Generalized epimorphism theorem

S M BHATWADEKAR

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India

MS received 12 January 1988; revised 24 March 1988

Abstract. Let $R[X, Y]$ be a polynomial ring in two variables over a commutative ring R and let $F \in R[X, Y]$ such that $R[X, Y]/(F) = R[Z]$ (a polynomial ring in one variable). In this set-up we prove that $R[X, Y] = R[F, G]$ for some $G \in R[X, Y]$ if either R contains a field of characteristic zero or R is a seminormal domain of characteristic zero.

Keywords. Epimorphism theorem; polynomial ring; seminormal domain; characteristic zero.

1. Introduction

Let k be a field of characteristic zero. Let $k[X, Y]$ be a polynomial ring in two variables over k and $F \in k[X, Y]$ such that $k[X, Y]/(F) = k[Z]$ (a polynomial ring in one variable). In this set-up the famous epimorphism theorem of Abhyankar and Moh ([2], Theorem 1.2) says that $k[X, Y] = k[F, G]$ for some $G \in k[X, Y]$. Russell and Sathaye had obtained the following analog of the epimorphism theorem ([6], Theorem 2.6.2): If R is a locally factorial Krull domain of characteristic zero and $F \in R[X, Y]$ such that $R[X, Y]/(F) = R[Z]$, then $R[X, Y] = R[F, G]$. Therefore one asks the following natural question:

Is the foregoing result valid for an arbitrary commutative domain R of characteristic zero?

In this paper we answer this question affirmatively under the assumption that R is seminormal. We prove:

Theorem A. Let R be a seminormal commutative domain of characteristic zero. Let I be an ideal of $R[X, Y]$ such that $R[X, Y]/I = R[Z]$. Then I is a principal ideal say generated by F and $R[X, Y] = R[F, G]$ for some $G \in R[X, Y]$.

Moreover we give an example (Example 3.8) to show that I need not be principal if R is not seminormal. When R contains a field of characteristic zero we prove the following (weaker) epimorphism theorem:

Theorem B. Let R be a commutative ring containing a field of characteristic zero. Let $F \in R[X, Y]$ such that $R[X, Y]/(F) = R[Z]$. Then $R[X, Y] = R[F, G]$ for some $G \in R[X, Y]$.
2. Preliminaries

Throughout this paper all rings will be commutative.

In this section we set up notations and state some results for later use.

R will denote a commutative ring.

$R^{(n)}$, polynomial ring in n variables over R.

R^n: free R-module of rank n.

For a finitely generated R-algebra A,

$\Omega_{A/R}$: universal module of R-differentials of A.

For a prime ideal \mathfrak{p} of R,

$k(\mathfrak{p})$: $R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$.

DEFINITION

A reduced ring R is said to be seminormal if it satisfies the condition: for $b, c \in R$ with $b^3 = c^2$, there is an $a \in R$ with $a^2 = b, a^3 = c$.

Lemma (2.1). Let R be a noetherian ring and let $s \in R$ be a non-zero divisor. Let M be a finitely generated R-module. If M_s is a projective R_s-module of rank d and M/sM is R/sR-projective of rank d then M is R-projective of rank d.

Proof. Without loss of generality we can assume that R is local.

Since M/sM is R/s-projective and R is local there exists a surjective R-linear map $\beta: R^d \to M$ ($d = \text{rank } M/sM$). Let $N = \ker \beta$. Since M_s is R_s-projective of rank d and β is surjective we get $N_s = 0$. But s is a non-zero-divisor of R and $N \subseteq R^d$, therefore $N_s = 0 = N = 0$ and β is an isomorphism.

Lemma (2.2). Let R be a noetherian ring and I be an ideal of $R^{(n)}$ such that $R^{(n)}/I \cong R^{(n-1)}$ as R-algebras. Then for an ideal \mathfrak{G} of R, $I \cap \mathfrak{G}R^{(n)} = \mathfrak{G}I$. Moreover if I is a principal ideal of $R^{(n)}$ say generated by F, then

(i) F is a non-zero-divisor of $R^{(n)}$.

(ii) F is a algebraically independent over R, i.e. $R[F] \cong R^{(1)}$.

(iii) $R[F] \cap \mathfrak{G}R^{(n)} = \mathfrak{G}R[F]$ for any ideal \mathfrak{G} of R.

