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Dielectric behaviour of anisotropic ionic crystals
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Abstract. In the case of cubic ionic crystals Havinga has shown that the temperature
variation of dielectric constant could be described in terms of volume and temperature

effects. By extending his formalism to anisotropic, ionic crystals it has been shown
that unlike in cubic ionic crystals where the volume effect consists of a change in the
number per unit volume of the polarizable particles and their polarizability with
volume, in the case of anisotropic ionic crystals, in addition to these, a variation in
the anisotropy of polarizability due to uneven thermal expansion also has to be taken
into aclzcount. This method of analysis has been examined by taking rutile as an
example.
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1. Introduction

It has been shown by Havinga (1961) that for isotropic ionic crystals there are three
physical effects contributing to the temperature variation of dielectric constant.
These are (a) decrease in the number of polarizable particles per unit volume with the
increase of temperature, (b) increase in the polarizability of a constant number of
particles due to an increase in the available volume with the increase of temperature
and () variation of polarizability with temperature, the volume remaining constant.
(2) and (b) together constitute the volume effect and (c) the pure temperature effect.
Determination of the variation of dielectric constant with temperature and pressure
enables one to estimate the magnitude of (2), (b) and (c). For a number of cubic
ionic crystals, the magnitude of these effects has been calculated (Bosman and Havinga
1962; Samara 1968, 1976).

Tt was considered desirable to examine if this type of analysis could be extended
to anisotropic ionic crystals. It will be shown here that unlike in cubic, ionic crystals,
where the volume effect consists of a change in the number per unjt volume of pola-
rizable particles and their polarizability with volume, in the case of anisotropic, ionic
crystals in addition to these, a variation in the anisotropy of polarizability due to
uneven thermal expansion also has to be taken into account. The evaluation of the
magnitude of this effect has been suggested. This method of analysis has been exa-
mined by taking rutile as an example.
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2. Theory

It is necessary to derive the macroscopic Clausius-Mossotti equation for discussing
the temperature variation of dielectric constant in anisotropic ionic crystals.* For
this purpose we shall follow the procedure adopted by Frohlich (1958). Let an aniso-
tropic ionic crystal in the shape of an ellipsoid be brought into a constant electric
field. Ellipsoidal shape is just to allow the field inside the crystal to vary not only
in magnitude but also in direction. It is necessary to specify the orientation of the
ellipsoid with respect to the crystallographic axes. The principal axes of the ellipsoid
could be chosen to coincide with those of crystallographic axes in the case of tetra-
gonal and orthorhombic systems. In the trigonal, hexagonal and monoclinic systems
only the unique axis can coincide with that of the ellipsoid. For the triclinic system,
none of the axes of the ellipsoid need coincide with those of the crystallographic axes.
In the derivation of macroscopic Clausius-Mossotti equation we neglect the origin
of local field due to microstructure of the medium. Following Frohlich (1958) we
define

My=P V= (a'M)kmfm @

where M, (k = 1, 2, 3) is the induced dipole moment along the principal axes of the
ellipsoid, f, (m = 1, 2, 3) is the applied electric field along the crystallographic direc-
tions and (a, )y, is the km component of the macroscopic polarizability of volume V.

The suffix M in a,, merely denotes the macroscopic nature of the polarizability of the

ellipsoid. It will be proportional to the number of unit cells in the ellipsoid and a
complicated function of the ionic polarizabilities and geometry of the lattice. If
(apphs (apps and (ap); are the principal coefficients of the ellipsoid, then clearly for

the tetragonal, hexagonal, trigonal and orthorhombic systems, (eapu = (a4
(2322 = (apg)s and (ay)ss = (ap,)s. Further for tetragonal, trigonal and hexagonal
systems (ay,); = (ap0)y # (2y7)s, ¢ being the unique axis. In the monoclinic system
with b as the unique axis only (e = (appe- (a3 and (o), will be a function
of (a3)115 (237)s3 and (o). In the triclinic system where none of the crystallo-
graphic axes need coincide with the principal axes of the ellipsoid (eppi (app)n
and (ay); will be a function of (ap,)y, (23p)e0 (2pp)3 (appis, (app)es and (ap )y
(Nye 1957). The above description of the macroscopic polarizability equally holds
good for the dielectric susceptibility of the ellipsoid. The dielectric susceptibility
is defined as

