EXTENDIBILITY CRITERION FOR A PROJECTIVE MODULE OF RANK ONE OVER R[T] AND $R[T, T^{-1}]$

S. M. BHATWADEKAR AND P. L. N. VARMA

(Communicated by Louis J. Ratliff, Jr.)

ABSTRACT. In this note we give a criterion for a finitely generated projective module \mathscr{P} of constant rank one over R[T] or $R[T, T^{-1}]$ to be extended from R in terms of invertible ideals, when R is an integral domain. We show that if I is an invertible ideal of R[T] or $R[T, T^{-1}]$ such that $I \cap R \neq 0$, then I is extended from R if and only if $I \cap R$ is an invertible ideal of R.

1. INTRODUCTION

Let R be a commutative ring, and let A be the polynomial algebra R[T]or the Laurent polynomial algebra $R[T, T^{-1}]$. Let \mathscr{P} be a finitely generated projective A-module. We say that " \mathscr{P} is extended from R" if there exists an R-module \mathscr{C} such that $\mathscr{P} \simeq \mathscr{C} \otimes_R A$ as A-modules. In this note we investigate the question: when is a finitely generated projective module \mathscr{P} of (constant) rank one over A extended from R? It is easy to see that for this question we can assume without loss of generality that R is a reduced ring. Hence, throughout the paper we will assume that R is a *reduced commutative* ring.

If R has only finitely many minimal prime ideals (e.g., R is an integral domain or R is a noetherian ring) then Q(R), the total quotient ring of R, is a finite direct product of fields. In this case, since all finitely generated projective modules of (constant) rank one over Q(R)[T] and $Q(R)[T, T^{-1}]$ are free, it is easy to see that there exists an invertible ideal I of A such that

- (1) $I \cap R$ contains a non-zero-divisor of R,
- (2) $I \simeq \mathscr{P}$ as A-modules.

See [1, Chapter II, §5] for details. Therefore, in this situation, one is reduced to consider the following question:

Question. Let R be a reduced ring with only finitely many minimal prime ideals. Let A denote the polynomial algebra R[T] or the Laurent polynomial algebra $R[T, T^{-1}]$. Let I be an invertible ideal of A such that $I \cap R$ contains a non-zero-divisor of R. Then, when is I extended from R?

In this paper we settle this question as follows:

Received by the editors September 26, 1991 and, in revised form, April 6, 1992. 1991 *Mathematics Subject Classification*. Primary 13C10; Secondary 13F20.

Theorem (A). Let R be a reduced ring with only finitely many minimal prime ideals. Let I be an invertible ideal of $R[T, T^{-1}]$ such that $J = I \cap R$ contains a non-zero-divisor of R. Then I is extended from R if J is an invertible ideal of R. Moreover, if R is an integral domain and I is extended from R, then $J = I \cap R$ is an invertible ideal of R.

Theorem (B). Let R be a reduced ring with only finitely many minimal prime ideals. Let I be an invertible ideal of R[T] such that $J = I \cap R$ contains a non-zero-divisor of R. Then I is extended from R if and only if J is an invertible ideal of R.

We also give an example of a reduced noetherian ring and an invertible ideal I of $A = R[T, T^{-1}]$ such that $J = I \cap R$ contains a non-zero-divisor of R, I is extended from R as an A-module, but J is not an invertible ideal of R.

In case of an ideal I of A = R[T] or $R[T, T^{-1}]$, there are naturally two notions of extendibility, namely,

- (1) *ideal-extendibility*, i.e., $I = \mathcal{I}A$ for some ideal \mathcal{I} of R,
- (2) module-extendibility, i.e., there exists an R-module M such that $I \approx M \otimes_R A$ as A-modules.

Obviously ideal-extendibility implies module-extendibility, but the converse need not be true.

Theorem (A) and Theorem (B) are proved by first showing that if $A = R[T, T^{-1}]$ (R a domain) or A = R[T] (R a reduced ring), then for an ideal I of A the two notions of extendibility are equivalent if $I \cap R$ contains a non-zero-divisor (Lemmas 2.4 and 2.8). Example 2.7 shows that for $A = R[T, T^{-1}]$, the two notions need not be the same even for an invertible ideal I of A containing a non-zero-divisor of R if R is not a domain.

