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Abstract. Let R be a noetherian domain containing the field of rationals. We

show that if R is Dedekind then the kernel of any locally nilpotent R-derivation of

R[X, Y, Z] is a finitely generated R-algebra. Conversely, we show that if R is neither

a field nor a Dedekind domain then there exists a locally nilpotent R-derivation of

R[X, Y, Z] whose kernel is not finitely generated over R.

1. Introduction

One of the main results of this paper is the following generalization of [DF01,
Cor. 1.2]:

Theorem 1. Let D : k[X1, X2, X3, X4] → k[X1, X2, X3, X4] be a locally nilpotent
derivation where k is a field of characteristic zero. If D(f) = 0 for some variable f of

k[X1, X2, X3, X4], then ker(D) is a finitely generated k-algebra.

In the above statement, by a variable of k[X1, X2, X3, X4] we mean an element f
satisfying k[X1, X2, X3, X4] = k[f, f2, f3, f4] for some f2, f3, f4. It is not known whether
the theorem remains valid without the assumption that D annihilates a variable.

Theorem 1 is an immediate consequence of the following fact, which is proved in this
paper and which generalizes [DF01, Th. 1.1]:

Proposition. Let R be a Dedekind domain containing Q. For any locally nilpotent

R-derivation D : R[X, Y, Z] → R[X, Y, Z], ker(D) is a finitely generated R-algebra.

In view of this proposition one is led to consider the following more general question.
Let n be a positive integer and R a domain of characteristic zero. We say that R
has the property FG(n) if for every locally nilpotent R-derivation D of R[n], ker(D)
is finitely generated as an R-algebra (where R[n] denotes the polynomial algebra in n
variables over R). We will write R ∈ FG(n) to indicate that R has property FG(n).
It is interesting to ask which rings have property FG(n), for each n. This paper gives
some partial results in that direction, and the above Proposition is one of them.

It is clear that all domains of characteristic zero have the property FG(1). On the
other hand, it is known (cf. [DF99], Theorem 3.3) that if k is a field of characteristic
zero and n ≥ 5 then there exists a locally nilpotent derivation of k[n] whose kernel is
not finitely generated over k. In view of part (1) of Lemma 2.1, it follows:
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Corollary. If n ≥ 5 then no domain of characteristic zero has property FG(n).

Consequently the problem of determining which rings have property FG(n) remains
open only for n = 2, 3, 4. In Section 4 we will prove:

Theorem 2. Let R be a noetherian domain containing Q.

(1) R ∈ FG(3) ⇔ R is a Dedekind domain or a field.
(2) If R is not a field then R 6∈ FG(4).

This gives a satisfactory solution to the case n = 3 of the problem. The question
whether fields of characteristic zero have property FG(4) is still open.

In this paper we will almost always assume that the base ring R is noetherian and
contains Q. We will first show that if R ∈ FG(n) for some n > 1 then R is normal, so
to tackle the question one may also assume that R is normal. Under these assumptions,
the question for n = 2 has been already investigated by Bhatwadekar and Dutta and
a partial answer has been obtained, viz. (i) if the group Cl(R)/Pic(R) is torsion then
R ∈ FG(2); (ii) if dim(R) = 2, then R ∈ FG(2) implies that Cl(R)/Pic(R) is torsion
(see [BD97], Corollary 3.7, Remark 3.10). A complete solution for n = 2 seems to be
elusive at present.
Conventions. PID means principal ideal domain and DVR means discrete valuation
ring. We write cR′/R =

{

x ∈ R | xR′ ⊆ R
}

for the conductor of a ring extension
R ⊆ R′.

2. Preliminaries

2.1. Lemma. Let R be a domain of characteristic zero and suppose that R ∈ FG(n).

(1) If S ⊂ R is a multiplicative set then S−1R ∈ FG(n).

(2) If n > 1 then R ∈ FG(n− 1) and R[1] ∈ FG(n− 1).