Pi=xyE, @

*It may be pointed out here that the microscopic Clausius-Mossotti equation is of the form
(€ = D/(e + 2).= (4 7/3) Z N; o; where ¢ is the dielectric constant and Nj; is the number of ions
per. unit. volume having polarizability «;. This equation is valid only when all the ions have the-
cubic site symmetry. - Frohlich (1958) -derived the macroscopic Clausius-Mossott1 equation for
cubic ionic'compounds which is-valid even though the individual ions may not occupy the cubic .
site. symmetry. .This is possible because the.internal field due to non-cubic environment make
themselves ' noticeable only over rather short distarnces. The macroscopic Clausius-Mossotti:
equation is of the form (e — 1)/(e + 2) =47/3 (a Mm/V) where a,, is the polarizability of a
macroscopic small sphere of volume V. Havinga (1961) employed this equation to discuss the
temperature dependence of dielectric constant of cubic ionic crystals.
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where P; (i = 1, 2, 3) is the induced polarization along the principal axes of the
ellipsoid and E; (j= 1,2, 3) is the effective field along the crystallographic directions.
The principal dielectric constants, however, will be x;, X3 and xs.

In the derivation of macroscopic Clausius-Mossotti equation for anisotropic
crystals, we shall always refer to the principal coefficients of susceptibility (x,) and the
macroscopic polarizability ((a,,);). The application of the Clausius-Mossotti equation
in the case of monoclinic and triclinic systems, where the measured values of the di-
electric susceptibilities along the crystallographic directions do not directly yield the
principal coefficients will be discussed later.

From the definition of principal coefficients of susceptibility and macroscopic
polarizability, we have

P; =y, Ej 3)
V. Pj (ayp); [5G = 1, 2, 3 refer to the ellipsoid axes), 4

where f; and E; are the applied and the effective fields along the jth axis of the ellip-
soid, Py is the induced polarization and ¥ denotes the volume of the ellipsoid:

The effective field inside the ellipsoid is the resultant of the applied field and the
depolarization field, i.e.,

E;=f,— N; Py, | 0

where N, is the depolarization factor along the jth axis of the ellipsoid. From (3),
(4) and (5) we get

1 =% [(a;;), ~ N,].

Noting that X; = (¢; — 1)/4 =, the above equation reduces to

(—1) _ (aM)j.

G i —DN) 7V ©

This is the macroscopic Clausius-Mossotti equation for anisotropic crystals.
For the case of cubic crystals where N; = N, = N; = 4n/3 and (ap7);, = (),
= (ays)s = (apy), this equation reduces to the equation derived by Frohlich. For
crystals other than cubic, Ny, N, and N could be evaluated knowmg the length-

ratios of the principal axes of the ellipsoid (Osborn 1945).
In particular, if the ellipsoid is an ellipsoid of rotation i.e. say an oblate spheroid

with a = b, we have

. 2 1/2
M_ Ny 1 gmz(mz—l)w2 arc sin[(_”l__..ll_] — 1}, 0
47  4r  2(m* —1) m
2 . 1)1/2
Ny ___m_.z__,_ {1 --_--_-arcsin[u—]\g, ®
47 (m*—1) (m? — 1)V2 m v

where m = ajc.
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It should be noted that in the case of cubic, tetragonal, trigonal, hexagonal and
orthorhombic systems, ; in (6) are the same as the dielectric constanis measured
along the crystallographic directions. In the case of monoclinic system with b as
the unique axis, only e, refers to the dielectric constant measured along the crystallo-
graphic b direction. ¢, and ¢ do not refer to the dielectric constants along the
crystallographic directions a and ¢ but have to be computed after measuring dielectric
constants along any three directions in the plane perpendicular to the 2-fold axis. ,
This is the general problem of calculating the principal coefficients from measurements )
in non-principal directions (Nye 1957). In the case of triclinic system, six measure-

ments of dielectric constant have to be made along six directions to calculate € €
and e;.