2. EXTENDIBILITY CRITERION

In this section we will prove Theorems (A) and (B) stated above (Theorems 2.11 and 2.13, respectively). We begin with the following definition:

Definition 2.1. Let A be a reduced ring, and let Q(A) denote the total quotient ring of A. An A-submodule M of Q(A) is said to be *invertible* if there exists an A-submodule N of Q(A) such that MN = A.

We note that such an N is unique and we denote it by M^{-1} . If an ideal I of A is invertible, we say that I is an *invertible ideal* of A.

Let B be an A-subalgebra of Q(A), and let I be an invertible ideal of A. Then it follows immediately from the definition that IB is an invertible ideal of B.

Now we state a lemma, a proof of which can be found in [1, Chapter II, §5].

Lemma 2.2. Let A be a reduced ring and S be a multiplicative set of non-zerodivisors of A. Let $B = S^{-1}A$. If all finitely generated projective B-modules of constant rank one are free, then given a finitely generated projective A-module \mathscr{P} of constant rank one there exists an invertible ideal I of A such that $I \cap S \neq \varnothing$ and $I \simeq \mathscr{P}$ as A-modules.

As a consequence of the above lemma we have the following:

1070

Lemma 2.3. Let R be a reduced ring with only finitely many minimal prime ideals. Let S denote the set of all non-zero-divisors of R. Let A = R[T] or $R[T, T^{-1}]$, and let \mathcal{P} be a finitely generated projective A-module of constant rank one. Then there exists an invertible ideal I of A such that $I \cap S \neq \emptyset$ and $I \simeq \mathcal{P}$.

Now we prove Theorems (A) and (B) stated in the introduction. For the proof of these theorems we need some lemmas.

Lemma 2.4. Let R be a domain, and let I be a finitely generated ideal of $R[T, T^{-1}]$. Assume that $J = I \cap R$ is nonzero. Then the following statements are equivalent:

- (1) $I = JR[T, T^{-1}].$
- (2) $I \simeq J \otimes_R R[T, T^{-1}]$ as $R[T, T^{-1}]$ -modules.
- (3) There exists an R-module M such that $I \simeq M \otimes_R R[T, T^{-1}]$ as $R[T, T^{-1}]$ -modules.

Proof. The implications $1 \Rightarrow 2$ and $2 \Rightarrow 3$ hold for any ring R (not necessarily a domain). So it remains to prove the implication $3 \Rightarrow 1$.

Let M be an R-module such that $I \simeq M \otimes_R R[T, T^{-1}]$ as $R[T, T^{-1}]$ modules. Since I is a finitely generated nonzero ideal of $R[T, T^{-1}]$ and $R[T, T^{-1}]$ is a free R-module, it follows that M is a finitely generated torsion free R-module of rank one. Hence there exists a finitely generated nonzero ideal \mathscr{I} of R such that $M \simeq \mathscr{I}$ as R-modules. Thus

$$\mathscr{I}R[T, T^{-1}] \simeq \mathscr{I} \otimes_R R[T, T^{-1}] \simeq M \otimes_R R[T, T^{-1}] \simeq I$$

as $R[T, T^{-1}]$ -modules. Let $\theta: \mathscr{F}R[T, T^{-1}] \to I$ be an isomorphism. Let $b \in \mathscr{F}$ be a nonzero element of R. Then we claim that $bI = \theta(b)\mathscr{F}R[T, T^{-1}]$.

Let $g \in I$ and $h \in \mathcal{F}R[T, T^{-1}]$ be such that $\theta(h) = g$. Then $bg = b\theta(h) = \theta(bh) = h\theta(b)$ and this proves the claim.

Let $c \in I$ be a nonzero element of R. Then $cb = \theta(b)f$ for some $f \in \mathcal{F}R[T, T^{-1}]$. But since R is a domain, this shows that $\theta(b)T^n = a \in R$ for some integer n. Now the equality $bI = \theta(b)\mathcal{F}R[T, T^{-1}] = a\mathcal{F}R[T, T^{-1}]$ gives that $bJ = b(I \cap R) = a\mathcal{F}$. Therefore $bI = bJR[T, T^{-1}]$ and hence $I = JR[T, T^{-1}]$. \Box

Remark 2.5. Lemma 2.4 is true if R is a finite direct product of domains and $I \cap R$ contains a non-zero-divisor of R.