Proof. Since for any non-negative integer l, $R^{(l)}$ is a free R-module, the exact sequence

$0 \to I \to R^{(n-l)} \to R^{(n-l)} \to 0$; $x: R$-algebra homomorphism of R-modules gives rise to the exact sequence

$0 \to I \otimes_R \mathfrak{G} \to R^{(n)} \otimes_R \mathfrak{G} \otimes_{R^{(l)}} R^{(n-l)} \otimes_R \mathfrak{G} \to 0$

proving that the canonical map $I/\mathfrak{G}I \to I + \mathfrak{G}R^{(n-l)}/\mathfrak{G}R^{(n)}$ of $R/\mathfrak{G}R^{(n)}$-modules is an isomorphism. Hence $I \cap \mathfrak{G}R^{(n)} = \mathfrak{G}I$.

Now we assume that $I = (F)$.

(i) It is easy to see that $F \notin sR^{(n)}$ for any maximal ideal s of R. This shows that F is a non-zero-divisor of $R^{(n)}$.

(ii) Suppose $c_0 + c_1 F + \cdots + c_r F^r = 0$ where $c_i \in R \forall i$, $0 \leq i \leq r$. Then $0 = \alpha(c_0 + c_1 F + \cdots + c_r F^r) = c_0 \text{ i.e. } F(c_1 + c_2 F + \cdots + c_r F^{r-1}) = 0$. Therefore, as by (i) F is a non-zero-
Generalized epimorphism theorem

divisor, \(c_1 + c_2 F + \cdots + c_r F^{r-1} = 0 \) showing that \(c_1 = 0 \). Repeating this argument we see that \(c_1 = 0 \forall i, 0 \leq i \leq r \).

(iii) Let \(\overline{F} \) be the image of \(F \) in \(R/\mathfrak{m}[F] \), then obviously \(R/\mathfrak{m}[F] \approx R/\mathfrak{m}^{r-1} \). Therefore by (ii) \(\overline{F} \) is algebraically independent over \(R/\mathfrak{m} \) and hence \(R[F] \cap \mathfrak{m}[F] = \mathfrak{m}[F] \).

Lemma (2.3). Let \(R \) be a noetherian ring and let \(\mathfrak{m} \) be the nilradical of \(R \). Let \(I \) be an ideal of \(R[\mathfrak{m}] \) such that \(R[\mathfrak{m}]/I \approx R^{[n-1]} \) as \(R \)-algebras. If \(I/\mathfrak{m}I \) is a projective \(R[\mathfrak{m}]-\)module of (constant) rank \(1 \) then \(I \) is a projective \(R[\mathfrak{m}]-\)module of (constant) rank \(1 \).

Proof. Since \(\mathfrak{m} \) is nilpotent, the canonical map \(\text{Pic}(R[\mathfrak{m}]) \to \text{Pic}(R/\mathfrak{m}[\mathfrak{m}]) \) is an isomorphism. Therefore there exists a projective \(R[\mathfrak{m}]-\)module \(L \) of constant rank \(1 \) such that \(L/\mathfrak{m}L \approx I/\mathfrak{m}I \). Hence there exists a \(R[\mathfrak{m}]-\)linear map \(\psi: L \to I \) such that the induced map \(\tilde{\psi}: L/\mathfrak{m}L \to I/\mathfrak{m}I \) is an isomorphism.

We claim that \(\psi \) is an isomorphism.

Surjectivity of \(\psi \): Since \(\tilde{\psi} \) is an isomorphism, we have \(I = \psi(L) + \mathfrak{m}I \). But \(\mathfrak{m} \) is nilpotent and hence \(I = \psi(L) \).

Injectivity of \(\psi \): Let \(M = \ker \psi \). Then we get the following exact sequence of \(R[\mathfrak{m}]-\)modules:

\[0 \to M \to L \to I \to 0. \]

As in Lemma 2.2 we see that \(I \) is a projective \(R \)-module. Therefore the above exact sequence gives rise to the following exact sequence:

\[0 \to M/\mathfrak{m}M \to L/\mathfrak{m}L \to I/\mathfrak{m}I \to 0. \]

But \(\tilde{\psi} \) is an isomorphism. Therefore \(M/\mathfrak{m}M = 0 \) i.e. \(M = \mathfrak{m}M \). The nilpotency of \(\mathfrak{m} \) shows that \(M = 0 \).

Thus \(\psi \) is an isomorphism.

3. Main theorems

In this section we prove Theorem A and Theorem B which are quoted in the introduction. For the proof of these theorems we need some lemmas and a proposition. Lemma 3.1 is well known but for the lack of a proper reference we give a proof.