3. Temperature dependence of dielectric constant in anisotropic crystals
Consider equation (6)

(—1) _ (apg)s
(47 + (¢, — ) N) v

Partial differentiation of the above equation with respect to temperature at constant
pressure yields .

(=1 (4: 1/3(6} — DN (%;)p - ~§}I7'(glflf’)p

3(0;‘4% (a(;]‘;)j)r(g_;)p + %(a;)j 5(;11]{)1) 1%

1_ =)y 1 (aN_,)
3(@4m + (s, — 1) N) N;\ oT /p

(¢ — DN,
(47 + (e — D N))

J
1 [&N;
D, = __(_J) .
where ; A I

®

Thus, unlike in the case of isotropic crystals (Havinga 1961) the term D, enters in.

The significance of 4, B and C has already been explained, it is now required to

examine the significance of D,.
Consider the simple case of an oblate spheroid. We have N; = 4 =F;(m) where
F;(m) denotes the functions as given by equations (7) and (8).

o, (2
3N;\oT /p
~ (e, — o) 200 E(m) (10)
3 om
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here a, and <, represent the thermal ‘expansion coefficients along a and c respec-
vely. Thus essentially D; arises because of the anisotropy in thermal expansion.

could be positive or negative effect depending on the relative magnitudes of the
rermal expansion coefficients along the principal axes as well as the sign of Fi(m).

. Pressure dependence of dielectric constant in anisotropic crystals

onsider equation (6)

(—1) (“M)j
@r+ (¢ —1) N_,) | 4

vifferentiating the above equation with respect to pressure at constant temperature,

& =D (4: 713(ej — D) (%%)T"—“ B 32(25 )

1 (o) (e — ) N, 1 (o,
_ 11
3(°‘M)J( OP )T+ (4m 4+ (¢, — D N) 3Nj(aP )T )

nalogous to equation (10) we have

1 (oN;\ _ 0 [In F; (m)]
3Nj(aP) =im e, — sy 2L, (12

’here B, and B, represent linear compressibility coefficients along @ and ¢. From
?), (10) and (12) we get

1 ONJ — fga—ﬂc
3N, (ap) =D 0 — a, (13
rom (9), (11) and (13) we have
1_.(?_1’)
47/3 (a__ej) V \oT/P
(6 —=D@r+(— 1NY\OPIT 1 (Q_If)
V \oP/T
, .1_..(?__’_’)
‘7$A+Bj+DJ (ej'—l)-Nj Ba_BcV oT /P (14)

@7+ (g —DN) ag— a, 1 ,(aV) ‘

~I
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5. Evaluation of A, B, C and D

5.1 Evaluation of A

A is nothing but the volume expansion coefficient and this could be determined from
thermal expansion data.

5.2 Evaluation of D

D; is defined as

Ay
3N,\oT/P

N; at any temperature and consequently D; could be evaluated if 4, b, ¢ the semi axes
of ellipsoid, are known. a, b, ¢ could be chosen proportional to lattice parameters
a', b, ¢’. (In the case of triclinic and monoclinic systems a’, b’, and ¢’ refer to the
component of the lattice parameters along the ellipsoidal axes).

Thus cla=c'la’ and bja = b'[a’.

From a knowledge of the variation of the lattice parameters as a function of tempe-
rature, N; and consequently (ON;/2T)p could be evaluated (Osborn 1945).

5.3 Evaluation of B

It is evident from (14) that a knowledge of A4, D, (1/¥) (o VI0P)y, ay, a, B, B, and

N; combined with the variation of ¢; as a function of pressure would enable us to
determine B. :

5.4 Evaluation of C

In principle a direct determination of C is possible by measuring the temperature
dependence of dielectric constant at constant volume V. This however involves
experimental difficulties. Hence it has to be determined indirectly. It is clear from
(9) that the values of 4, D and B together with the variation of €;, as a function of
temperature would enable us to determine C.