Proof. (1) Let D : S−1R[X1, . . . , Xn] → S−1R[X1, . . . , Xn] be a locally nilpotent S−1R-

derivation. For each i, there exists si ∈ S such that siD(Xi) ∈ R[X1, . . . , Xn].
Let s = s1 · · · sn. As s ∈ kerD, the S−1R-derivation sD : S−1R[X1, . . . , Xn] →

S−1R[X1, . . . , Xn] is locally nilpotent; moreover, sD maps R[X1, . . . , Xn] into itself.
Let d : R[X1, . . . , Xn] → R[X1, . . . , Xn] be the restriction of sD, then ker d is a finitely
generated R-algebra since R ∈ FG(n). As S−1 ker(d) = ker(sD) = kerD, kerD is a

finitely generated S−1R-algebra. Assertion (2) is trivial. �

It was noted in [BD97] that by combining results 2.14 and 2.20 of [Ono84] with 2.1
of [Gir81], one obtains:

2.2. Lemma. Let R ⊆ A ⊆ B be domains, where R is noetherian and B is finitely

generated as an R-algebra. Then the following are equivalent:

(1) A is finitely generated as an R-algebra;
(2) for every maximal ideal m of R, Am is finitely generated as an Rm-algebra.

The next fact is Lemma 3.2 of [DF01], and easily follows from 2.2:
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2.3. Lemma. Let R be a noetherian domain containing Q, B a finitely generated over-
domain of R and D : B → B a locally nilpotent R-derivation. Then the following

conditions are equivalent:

(1) ker(D) is finitely generated as an R-algebra;
(2) for every maximal ideal m of R, ker(Dm) is finitely generated as an Rm-algebra

(where Dm : Bm → Bm is the Rm-derivation obtained by localizing D).

2.4. Lemma. Let R be a noetherian domain containing Q and n a positive integer.
Then the following are equivalent:

(1) R ∈ FG(n)
(2) Rm ∈ FG(n) for every maximal ideal m of R.

Proof. Implication (1 ⇒ 2) follows from part (1) of 2.1, and the converse is an imme-
diate consequence of 2.3. �

We also mention the following useful (and trivial) fact:

2.5. Lemma. Suppose that R → S is a faithfully flat homomorphism of rings and that
A is an R-algebra. Then A is finitely generated as an R-algebra if and only if S ⊗R A

is finitely generated as an S-algebra.

Proof. Suppose that S ⊗R A is finitely generated as an S-algebra and consider a finite
set {g1, . . . , gm} of generators. There exists a finite subset E = {x1, . . . , xn} of A

with the property that each gi is a finite sum, gi =
∑

j sij ⊗ αij, with sij ∈ S and

αij ∈ E. Now consider the polynomial ring R[X1, . . . , Xn] and the R-homomorphism
ϕ : R[X1, . . . , Xn] → A defined by ϕ(Xi) = xi for all i. Applying the functor S ⊗R ( )

to ϕ yields an S-homomorphism Φ : S ⊗R R[X1, . . . , Xn] → S ⊗R A whose image
contains {1 ⊗ x1, . . . , 1 ⊗ xn}. Thus Φ is surjective and, by faithful flatness, it follows
that ϕ is surjective and hence that A is finitely generated. The converse is trivial (and

holds without assuming faithful flatness). �

3. Normality

3.1. Lemma. Let (R,m) be a local domain containing Q and such that m 6= m2. If
there exists an overdomain R′ of R such that cR′/R = m then R 6∈ FG(2).

Proof. Fix an element t ∈ R′ \ R. Let F = tX + Y ∈ R′[X, Y ], A′ = R′[F ] and
A = R[X, Y ] ∩ A′. We will prove the following claims, where (1) and (2) suffice for

proving the Lemma:

A is the kernel of a locally nilpotent R-derivation of R[X, Y ],(1)

A is not finitely generated as an R-algebra,(2)

A is not a noetherian ring.(3)
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The assumption m 6= m2 implies in particular m 6= 0, so we may pick c ∈ m \ {0}
and define the R′-derivation

D = c
( ∂

∂X
− t

∂

∂Y

)

: R′[X, Y ] → R′[X, Y ].

Then D is locally nilpotent and ker(D) = A′. Moreover, D maps R[X, Y ] into itself
(because cR′ ⊂ R). Let d : R[X, Y ] → R[X, Y ] be the restriction of D, then d is a

locally nilpotent R-derivation and ker(d) = R[X, Y ] ∩ A′ = A, proving (1).