Remark 2.6. The following example shows that Lemma 2.4 need not be true if R is not a direct product of domains.

Example 2.7. Let R = k[[X, Y]]/(XY) = k[[x, y]]. Let f = x + yT be an element of $R[T, T^{-1}]$ and let $I = fR[T, T^{-1}]$. Then it is easy to see that $I \cap R = (x^2, y^2)$, which contains a non-zero-divisor $x^2 - y^2$. Moreover, since f is a non-zero-divisor of $R[T, T^{-1}]$, the ideal I is a free module of rank one over $R[T, T^{-1}]$ and hence it is extended from R as an $R[T, T^{-1}]$ -module. But obviously $fR[T, T^{-1}] \neq (x^2, y^2)R[T, T^{-1}]$ as (x^2, y^2) is not an invertible ideal of R. \Box

In the case of a polynomial algebra R[T] we get the following generalisation of Lemma 2.4.

Lemma 2.8. Let R be a reduced ring, and let I be a finitely generated ideal of R[T]. Assume that $J = I \cap R$ contains a non-zero-divisor. Then the following statements are equivalent:

- (1) I = JR[T].
- (2) $I \simeq J \otimes_R R[T]$ as R[T]-modules.
- (3) There exists an R-module M such that $I \simeq M \otimes_R R[T]$ as R[T]-modules.

Proof. As above the implications $1 \Rightarrow 2$ and $2 \Rightarrow 3$ are obvious. Thus it remains to prove $3 \Rightarrow 1$.

Let $s \in J$ be a non-zero-divisor of R. Then it is easy to see that M is a finitely generated torsion free R-module and M_s is a free R_s -module of rank one. Therefore there exists a finitely generated ideal \mathscr{I} of R such that $\mathscr{I} \simeq M$ as R-modules. Moreover, since \mathscr{I}_s is a free R_s -module of rank one, without loss of generality we can assume that $t = s^n \in \mathscr{I}$ for some positive integer n. Let $\theta: \mathscr{I}R[T] \to I$ be an isomorphism of R[T]-modules. Then we claim that $tI = \theta(t)\mathscr{I}R[T]$.

Let $g \in I$ and $f \in \mathcal{F}R[T]$ be such that $\theta(f) = g$. Then $tg = t\theta(f) = \theta(tf) = f\theta(t)$. This proves the claim.

Since $s \in I$, the equality $tI = \theta(t) \mathscr{I} R[T]$ shows that $ts = \theta(t)g$ for some $g \in \mathscr{I} R[T]$. Now by Lemma 2.9 (stated below) we have $\theta(t) \in R$. Therefore

$$tJ = tI \cap R = \theta(t)\mathcal{I}R[T] \cap R = \theta(t)\mathcal{I}.$$

Hence tI = tJR[T]. But t is a non-zero-divisor of R. Therefore I = JR[T]. \Box

Lemma 2.9. Let R be a reduced ring and s be a non-zero-divisor of R. Let $f \in R[T]$ be such that $s \in fR[T]$. Then $f \in R$.

Proof. Let s = f(T)g(T) for some $g(T) \in R[T]$. Write $f(T) = a_0 + a_1T + \cdots + a_nT^n$ for some $a_i \in R$, $0 \le i \le n$, with $a_n \ne 0$. We want to show that n = 0.

Since $s = f(0)g(0) = a_0g(0)$ and s is a non-zero-divisor, a_0 is either a unit or a non-zero-divisor in R. If n > 0 then since R is reduced there exists a minimal prime ideal p of R such that $a_n \notin p$. Since a_0 is a unit or a nonzero-divisor, obviously $a_0 \notin p$. Let 'bar' denote "modulo p". Then we have $\overline{s} = \overline{f}(T)\overline{g}(T)$ in $\overline{R}[T]$. But since $\overline{f}(T)$ is a polynomial of positive degree this is absurd and hence n = 0. \Box

When R is reduced (but not necessarily a domain) one has the following weaker version of Lemma 2.4.