Lemma 3.1. Let \(R \) be a noetherian ring and \(S \) be a noetherian \(R \)-algebra. Let \(\pi \in R \) be such that \(S_\pi \) is a flat \(R_\pi \)-algebra and \(S/\pi S \) is a flat \(R/\pi R \)-algebra. Moreover assume that \(\text{Tor}_1(S, R/\pi R) = 0 \). Then \(S \) is a flat \(R \)-algebra.

Proof. Let \(M \) and \(N \) be finitely generated \(R \)-modules and let \(f: M \to N \) be a \(R \)-linear injective map. Then we want to show that the map \(f \otimes 1_S: M \otimes_R S \to N \otimes_R S \) is injective. Let \(K = \ker(f \otimes 1_S) \).
Since S_x is R_x-flat we have $K_x = 0$. Let $T = 1 + \pi R$ and $T' = 1 + \pi S$. Then since $\text{Tor}_1^R(S_T, R_T/\pi R_T) = \text{Tor}_1^R(S, R/\pi R) \otimes_R S_T = 0$ and $R_T/\pi R_T = R/\pi R$, $S_T/\pi S_T = S/\pi S$, by ([1], Theorem 3.2, p. 91) S_T is flat over R_T and hence $K_T = 0$.

Thus $K_T = 0$, $K_x = 0$. Therefore $K = 0$ showing that S is a flat R-algebra.

Lemma 3.2. Let R be a noetherian ring of finite Krull dimension (denoted by $\dim R$). Let F be an element of $R[X, Y]$ such that $R[X, Y]/(F) = R[Z]$ as R-algebras. Then $R[X, Y]$ is a flat $R[F]$-algebra.

Proof. Let 6 be the nilradical of R. Since $R[F]$ (F being algebraically independent over R) and $R[X, Y]$ are flat over R, for every module M over R we have $\text{Tor}_1^R(R[X, Y], M \otimes_R R[F]) = 0$. In particular for every ideal J of R we have $\text{Tor}_1^R(JR[F], R[F]/JR[F]) = 0$. Therefore, since 6 is nilpotent, by ([1], Theorem 3.2, p. 91) $R[X, Y]$ is flat over $R[F]$ if $R[X, Y]/\pi R[X, Y] (= R/\pi R[X, Y])$ is flat over $R[F]/\pi R[F]$. So it is enough to prove the result when R is a reduced ring.

We prove the result by induction on $\dim R$. Without loss of generality we can assume that R is local.

If $\dim R = 0$ then R is a field, $R[F]$ is a principal ideal domain and $R[X, Y]$ is a domain. Therefore $R[X, Y]$ is a flat $R[F]$-algebra.

Now we assume that $\dim R > 0$. Let πR be a nonunit non-zero-divisor of R. Let \bar{F} denote the image of F in $R/\pi R[X, Y]$. Then $R/(\pi \bar{F}) \cong R[F]/\pi R[F]$. Since $\dim R/(\pi \bar{F}) < \dim R$ and $\dim R_x < \dim R$, by the induction hypothesis $R_x[X, Y]$ is flat over $R_\pi [F]$ and $R[X, Y]/\pi R[X, Y]$ is flat over $R[F]/\pi R[F]$. Moreover $\text{Tor}_1^R(R[X, Y], R[F]/\pi R[F]) = 0$. Therefore by Lemma 3.1 $R[X, Y]$ is a flat $R[F]$-algebra.

Thus the proof of Lemma 3.2 is complete.

We state a definition before stating the next lemma.

DEFINITION
An element F of $R[X, Y]$ is called a residual variable if for every prime ideal \mathfrak{y} of R, $k(\mathfrak{y}) [X, Y] = k(\mathfrak{y}) [\bar{F}]^\dagger$ where \bar{F} denotes the image of F in $k(\mathfrak{y}) [X, Y]$.

Lemma 3.3. Let R be a ring and $F \in R[X, Y]$ be such that $R[X, Y]/(F) = R[Z]$ as R-algebras. Assume that F is a residual variable. Then for every prime ideal \mathfrak{y} of $R[F]$, $k(\mathfrak{y}) \otimes_{R[F]} R[X, Y] = k(\mathfrak{y})^\dagger$.