Consider an element α of A. As α ∈ A′, we have α =
∑d

n=0 anF
n where an ∈ R′ for

all n. So:

α =

d
∑

n=0

an

n
∑

i=0

(

n

i

)

tiX iY n−i =
∑

(i,j)∈E

(

i+ j

i

)

ai+jt
iX iY j ,

where E =
{

(i, j) ∈ N2 | i+j ≤ d
}

. As α ∈ R[X, Y ] and Q ⊆ R we obtain ai+jt
i ∈ R

for all (i, j) ∈ E; it follows that an ∈ R for all n = 0, . . . , d and that ant ∈ R for all

n = 1, . . . , d; so a0 ∈ R and an ∈ m for n ≥ 1 (an cannot be a unit of R because
ant ∈ R would imply that t ∈ R, which is not the case). Thus α ∈ R+m[F ] and hence
A ⊆ R + m[F ]. The reverse inclusion being clear,

A = R + m[F ].

So A is generated by G =
{

aF n | a ∈ m and n ∈ N
}

as an R-algebra. If A is
finitely generated then A = R[a1F

n1 , . . . , apF
np] for some ai ∈ m and ni ∈ N; pick

a0 ∈ m \ m2 and n0 > max(n1, . . . , np) then a0F
n0 ∈ R[a1F

n1 , . . . , apF
np], so a0Y

n0 ∈

R[a1Y
n1 , . . . , apY

np], which is impossible. This proves (2).
Before proving (3) we observe that mR′ = m, so A∩mA′ = mA′ = (mR′)[F ] = m[F ],

so A/(A ∩ mA′) = (R + m[F ])/m[F ] ∼= R/m. On the other hand, A′ = R′[F ] = R′[1]

implies that A′/mA′ = (R′/mR′)[1], so

(4) A′/mA′ is transcendental over A/(A ∩ mA′).

Assume that A is noetherian. Pick a ∈ m \ {0}, then aA′ is an ideal of A, hence

a finitely generated A-module. As A′ and aA′ are isomorphic A-modules, A′ is finite
over A and consequently A′/mA′ is finite over A/(A ∩ mA′). This contradicts (4), so
(3) is proved. �

3.2. Proposition. Let R be a noetherian domain containing Q. If R ∈ FG(n) for
some n > 1, then R is normal.

Proof. Assume that R is not normal. Then there exists a ring R′ such that R ⊂ R′ ⊂
FracR, R′ 6= R and R′ is finite over R. Then 0 6= cR′/R 6= R. Let p ∈ SpecR be a

minimal prime over ideal of cR′/R and consider the rings Rp ⊂ R′

p. Let us denote the
local ring Rp by (A,m) and let B = R′

p
. Then the radical of the ideal cB/A of A is m,

so we may consider an integer ` ≥ 1 satisfying m` ⊆ cB/A and m`−1 6⊆ cB/A. Define
B′ = A+ m`−1B, then cB′/A = m. As m2 6= m, 3.1 implies that A 6∈ FG(2). By 2.1, we
conclude that R 6∈ FG(2) and hence that R 6∈ FG(n) for all n > 1. �
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4. Simple sequences and the property FG(3)

The material in 4.1–4.5 is taken from [DF01].

4.1. Setup. We consider triples (R, t, S) satisfying:

(1) R is a PID containing Q and t a prime element of R;
(2) S is an overdomain of R such that t is prime in S.

Given a triple (R, t, S) as above, we use the following notations:

• S̄ = S/tS (an integral domain);

• given s ∈ S, write s̄ = s+ tS ∈ S̄;
• given a ring A such that R ⊆ A ⊆ S, (i) let Ā be the image of the composite

A ↪→ S → S̄; (ii) let A+ = A[S ∩ 1
t
A];

• the field R/tR is denoted κ (note that R̄ = κ).