Lemma 2.10. Let R be a reduced ring, and let I be a finitely generated ideal of $R[T, T^{-1}]$ such that $J = I \cap R$ contains a non-zero-divisor of R. If I is extended from R as a module, then there exists an element f of $R[T, T^{-1}]$ such that f is not a zero-divisor of $R[T, T^{-1}]$ and fI is extended from R as an ideal.

This easily follows from the proof of Lemma 2.4. Now we prove the main theorems. **Theorem 2.11.** Let R be a reduced ring with only finitely many minimal prime ideals. Let I be an invertible ideal of $R[T, T^{-1}]$ such that $J = I \cap R$ contains a non-zero-divisor of R. Then I is extended from R if J is an invertible ideal of R. Moreover, if R is an integral domain and I is extended from R, then $J = I \cap R$ is an invertible ideal of R.

Proof. Let I be an invertible ideal of $R[T, T^{-1}]$ such that $J = I \cap R$ contains a non-zero-divisor s of R and J is an invertible ideal of R. If $I = R[T, T^{-1}]$ then clearly $I = JR[T, T^{-1}]$, where $J = I \cap R = R$. So we can assume that I is a proper ideal of $R[T, T^{-1}]$. Now we will show that $I = JR[T, T^{-1}]$. Clearly $JR[T, T^{-1}] \subseteq I$ and to show the equality it is enough to show that for every maximal ideal \Im of R, $J_{\Im}R_{\Im}[T, T^{-1}] = I_{\Im}$. But then $I_{\Im} \cap R_{\Im} = J_{\Im}$, and as J_{\Im} is an invertible ideal in the local ring R_{\Im} , J_{\Im} is principal and hence $J_{\Im} = tR_{\Im}$ for some $t \in R$ which is not a zero-divisor of R. Thus by replacing R with R_{\Im} we are reduced to proving the following:

Let R be a reduced local ring with only finitely many minimal prime ideals. Let I be an invertible ideal of $R[T, T^{-1}]$ which is a proper ideal such that $I \cap R = tR$ for some non-zero-divisor t of R. Then $I = tR[T, T^{-1}]$.

Since I is an invertible ideal of $R[T, T^{-1}]$ containing a non-zero-divisor t of R, it is easy to see that the canonical epimorphism $I/(T-1)I \rightarrow I + (T-1)/(T-1)$ is an isomorphism and hence

(*) $I/(T-1)I \simeq I + (T-1)/(T-1) \simeq I/I \cap (T-1).$

This shows that I + (T-1)/(T-1) is an invertible ideal of R which contains the element t of R.

If $I \neq tR[T, T^{-1}]$ then there exists an element $g_1 \in R[T, T^{-1}]$ such that $g_1 \in I \setminus tR[T, T^{-1}]$. Without loss of generality we may assume that g_1 is a polynomial in R[T] and is of least degree (among such elements of I). Let us write g_1 as $g_1 = a_0 + a_1(T-1) + \cdots + a_r(T-1)^r$ with $a_i \in R$ and $a_r \neq 0$. Obviously $t \nmid a_0$. Otherwise $a_0 = ta$ for some $a \in R$. Hence $g_1 - a_0 = g_1 - ta = (T-1)f$ for some $f \in R[T]$. As T-1 is a non-zero-divisor modulo I (by (*)) we have $f \in I \setminus tR[T, T^{-1}]$. But deg $f < \deg g_1$, contradicting the minimality of degree of g_1 . Hence $t \nmid a_0$.

Let $\{t, g_1, g_2, \ldots, g_n\} \subseteq R[T, T^{-1}]$ be a set of generators of I, where $g_i \in R[T]$ for $1 \le i \le n$. Then $I + (T-1)/(T-1) = (t, g_1(1) = a_0, g_2(1), \ldots, g_n(1))$. Since I + (T-1)/(T-1) is an invertible ideal of R and R is local, I + (T-1)/(T-1) is a principal ideal of R generated, say, by b and $b \in \{t, a_0, g_2(1), \ldots, g_n(1)\}$. But since $t \nmid a_0$ we have $t \nmid b$. So $b = g_i(1)$ for some $i, 1 \le i \le n$. Moreover t/b = d belongs to the maximal ideal of R.