Thus the various contributions 4, B, C and D to the temperature dependence of
dielectric constant could be evaluated.

6. Dielectric behaviour of rutile

We shall now examine the temperature dependence of dielectric constant of rutile
(TiO,) in the light of the above discussion. Rutile belongs to the space group P4, /mnm
(Z =2) with a = 4-594 A and ¢ = 2958 A (Grant 1959). It has a large value of
static dielectric constant, with e, = 170 and €, = 86 at 300°K (Parker 1961). From
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consideration of the polarizabilities of Ti** and 0%, rutile was expected to be a
>tential ferroelectiic (Roberts 1949). However, subsequent measurements of its
electric constant did not reveal any anomaly in the temperature range 1-6 — 1060°K
‘arker 1961). Though an ionic crystal, rutile exhibits a decrease in its dielectric
>nistant along both the directions with the increase of temperature.

As mentioned earlier, in order to evaluate the various contributions to the tempe-
-ture dependence of dielectric constant, we need to have a knowledge of the linear
1d volume compressibility, linear and volume expansion coefficients as well as the
mperture and pressure dependence of the dielectric constant. For rutile all these
Ata are available in the literature and are summarised in table 1. The various con-
ibutions 4, B, C and D evaluated from this data are given in table 2.

Table 1. Relevant experimental data on rutile at 300°K.

Physical quantity Magnitude Reference
attice parameters ccl : izgz é } (Grant 1959)
vielectric constant Zc - 1’;(6) } (Parker 1961)
. =
y€c/2Tp) —1-94 x 10t )
€a/0T) —0-81 x 10~ J Parker 1961)
' —10 6 -1 ‘
/o) (e oP)p 109 x 10°¢ (kg/fem’) } (Gibbs and Jarman 1962)

J€a) (9€a/2P) —56 x 10-¢ (kg/cm?)~?

1) (ac/oT)p = @, 9:21 x 10-%/°K

L/a) (ea/aT)p = aa
L/V) (@V/eT)p

L/e) (ac/oP)r = B
L/a) (2a/oP) 7 = Ba
L/V) (@V]oP)y

7-18 x 10-¢/°K (Kirby 1967)
23-57 x 10-8°K

—1-038 x 107 (kgfem?®)~!
—1-871 x 10-7 (kg/cm®)™*

(Bridgman 1928)
—4780 % 10~7 (kg/cm?®)~?

Table 2. Various contributions to the temperature dependence of dielectric constant

in rutile at 300°K.

Along c axis Along a axis
(x 107¢°K) (x 10-¢/°K)
4r/3 (_35) —4-89 —13-20
€ — 1) @dn + (e — DN) \oT/p
A —7-86 —7-86
B 8-19 1341
C —6-20 —17:95
(DN _ .5 +098 —0-80

Gr + (e — DN)
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It should be noted that D which arises because of the anisotropy in thermal
expansion is positive along ¢ and negative along a axes. The total volume effect
(4 + B -+ D) is, however, positive along both a and ¢ axes. The volume effect has
been found to be positive in all the cubic ionic compounds examined so far (Bosman
and Havinga 1962; Samara 1968, 1971). The term C which denotes the pure tempe-
rature effect is negative in both the directions, but is more along the a axis. C has
been generally found to be negative for cubic ionic compounds having dielectric
constant greater than 10. The origin of C can be understood by considering the motion
of an ion in a potential well. For a parabolic well, the polarizability of an ion is
independent of temperature, but any deviation from harmonic restoring forces makes
the polarizability temperature dependent. Thus, the fact that C is more along the @
axis than that along the tetragonal ¢ axis, shows that in rutile, the anharmonicity
for the ions is more along the a axis. Our approach in explaining the temperature
dependence of dielectric constant being macroscopic, the physical origin of anhar-

monicity and its anisotropy cannot be explained without considering the microscopic
structure.
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