4.2. Definition. Let (R, t, S) be as in 4.1. Let f = (f0, . . . , fr) be a finite sequence in
S and write An = R[f0, . . . , fn] and Kn = Frac(Ān) for 0 ≤ n ≤ r. We say that f is a
simple sequence of (R, t, S) if the following hold:

(1) r ≥ 1;
(2) f̄0 ∈ S̄ is transcendental over κ;

(3) for each n such that 0 < n < r, f̄n is algebraic over Kn−1 and there exists a
monic polynomial ϕn ∈ An−1[T ] satisfying: (i) ϕ̄n ∈ Ān−1[T ] is the minimal
polynomial of f̄n over Kn−1; and (ii) fn+1 = ϕn(fn)/t.

We distinguish three types of simple sequences:

(i) f is transcendental if f̄r is transcendental over Kr−1;
(ii) f is extendable if f̄r is algebraic over Kr−1 and its minimal polynomial is in

Ār−1[T ];
(iii) f is obstructed if it is neither transcendental nor extendable, i.e., if f̄r is algebraic

over Kr−1 but its minimal polynomial fails to have all its coefficients in Ār−1.

Remark. It is easy to see that a simple sequence f = (f0, . . . , fr) of (R, t, S) is ex-
tendable if and only if ∃fr+1 ∈ S such that (f0, . . . , fr, fr+1) is a simple sequence of

(R, t, S). Also note that if S = R[1] (as in the next definition) then no simple sequence
of (R, t, S) is transcendental, because S̄ = κ[1] is algebraic over κ[f̄0].

4.3. Definition. Let R be a PID containing Q and t a prime element of R. We call
(R, t) a simple pair if no simple sequence of (R, t, R[1]) is obstructed (i.e., if every simple
sequence of (R, t, R[1]) is extendable).

4.4. Definition. Let (R, t) and (R′, t′) be pairs satisfying the condition (1) of 4.1. We
use the notation (R, t) ≺ (R′, t′) to indicate that the following conditions hold:

(1) R′ is a DVR with maximal ideal t′R′;
(2) R ⊆ R′ and R ∩ t′R′ = tR;

(3) R′/t′R′ is an algebraic extension of R/tR.



6 S. M. BHATWADEKAR AND DANIEL DAIGLE

4.5. Lemma (Cf. Lemma 2.10 of [DF01]). Let (R, t) and (R′, t′) be pairs satisfying the
condition (1) of 4.1. If (R, t) ≺ (R′, t′) and (R′, t′) is simple, then (R, t) is simple.

4.6. Lemma. Let k be a field of characteristic zero and t an indeterminate over k.
Then (k[[t]], t) is a simple pair.

Proof. Let k̄ be the algebraic closure of k, then (k[[t]], t) ≺ (k̄[[t]], t). By Corollary 2.8
of [DF01],1 (k̄[[t]], t) is a simple pair. So (k[[t]], t) is a simple pair by Lemma 4.5. �

4.7. Lemma. Let R be a DVR containing Q and t a uniformizing parameter of R.

Then (R, t) is a simple pair.

Proof. Let R̂ be the completion of R with respect to tR. Then R̂ ∼= κ[[t]] where

κ = R/tR is a field of characteristic zero. So (R, t) ≺ (κ[[t]], t), where (κ[[t]], t) is a
simple pair by 4.6. We are done by Lemma 4.5. �

4.8. Lemma. Let R be a PID containing Q and t a prime element of R. Then (R, t)

is a simple pair.

Proof. Let R′ be the localization of R at the maximal ideal tR. Then (R, t) ≺ (R′, t)

where (R′, t) is a simple pair by 4.7. We are done by Lemma 4.5. �

Remark. A posteriori we find that Definition 4.3 is a bit misleading: by Lemma 4.8,
the simple pairs are precisely the pairs (R, t) where R is a PID containing Q and t a

prime element of R.

4.9. Lemma. Let R, t, S, U be such that each of the triples (R, t, S) and (R, t, U) sat-
isfies conditions (1) and (2) of 4.1. Suppose:

(∗) Given any g ∈ S such that ḡ ∈ S̄ is transcendental over κ, there exists an

R-homomorphism ε : S → U such that ε(g) ∈ Ū is transcendental over κ.

If no simple sequence of (R, t, U) is obstructed, then no simple sequence of (R, t, S) is

obstructed.