Let \overline{R} be the normalisation of R in its total quotient ring. Note that \overline{R} is a finite direct product of domains. Since \overline{R} is normal and $I\overline{R}[T, T^{-1}]$ is invertible, it is extended from \overline{R} as a module. Therefore, as $I\overline{R}[T, T^{-1}]$ contains a non-zero-divisor of \overline{R} , namely t, by Lemma 2.4 and Remark 2.5, $I\overline{R}[T, T^{-1}] = L\overline{R}[T, T^{-1}]$, where $L = I\overline{R}[T, T^{-1}] \cap \overline{R}$.

Let $\{a_1, a_2, \ldots, a_m\} \subseteq \overline{R}$ be a set of generators for L. Recall that $\{t = g_0, g_1, \ldots, g_n\}$ is a set of generators for $I\overline{R}[T, T^{-1}]$. Then we get

the following relations:

$$g_i = \sum_{j=1}^m h_{ij} a_j$$
 for $i = 0, 1, ..., n$,
 $a_k = \sum_{l=0}^n f_{kl} g_l$ for $k = 1, 2, ..., m$

for some h_{ij} and f_{kl} in $\overline{R}[T, T^{-1}]$. Let R' be the R-subalgebra of \overline{R} generated by $\{a_i\} \cup$ coefficients of $\{h_{ij}, f_{kl}\}$, and let L' be the ideal of R' generated by $\{a_1, a_2, \ldots, a_m\}$. Clearly R' is a finitely generated R-subalgebra of \overline{R} . Therefore R' is a finite R-module and hence R' is semilocal. Then the equality $IR'[T, T^{-1}] = L'R'[T, T^{-1}]$ shows that L' is an invertible ideal of R' and hence (R' being semilocal) is a principal ideal, generated by, say, r. Thus we have $IR'[T, T^{-1}] = (t, g_1, \ldots, g_n)R'[T, T^{-1}] = rR'[T, T^{-1}]$. Therefore $rR' = (t, g_1(1), \ldots, g_n(1))R' = bR'$. Hence without loss of generality we can assume that r = b.

Now we claim that there exists a finitely generated R-subalgebra R of R' such that

- (1) $I\widetilde{R}[T, T^{-1}] = b\widetilde{R}[T, T^{-1}],$
- (2) $d^l (d = t/b) \in \mathscr{C}_{\widetilde{R}/R}$ for some positive integer l, where $\mathscr{C}_{\widetilde{R}/R}$ denotes the conductor ideal of \widetilde{R} in R.

We will now complete the proof of the theorem by assuming this claim.

Since $(t = g_0, g_1, \ldots, g_n)\widetilde{R}[T, T^{-1}] = b\widetilde{R}[T, T^{-1}]$, we can write $b = \sum_{i=0}^n h_i g_i$, where $h_i \in \widetilde{R}[T, T^{-1}]$. Then for $c \in \mathscr{C} = \mathscr{C}_{\widetilde{R}/R}$, we have $cb = c\sum_{i=0}^n h_i g_i = \sum_{i=0}^n (ch_i)g_i$. Since $c \in \mathscr{C}$, we have $ch_i \in R[T, T^{-1}]$ and hence $cb \in I \cap R = tR$. This shows that $(b/t)\mathscr{C} = \mathscr{I}$ is an ideal of R. Clearly \mathscr{I} is an ideal of \widetilde{R} and hence $\mathscr{I} \subseteq \mathscr{C}$. This shows that $\mathscr{C} \subseteq d\mathscr{C}$ and therefore $\mathscr{C} = d\mathscr{C}$. Hence $\mathscr{C} = d\mathscr{C} = d^2\mathscr{C} = \cdots = d^l \mathscr{C} \subseteq d^l R \subseteq \mathscr{C}$. Therefore $\mathscr{C} = d^l R = d^{l+1}R$, which is absurd since d is an element of the maximal ideal of R which is a non-zero-divisor.

Therefore $I = tR[T, T^{-1}]$ as required.

Proof of the claim. Since $(t = g_0, g_1, ..., g_n)R'[T, T^{-1}] = bR'[T, T^{-1}]$, $g_i = bg'_i$ $(0 \le i \le n)$, where $g'_i \in R'[T, T^{-1}]$. In fact, since $g_i \in R[T]$ and b is not a zero-divisor of R', we have $g'_i \in R'[T]$. Moreover $g'_0 = d$.