Proof. Let $\mathfrak{y} \cap R = \mathfrak{y}$. Then $R[R[F]] \subset R[\mathfrak{y}]$ and by (2.2) $R[F] = R[X, Y] \cap R[F]$. Since F is a residual variable, we have $k(\mathfrak{y}) [X, Y] = k(\mathfrak{y})[\bar{F}]^\dagger$ where \bar{F} denotes the image of F in $k(\mathfrak{y}) [X, Y]$. Moreover $k(\mathfrak{y}) [\bar{F}] \cong k(\mathfrak{y}) \otimes_{R[F]} R[F]$ and there exists a $R[F]$-algebra homomorphism $k(\mathfrak{y})[\bar{F}] \rightarrow k(\mathfrak{y})$. Therefore

$$k(\mathfrak{y}) \otimes_{R[F]} R[X, Y] = k(\mathfrak{y}) \otimes_{k(\mathfrak{y})[\bar{F}]} k(\mathfrak{y}) \otimes_{R[F]} R[X, Y] = k(\mathfrak{y})^\dagger.$$
Proof. We have the following right exact sequence of $R[X, Y]$-modules

$$\Omega_{R,F/R} \otimes_{R[F]} R[X, Y] \rightarrow \Omega_{R[X,Y]/R} \rightarrow \Omega_{R[X,Y]/R[F]} \rightarrow 0.$$

Since $\Omega_{R[X,Y]/R}$ is a free $R[X, Y]$-module of rank two with a basis dX, dY and $\text{Im}(\theta) = N$ is the cyclic submodule generated by $F_X dX + F_Y dY$ where $F_X = \partial F/\partial X$ and $F_Y = \partial F/\partial Y$, it is enough to show that the ideal $(F_X, F_Y) = R[X, Y]$.

Suppose \mathfrak{M} is a maximal ideal of $R[X, Y]$ such that $(F_X, F_Y) \subset \mathfrak{M}$. Let $\mathfrak{M} \cap R = \mathfrak{m}$. Then replacing R by $R_{\mathfrak{m}}$ and \mathfrak{M} by $\mathfrak{M}_{\mathfrak{m}}$ we can assume that R is a local ring with the maximal ideal \mathfrak{m}, \mathfrak{M} is a maximal ideal of $R[X, Y]$ with $\mathfrak{M} \cap R = \mathfrak{m}$ and $(F_X, F_Y) \subset \mathfrak{M}$. But then, since F is a residual variable, we have $R[X, Y] = (F_X, F_Y) + \mathfrak{M} R[X, Y] \subset \mathfrak{M}$ which is absurd. Hence $(F_X, F_Y) = R[X, Y]$.

Lemma 3.5. Let R be a noetherian ring such that no prime integer is a zero-divisor in R. Let $F \in R[X, Y]$ be such that $R[X, Y]/(F) = R[Z]$ as R-algebras. Then F is a residual variable.

Proof. Let \mathfrak{M} be a prime ideal of R and let \tilde{F} denote the image of F in $k(\mathfrak{M})[X, Y]$. Then $k(\mathfrak{M})[X, Y]/(\tilde{F}) = k(\mathfrak{M})[Z]$.

If $ht \mathfrak{M} = 0$, then since no prime integer is a zero-divisor in R, $k(\mathfrak{M})$ is a field of characteristic zero. Therefore by the Abhyankar-Moh epimorphism theorem ([2], Theorem 1.2) $k(\mathfrak{M})[X, Y] = k(\mathfrak{M})[\tilde{F}]^{[1]}$.

If $ht \mathfrak{M} > 0$ then there exists a discrete valuation ring V of characteristic zero with the uniformizing parameter π and a ring homomorphism $\alpha: R \rightarrow V$ such that $\alpha^{-1}(\mathfrak{m}) = \mathfrak{M}$ and the field extension $k(\mathfrak{M}) \rightarrow V/(\pi)$ (induced by α) is algebraic.

Let \tilde{F} denote the image (through α) of F in $V[X, Y]$. Then $V[X,Y]/(\tilde{F}) = V[Z]$. Therefore by ([6], Theorem 2.6.2) $V[X, Y] = V[\tilde{F}]^{[1]}$ and hence $V/(\pi)[X, Y] = V/(\pi)[\tilde{F}]^{[1]}$ where \tilde{F} is the image of F in $V/(\pi)[X, Y]$.

Since we have the following commutative diagram of rings

$$\begin{array}{ccc}
R & \rightarrow & V \\
\downarrow & & \downarrow \\
k(\mathfrak{M}) & \rightarrow & V/(\pi)
\end{array}$$

and $V/(\pi)$ is algebraic over $k(\mathfrak{M})$, by ([4], Proposition 1.16) $k(\mathfrak{M})[X, Y] = k(\mathfrak{M})[\tilde{F}]^{[1]}$.