Proof. Let f = (f0, . . . , fr) be a simple sequence of (R, t, S). Assuming that f is not

transcendental, we show that it is extendable.
Note that f̄0 ∈ S̄ is transcendental over κ; by assumption (∗), we may choose an

R-homomorphism ε : S → U such that ε(f0) ∈ Ū is transcendental over κ. Define a
sequence e = (e0, . . . , er) in U by en = ε(fn) and note that ē0 ∈ Ū is transcendental
over κ. We will show that e is a simple sequence of (R, t, U) and is extendable; then

we will deduce that f is extendable.
For n = 0, . . . , r, define An = R[f1, . . . , fn] ⊆ S, Ān = κ[f̄1, . . . , f̄n] ⊆ S̄, En =

R[e1, . . . , en] ⊆ U and Ēn = κ[ē1, . . . , ēn] ⊆ Ū . Also, let C be the algebraic closure
of Ā0 = κ[f̄0] in S̄; as we assumed that the simple sequence f is not transcendental,

1The proof of [DF01, Cor. 2.8] makes use of a result of Sathaye in the theory of generalized Newton-

Puiseux expansions. Sathaye’s result is quoted in [DF01] as Theorem 1.3 but there is a misprint in

the statement: it should be “f0(0) does not belong to k” in place of “f1(0) does not. . . ”
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f̄ = (f̄0, . . . , f̄r) is a sequence in C. Also note that there is a unique R-homomorphism

ε̄ : S̄ → Ū such that ε̄ ◦ π = π′ ◦ ε, where S
π
−→ S̄ and U

π′

−→ Ū are the canonical
epimorphisms. So for each n = 0, . . . , r, we have the commutative diagram:

S
π

// //

ε

}}||
|
|
|
|
|
|
|

S̄
ε̄

}}||
|
|
|
|
|
|
|

U
π′

// // Ū C
?�

OO

An

?�

OO

// //

~~~~}}
}
}
}
}
}
}

Ān

?�

OO

~~~~}}
}
}
}
}
}
}

En

?�

OO

// // Ēn

?�

OO

By commutativity of the top square, ε̄(f̄n) = ēn for all n. We claim:

(5) the composite C ↪→ S̄
ε̄
−→ Ū is injective.

Indeed, suppose that 0 6= x ∈ C is an element of the kernel of this homomorphism. Let

h : κ[f̄0, x] → Ū be the composite κ[f̄0, x] ↪→ S̄
ε̄
−→ Ū ; then h(x) = 0. As κ[f̄0, x] has

transcendence degree 1 over κ, its Krull dimension is 1 and ker h is a maximal ideal
of κ[f̄0, x]. Consequently, the image of h is a finite extension of κ. This is impossible

because h(f̄0) = ē0 is transcendental over κ. So (5) is true.
Define C ′ = ε̄(C); by (5), ε̄ restricts to an isomorphism γ : C → C ′ of R-algebras.

Clearly, γ(f̄n) = ēn for all n = 0, . . . r.
Let n be such that 0 < n < r. Let ϕn ∈ An−1[T ] be a monic polynomial satisfying: (i)

ϕ̄n ∈ Ān−1[T ] is the minimal polynomial of f̄n over Frac Ān−1; and (ii) fn+1 = ϕn(fn)/t.

Define2 ψn = ϕ
(ε)
n ∈ En−1[T ]; then ψn is monic and

ψn(en) = ϕ(ε)
n (ε(fn)) = ε(ϕn(fn)) = ε(tfn+1) = tε(fn+1) = ten+1.

Moreover, ψ̄n = ϕ̄
(ε̄)
n . Since γ : C → C ′ is a restriction of ε̄ and ϕ̄n ∈ C[T ], we may also

write ψ̄n = ϕ̄
(γ)
n . Since the isomorphism γ maps f̄n on ēn and Ān−1 on Ēn−1, we obtain

that ψ̄n is the minimal polynomial of ēn over FracEn−1. Thus e is a simple sequence.

