1 <i<n.Then I+(T-1)/(T-1)= (¢, gi(1) =ap, &(1), ...,
gn(1)). Since I + (T —1)/(T — 1) is an invertible ideal of R and R is local,
I+ (T -1)/(T - 1) is a principal ideal of R generated, say, by b and b €
{t, a0, g&(1), ..., gu(1)}. But since ¢t ay we have ttb. So b = g(1) for
some i, 1 <i<n.Moreover t/b=d belongs to the maximal ideal of R.

Let R be the normalisation of R in its total quotient ring. Note that R
is a finite direct product of domains. Since R is normal and IR[T, T~!]
is invertible, it is extended from R as a module. Therefore, as IR[T, T~!]
contains a non-zero-divisor of R, namely ¢, by Lemma 2.4 and Remark 2.5,
IR[T, T '1=LR[T, T~"], where L =IR[T, T"']NR.

Let {a;,a,...,am} C R be a set of generators for L. Recall that
{t = 8, & ,.-., 8} is a set of generators for IR[T, T-']. Then we get
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the following relations:

m
&= ZhUaI fori=0,1,-~~,n>

n
ak=2fk,g, fork=l,2,...,m,

=0
for some A;; and f;; in R[T, T~']. Let R’ be the R-subalgebra of R gener-
ated by {a;}U coefficients of {h;;, fi;},andlet L' be the ideal of R’ generated
by {a1,a,,...,am}. Clearly R’ is a finitely generated R-subalgebra of R.
Therefore R’ is a finite R-module and hence R’ is semilocal. Then the equal-
ity IR'[T, T~ '] = L'R'[T, T~'] shows that L’ is an invertible ideal of R’
and hence (R’ being semilocal) is a principal ideal, generated by, say, r. Thus
we have IR'[T, T '1=(t, g,..., &)R[T, T~'1=rR[T, T~']. Therefore
rR' = (¢, &;1(1), ..., g.(1))R' = bR’ . Hence without loss of generality we can
assume that r =b. _

Now we claim that there exists a finitely generated R-subalgebra R of R’
such that
(1) IR[T, T "= bﬁ[T, T-1,

I . . .
(2) d' (d=1t/b) € R IR for some positive integer /, where % IR denotes

the conductor ideal of R in R.
We will now complete the proof of the theorem by assuming this claim.
Since (¢t = go, &1,..., &)R[T, T~'] = bR[T, T~'], we can write b =

Yiohigi, where h; € R[T,T"']. Thenfor c € & = %R r» We have cb =

eyl ohigi =31 _o(chi)gi. Since c € &, we have ch; € R[T, T~'] and hence
cb € INR = tR. This shows that (b/t)% = .¥ 1is an ideal of R. Clearly ./
is an ideal of R and hence .¥ C % . This shows that € C d% and therefore
% =d%. Hence € = d% = d*®% = --- = d'& C d'R C €. Therefore
& =d'R = d'*'R, which is absurd since d is an element of the maximal ideal
of R which is a non-zero-divisor.

Therefore I = tR[T, T~'] as required.

Proof of the claim. Since (t = gy, &, ..., &)R[T, T"'1=bR[T, T '], g =
bg! (0<i<n),where g/ € R[T, T™']. In fact, since g € R[T] and b is
not a zero-divisor of R, we have g/ € R'[T]. Moreover gy =d .

Let K = b7 'I. Then K is an invertible R[T, T~!]-submodule of
R'[T, T~'] generated by {g}, &/, ..., &}. Since KR'[T, T~'1=R[T, T"'],
we have K-! CR[T,T'] and K~'R[T, T 1=R[T,T7'].

LetK—! = (ug, uy, ..., un)R[T, T7'], where u; € R'[T, T~ '] for 0<i<
n. Let R denote the finitely generated R-subalgebra of R’ generated by the
coefficients of {u;}? . Then u; € R[T, T-'] for all i. Since R’ is integral
over R and K- 1R’[T T-'l = R[T, T"'], we get that K~ ‘R[T T =
R[T, T-']. This shows that KCR[T T-'1 and KR[T, T-'1=R[T, T™].
Since K = b~'I, we get that IR[T, T~'] = bR[T, T~!]. This proves the first
part of the claim. _

Since R is generated as an R-algebra by coefficients of u; , generators of R as
an R-module can be chosen to be elements which are monomials in coefficients
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of u; . Since R isa finite R-module, finitely many such monomials will generate
R as an R-module. Since d = gy € K, we have du; € R[T, T™'] forall i,
i=0,1,...,n. This shows that d' R C R for some positive integer /. Thus
the proof of the claim is complete.

Now assume that R is a domain. If I is extended from R as a module,
then by Lemma 2.4, I = JR[T, T7!], since J =INR # 0. Therefore J is
an invertible ideal of R. O

Remark 2.12. If R is not necessarily a domain and if I is extended from R
as a module, then under the hypothesis of the theorem we get, by Lemma 2.10,
that there exists an element f € R[T, T~!] such that fINR is an invertible
ideal of R.

Theorem 2.13. Let R be a reduced ring with only finitely many minimal prime
ideals. Let I be an invertible ideal of R[T] such that J = I N R contains a
non-zero-divisor of R. Then I is extended from R as a module if and only if
J is an invertible ideal of R.

Proof. If I is extended from R then, by Lemma 2.8, I = JR(T). Therefore
it follows that J is an invertible ideal of R. To prove the converse, without
loss of generality, we can assume that [ is a proper ideal.

Let us assume that J is an invertible ideal of R. Then as I contains a
non-zero-divisor, say s, of R, it is easy to see that the canonical epimorphism
I/TI - I+(T)/(T)~1I/IN(T) is an isomorphism. This implies that T is not
a zero-divisor of R[T]/I. Therefore IR[T, T~'1N R[T] = I. Now the ideal
IR[T, T~'] is an invertible ideal of R[T', T~'] such that IR[T, T~'InR = IN
R = J . Therefore, by Theorem 2.11, we get that IR[T, T~'1= JR[T, T7'].
This implies that for any f € I, T"f € JR[T] for some positive integer n.
This shows that f € JR[T] and hence I = JR[T] as required. O
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