Thus we prove that F is a residual variable.

Proposition 3.6. Let R be a ring and I be an ideal of $R^{[s]}$ such that $R^{[s]}/I \approx R^{[s]-1}$ as R-algebras. Then I is a projective $R^{[s]}$-module of (constant) rank 1. Moreover if there exists a projective R-module L of rank 1 such that $L \otimes_R R^{[s]} = I$ as $R^{[s]}$-modules then I is a free $R^{[s]}$-module of rank 1 i.e. I is a principal ideal (necessarily generated by a non-zero-divisor of $R^{[s]}$).

Proof. It is easy to see that under the hypothesis of the proposition there exists a subring R' of R which is finitely generated over the ring of integers and an ideal I' of $R^{[s]}$ such that $R^{[s]}/I' \approx R^{[s]-1}$ and $I = I' R^{[s]} \approx I' \otimes_R R = I' \otimes_R R^{[s]}$. Therefore for proving
the first part of the proposition we can assume without loss of generality that R is
noetherian of finite Krull dimension.

We prove the result by induction on $\dim R$.

Let $\dim R = 0$. By Lemma 2.3 we can assume that R is reduced. But then R is a finite
product of fields and hence, since $R^{[0]/I} \cong R^{[n-1]}$, I is a principal ideal (of height 1)
generated by a non-zero-divisor. Therefore I is a free $R^{[0]}$-module of rank 1.

Now we assume that $\dim R > 0$. Again by Lemma 2.3 we can assume that R is
reduced. Let S be the set of non-zero-divisors of R. Then R_S is a finite product of fields
and as before we conclude that I_S is a free $R^{[0]}_S$-module of rank 1. Therefore there $s \in S$ such
that I_s is a free $R^{[0]}_s$-module of rank 1. We may assume that s is a nonunit of R.

Since $I \cap sR^{[0]} = Is$, $I/sI \cong I + sR^{[0]}/sR^{[0]}$ as $R/(s)^{[n]}$-modules. Therefore, since
$R^{[0]}/(I + sR^{[0]}) \cong R/(s)^{[n-1]}$ and $\dim R/(s) < \dim R$, by the induction hypothesis
I/sI is a projective $R/(s)^{[n]}$-module. Since s is a non-zero-divisor of R, $I \subset R^{[0]}$ and I_s
(resp. I/sI) is a projective $R^{[0]}_s$-module (resp. $R/(s)^{[n]}$-module) of rank 1, by Lemma 2.1
I is a projective $R^{[0]}$-module of (constant) rank 1.

Now assume that there exists a projective R-module L of rank 1 such that $L \otimes_R R^{[0]} \cong I$ as $R^{[0]}$-modules.

Since $R^{[0]}/I \cong R^{[n-1]}$ as R-algebras, we get the following right exact sequence of
$R^{[n-1]}$-modules:

$I/I^2 \to \Omega^{[n-1]}_R/R^{[n-1]} \to \Omega^{[n]}_R \to 0$.

Since, for non-negative integer l, $\Omega^{[n]}_R$ is a free $R^{[l]}$-module of rank 1 and I/I^2 is a
projective $R^{[n-1]}$-module (as I is projective over $R^{[0]}$ of rank 1) we see that the
above sequence is also left exact and

$\Omega^{[n]}_R/R^{[n]} \cong \Omega^{[n-1]}_R \oplus I/I^2$.

Thus I/I^2 is a stably free $R^{[n-1]}$-module of rank 1 and therefore I/I^2 is free over $R^{[n-1]}$ of
rank 1.

Let $\delta: R^{[n-1]} \to R$ be a surjective R-algebra homomorphism. Then composite map

$R \to R^{[0]} \to R^{[0]}/I \cong R^{[n-1]} \xrightarrow{\delta} R$

is the identity automorphism of R.

Since $L \otimes_R R^{[0]} \cong I$, we get

$L = L \otimes_R R^{[0]} \otimes_R R^{[n-1]} \otimes_R R \cong I \otimes_R R^{[n-1]} \otimes_R R$

$= I/I^2 \otimes_R R$.

But I/I^2 is a free $R^{[n-1]}$-module of rank 1. Hence L is a free R-module of rank 1 and
therefore I is a free $R^{[0]}$-module of rank 1 i.e. I is a principal ideal.