Let $K = b^{-1}I$. Then K is an invertible $R[T, \check{T}^{-1}]$ -submodule of $R'[T, T^{-1}]$ generated by $\{g'_0, g'_1, \ldots, g'_n\}$. Since $KR'[T, T^{-1}] = R'[T, T^{-1}]$, we have $K^{-1} \subseteq R'[T, T^{-1}]$ and $K^{-1}R'[T, T^{-1}] = R'[T, T^{-1}]$.

Let $K^{-1} = (u_0, u_1, \ldots, u_n)R[T, T^{-1}]$, where $u_i \in R'[T, T^{-1}]$ for $0 \le i \le n$. Let \tilde{R} denote the finitely generated *R*-subalgebra of *R'* generated by the coefficients of $\{u_i\}_{i=0}^n$. Then $u_i \in \tilde{R}[T, T^{-1}]$ for all *i*. Since *R'* is integral over \tilde{R} and $K^{-1}R'[T, T^{-1}] = R'[T, T^{-1}]$, we get that $K^{-1}\tilde{R}[T, T^{-1}] = \tilde{R}[T, T^{-1}]$. This shows that $K \subseteq \tilde{R}[T, T^{-1}]$ and $K\tilde{R}[T, T^{-1}] = \tilde{R}[T, T^{-1}]$. Since $K = b^{-1}I$, we get that $I\tilde{R}[T, T^{-1}] = b\tilde{R}[T, T^{-1}]$. This proves the first part of the claim.

Since R is generated as an R-algebra by coefficients of u_i , generators of R as an R-module can be chosen to be elements which are monomials in coefficients

of u_i . Since \tilde{R} is a finite *R*-module, finitely many such monomials will generate \tilde{R} as an *R*-module. Since $d = g'_0 \in K$, we have $du_i \in R[T, T^{-1}]$ for all i, $i = 0, 1, \ldots, n$. This shows that $d^l \tilde{R} \subseteq R$ for some positive integer l. Thus the proof of the claim is complete.

Now assume that R is a domain. If I is extended from R as a module, then by Lemma 2.4, $I = JR[T, T^{-1}]$, since $J = I \cap R \neq 0$. Therefore J is an invertible ideal of R. \Box

Remark 2.12. If R is not necessarily a domain and if I is extended from R as a module, then under the hypothesis of the theorem we get, by Lemma 2.10, that there exists an element $f \in R[T, T^{-1}]$ such that $fI \cap R$ is an invertible ideal of R.

Theorem 2.13. Let R be a reduced ring with only finitely many minimal prime ideals. Let I be an invertible ideal of R[T] such that $J = I \cap R$ contains a non-zero-divisor of R. Then I is extended from R as a module if and only if J is an invertible ideal of R.

Proof. If I is extended from R then, by Lemma 2.8, I = JR(T). Therefore it follows that J is an invertible ideal of R. To prove the converse, without loss of generality, we can assume that I is a proper ideal.

Let us assume that J is an invertible ideal of R. Then as I contains a non-zero-divisor, say s, of R, it is easy to see that the canonical epimorphism $I/TI \rightarrow I + (T)/(T) \simeq I/I \cap (T)$ is an isomorphism. This implies that T is not a zero-divisor of R[T]/I. Therefore $IR[T, T^{-1}] \cap R[T] = I$. Now the ideal $IR[T, T^{-1}]$ is an invertible ideal of $R[T, T^{-1}]$ such that $IR[T, T^{-1}] \cap R = I \cap$ R = J. Therefore, by Theorem 2.11, we get that $IR[T, T^{-1}] = JR[T, T^{-1}]$. This implies that for any $f \in I$, $T^n f \in JR[T]$ for some positive integer n. This shows that $f \in JR[T]$ and hence I = JR[T] as required. \Box

ACKNOWLEDGMENT

We thank Amit Roy and R. C. Cowsik for useful discussions.

References

1. N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, MA, 1972.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India

Current address, P. L. N. Varma: Mehta Research Insitute, 10 Kasturba Gandhi Marg, Allahabad-211002, India

E-mail address, S. M. Bhatwadekar: SMB@TIFRVAX.BITNET