The isomorphism γ : C → C ′ maps Ā0 onto Ē0; as C is algebraic over Ā0, it follows
that C ′ is algebraic over Ē0. In particular ēr is algebraic over Ē0, so the simple sequence
e is not transcendental. As no simple sequence of (R, t, U) is obstructed, it follows that

e is extendable. Consequently, the minimal polynomial of ēr over Frac Ēr−1 has all its
coefficients in Ēr−1; via γ, this implies that the minimal polynomial of f̄r over Frac Ār−1

has all its coefficients in Ār−1. In other words, f is extendable. �

4.10. Corollary. Let (R, t) be a simple pair and m a positive integer. Then no simple
sequence of (R, t, R[m]) is obstructed.

2If P =
∑

i
aiT

i ∈ A[T ] is a polynomial (ai ∈ A) and h : A → B is a ring homomorphism then

define the polynomial P (h) ∈ B[T ] by P (h) =
∑

i
h(ai)T

i.
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Proof. Let S = R[m] and U = R[1]. By definition of simple pair, no simple sequence of
(R, t, U) is obstructed. To prove the Corollary, it suffices to verify that (R, t, S) and

(R, t, U) satisfy the condition (∗) of 4.9.
Let g ∈ S be such that ḡ ∈ S̄ = κ[m] is transcendental over κ. Then we may choose

X, Y1, . . . , Ym−1 ∈ S satisfying S = R[X, Y1, . . . , Ym−1] and such that, if we regard g as
a polynomial in X with coefficients in R[Y1, . . . , Ym−1], then:

The leading term of g is aXN for some N > 0 and a ∈ R \ tR.

Write U = R[X] and let ε : S → U be the R-homomorphism defined by f(X, Y ) 7→

f(X, 0). Then ε(g) ∈ Ū = κ[X] is transcendental over κ. �

4.11. Lemma. Let (R, t, S) be a triple satisfying conditions (1) and (2) of 4.1 and let

A be a ring such that R ⊆ A ⊆ S, A ∩ tS = tA and
⋂

∞

n=0 t
nA = {0}. Then

trdegĀ(S̄) ≤ trdegA(S).

Proof. Consider a family (zi)i∈I of elements of S and the corresponding family (z̄i)i∈I

of elements of S̄. It suffices to show that if (z̄i)i∈I is algebraically independent over Ā,
then (zi)i∈I is algebraically independent over A.

Actually we prove the contrapositive. If (zi)i∈I is algebraically dependent over A

then there exists a nonempty finite subset {i1, . . . , in} of I and a nonzero polynomial
P (T1, . . . , Tn) with coefficients in A such that P (zi1 , . . . , zin) = 0. Since

⋂

∞

n=0 t
nA =

{0}, we may consider the largest n ∈ N such that tn divides all coefficients of P .
Replacing P by P/tn, we arrange that some coefficient a of P is not in tA; then the
element ā of Ā is nonzero, because A ∩ tS = tA. Thus P̄ ∈ Ā[T1, . . . , Tn] is nonzero

and satisfies P̄ (z̄i1 , . . . , z̄in) = 0, so (z̄i)i∈I is algebraically dependent over Ā. �

The following is Lemma 2.3 of [DF01]. We defined the notation A+ in 4.1.

4.12. Lemma. Let (R, t, S) be as in 4.1 and let f = (f0, . . . , fr) be a simple sequence

of (R, t, S). Then the rings A0 ⊆ A1 ⊆ · · · ⊆ Ar (where An = R[f0, . . . , fn]) have the
following properties:

(1) A+
0 = A0;

(2) for all n such that 0 < n < r, A+
n = An+1;

(3) if f is of transcendental type, then A+
r = Ar.

4.13. Proposition. If R is a Dedekind domain containing Q then R ∈ FG(3).

Proof. By Proposition 2.4, we may assume that R is a DVR containing Q. Let t be
a uniformizing parameter of R then, by 4.7, (R, t) is a simple pair. Let B = R[3] and
D : B → B a locally nilpotent R-derivation. We have to show that kerD is finitely

generated as an R-algebra. We may assume that D 6= 0. Consider the localization

Dt : Bt → Bt of D at {1, t, t2, . . . }. As Bt = R
[3]
t where Rt is a field of characteristic

zero, kerDt = Rt[F,G] = R
[2]
t for some F,G ∈ Bt (by [Miy85]). In fact we may arrange

that F,G ∈ B and that the element F̄ of B̄ = κ[3] is transcendental over κ (where
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κ = R/tR as usual). Then we set f0 = F and f1 = G and we note that (f0, f1) is a
simple sequence of (R, t, B). Moreover,

R[f0, f1] ⊆ kerD and R[f0, f1]t = (kerD)t.

Let E be the set of simple sequences f ′ = (f ′

0, . . . , f
′

r) of (R, t, B) satisfying f ′

0 = f0

and f ′

1 = f1. Note that E is nonempty, since (f0, f1) ∈ E.
Consider (f0, . . . , fr) ∈ E and set An = R[f0, . . . , fn] for n = 0, . . . , r. By Lemma 4.12,

A+
n = An+1 for all n such that 0 < n < r; moreover, we have A1 ⊆ kerD and it is clear

that An ⊆ kerD implies A+
n ⊆ kerD; hence Ar ⊆ kerD. To summarize,

(6) if (f0, . . . , fr) ∈ E then R[f0, . . . , fr] ⊆ kerD ⊆ R[f0, . . . , fr]t.

We claim that some element of E is a transcendental simple sequence. Indeed,

suppose the contrary; then, by 4.10, every element of E is extendable. By the remark
following 4.2, there exists an infinite sequence (f0, f1, f2, . . . ) such that (f0, . . . , fn) ∈ E
for each n ≥ 1. Let Ai = R[f0, . . . , fi] and A =

⋃

∞

i=1Ai. Then A ⊆ kerD by (6). If

a is any element of kerD then a ∈ R[f0, f1]t, so tna ∈ R[f0, f1] for some n; now if
tma ∈ Ai where i ≥ 1 and m > 0 then tm−1a ∈ B ∩ t−1Ai ⊆ A+

i = Ai+1 (where we
used Lemma 4.12) and by induction we get a ∈ A. Thus A = kerD. In particular A

is factorially closed in B so A ∩ tB = tA and
⋂

∞

n=0 t
nA = {0} (the last claim follows

from
⋂

∞

n=0 t
nB = {0}, which follows from B = R[3] and

⋂

∞

n=0 t
nR = {0}). Then 4.11

implies that trdegĀ(B̄) ≤ trdegA(B) = 1, so trdegκ(Ā) > 1. This is absurd because

Ā = κ[f̄0, f̄1, f̄2, . . . ] and f̄i is algebraic over κ[f̄0] for each i ≥ 1.
This contradiction shows that some element of E is a transcendental simple sequence

of (R, t, B). Let f = (f0, . . . , fr) ∈ E be such an element. Let A = R[f0, . . . , fr], then
A ⊆ kerD ⊆ At by (6). Since f is transcendental, we have A+ = A by 4.12, so
A ∩ tB = tA. We conclude that kerD = A, so kerD is a finitely generated R-

algebra. �

In order to obtain a converse of 4.13, we show:

4.14. Lemma. Let R be a noetherian domain containing Q. If dim(R) > 1 then

R /∈ FG(3).

Proof. Let p be a prime ideal of R of height 2. To prove the result it is enough to show

that Rp 6∈ FG(3) (cf. 2.1). So we assume that dim(R) = 2 and that R is local. By 3.2,
we also assume that R is normal. So R is a Cohen-Macaulay ring.

Let m be the maximal ideal of R and let κ = R/m be the residue field of R. Let

a, b ∈ m such that the ideal (a, b) has height 2. Let D : R[X, Y, Z] → R[X, Y, Z] be the
locally nilpotent R-derivation given by

(7) D(Z) = Y, D(Y ) = aX + b, D(X) = a2.

We claim:
ker(D) is not finitely generated as an R-algebra.
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To prove this, consider the completion R̂ of R with respect to m. Note that R̂

contains κ as a coefficient field. Since R is Cohen-Macaulay and ht(a, b) = 2, a, b is

a regular R-sequence and hence a regular R̂-sequence as R̂ is (faithfully) flat over R.

Therefore, since dim(R) = dim(R̂) = 2, R̂ is a Cohen-Macaulay ring of depth 2 and a, b

is a system of parameters of R̂. It follows that a, b are analytically independent over κ
([Mat89], Theorem 14.5, p. 107). Hence the κ-subalgebra κ[[a, b]] of R̂ is a complete
regular local ring of dimension 2.

We denote by I the maximal ideal of κ[[a, b]]. Since dim(R̂) = 2 and IR̂ is an ideal of

R̂ of height 2, we get that R̂/IR̂ is an artinian local ring and hence finite dimensional

vector space over κ. We regard R̂ as a module over κ[[a, b]]. It is obvious that R̂ is
separated in I-adic topology. Since κ[[a, b]] is complete local (with respect to I-adic

topology) and R̂/IR̂ is finite dimensional over κ = κ[[a, b]]/I, it follows that R̂ is a

finite κ[[a, b]]-module ([Mat80], Lemma, p. 212). Since κ[[a, b]] is regular local and R̂ is

finite over κ[[a, b]], by Auslander-Buchsbaum result (see [BH98], Theorem 1.3.3, p. 17),

projdim(R̂) + depth(R̂) = depth(κ[[a, b]]) = 2.

Since a, b is a regular sequence for R̂, depth of R̂ as a κ[[a, b]]-module is 2. Therefore

projdim(R̂) = 0. Thus R̂ is a free κ[[a, b]]-module (of finite rank).
The locally nilpotent R-derivation D of R[X, Y, Z] naturally extends to a locally

nilpotent R̂-derivation D̂ of R̂[X, Y, Z], and D̂ maps κ[[a, b]][X, Y, Z] into itself as is

clear from (7). The restriction D1 : κ[[a, b]][X, Y, Z] → κ[[a, b]][X, Y, Z] of D̂ is a locally

nilpotent κ[[a, b]]-derivation. As R̂ is faithfully flat over each of R and κ[[a, b]], we have

R̂⊗R ker(D) = ker(D̂) = R̂ ⊗κ[[a,b]] ker(D1)

and

(8) ker(D) is finitely generated as an R-algebra ⇐⇒ ker(D1) is finitely

generated as a κ[[a, b]]-algebra.

Let B = κ[T1, T2] be a polynomial algebra in two variables over κ and let
d : B[X, Y, Z] → B[X, Y, Z] be the locally nilpotent B-derivation given by

(9) d(Z) = Y, d(Y ) = T1X + T2, d(X) = T1
2.

Then, by Theorem 3.3 of [DF99], ker(d) is not finitely generated over B. However, it can

be proved that ker(d)[1/Ti] is finitely generated over B for each i = 1, 2. These two facts
together with 2.2 imply that the S-algebra A′ = ker(d) ⊗B S is not finitely generated

over S, where S = BM is the local ring of B at the maximal ideal M = (T1, T2). Note
that A′ is the kernel of the induced derivation d′ : S[X, Y, Z] → S[X, Y, Z].

Let α : S → κ[[a, b]] be the κ-algebra homomorphism given by α(T1) = a, α(T2) = b.

Through α we regard κ[[a, b]] as an S-algebra. Since a, b are analytically independent
over κ, it is obvious that κ[[a, b]] is faithfully flat over S. Hence, as A′ is not finitely
generated over S, A′′ = A′ ⊗S κ[[a, b]] is not finitely generated over κ[[a, b]].
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Since A′ = ker(d′) and κ[[a, b]] is flat over S, A′′ is the kernel of the extension
d′′ : κ[[a, b]][X, Y, Z] → κ[[a, b]][X, Y, Z] of d′. Comparing (7) and (9) we see that

d′′ = D1, so the κ[[a, b]]-algebra ker(D1) is not finitely generated. It follows from (8)
that ker(D) is not finitely generated over R, so the proof is complete. �

4.15. Theorem. For a noetherian domain R containing Q,

R ∈ FG(3) ⇐⇒ R is a Dedekind domain or a field.

Proof. If R ∈ FG(3) then dim(R) ≤ 1 by 4.14 and R is normal by 3.2, so R is a

Dedekind domain or a field. The converse is 4.13. �

4.16. Corollary. Let R be a noetherian domain containing Q. If R is not a field then

R /∈ FG(4).

Proof. If R is not a field then dim(R[1]) > 1, so R[1] /∈ FG(3) by 4.14 or 4.15, so

R /∈ FG(4). �
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