Thus the proof of Proposition 3.6 is complete.

Now we prove Theorem A.

Theorem 3.7. Let R be a ring such that R_{red} is seminormal and no prime integer is a zero-
diviisor in R_{red}. Let I be an ideal of $R[X, Y]$ such that $R[X, Y]/I = R[Z]$ (as R-algebras).
Then I is a principal ideal say generated by F and $R[X, Y] = R[F]^{[1]}$.
Generalized epimorphism theorem

Proof. Since \(R_{red} \) is seminormal by ([7], Theorem 6.1) \(\text{Pic}(R) = \text{Pic}(R^{[m]}) \) for every \(m \). Therefore by Proposition 3.6 \(I \) is a principal ideal say generated by \(F \).

Let \(\mathfrak{R} \) be the nilradical of \(R \) and let \(\bar{F} \) be the image of \(F \) in \(R/\mathfrak{R}[X, Y] \). If \(R/\mathfrak{R}[X, Y] = R/\mathfrak{R}[[X, Y]]^{[1]} \) then it is easy to see that \(R[X, Y] = R[[X, Y]]^{[1]} \). Therefore we can assume that \(R \) is reduced. It is also easy to see that there exists a subring \(S \) of \(R \) which is finitely generated over the ring of integers such that \(F \in S[X, Y] \) and \(S[X, Y]/(F) = S[Z] \) as \(S \)-algebras. Note that \(S \) is a noetherian ring of finite Krull dimension.

Since \(S \subset R \) and \(R \) is reduced, by the hypothesis of the theorem, no prime integer is a zero-divisor in \(S \). Therefore \(F \) is a residual variable in \(S[X, Y] \) by Lemma 3.5. Hence \(\Omega_{S[X, Y]/S[F]} \) is a free \(S[X, Y] \)-module of rank one by Lemma 3.4. Moreover by Lemma 3.3, for every prime ideal \(\mathfrak{p} \) of \(S[F] \), \(k(\mathfrak{p}) \otimes_{S[F]} S[X, Y] = k(\mathfrak{p})^{[1]} \). \(S[X, Y] \) is a (finitely generated) flat \(S[F] \)-algebra by Lemma 3.2. Therefore by ([3], Lemma 3.3) there exists a positive integer \(m \) such that \(S[X, Y]^{[m]} = S[F]^{[m+1]} \).

Now \(S[X, Y]^{[m]} = S[F]^{[m+1]} \) implies that \(R[X, Y]^{[m]} = R[F]^{[m+1]} \). Since \(R \) is seminormal (we have assumed \(R \) to be reduced) by ([5], Theorem 2.6) \(R[X, Y] = R[F]^{[1]} \).

Thus the proof of Theorem 3.7 is complete.

The following example shows that if \(R_{red} \) is not seminormal then \(R[X, Y]/I = R[Z] \) need not imply that \(I \) is principal.

Example 3.8. Let \(k \) be a field of characteristic zero and let \(\bar{R} = k[[r]] \); a power series in one variable over \(k \). Let \(R = k[[r^2, r^3]] \), considered as a subring of \(\bar{R} \). It is obvious that \(\bar{R} \) is the normalization of \(R \) and \(R \) is not seminormal.

Let \(\alpha: R[X, Y] \to R[Z] \) be the \(R \)-algebra homomorphism defined as: \(\alpha(X) = Z + r^2Z^2 \) and \(\alpha(Y) = r^2Z \). Let \(I = \text{ker} \, \alpha \). Then

1. \(\alpha \) is surjective
2. \(I \) is not a principal ideal of \(R[X, Y] \).

Proof. Since \(\alpha(X - r^2X^2 + r^2XY^2 + Y^2) = Z \), \(\alpha \) is surjective.

Let \(\tilde{\alpha}: \bar{R}[X, Y] \to \bar{R}[Z] \) be the \(\bar{R} \)-algebra homomorphism such that \(\tilde{\alpha}(X) = \alpha(X) = Z + r^2Z^2 \) and \(\tilde{\alpha}(Y) = \alpha(Y) = r^2Z \). Let \(\mathfrak{I} = \text{ker} \, \tilde{\alpha} \). Then \(\mathfrak{I} \) is a principal prime ideal of \(\bar{R}[X, Y] \) generated by \(F(X, Y) = r^2X - Y - rY^2 \). Moreover \(\mathfrak{I} = FR[X, Y]/(r \otimes_{\mathfrak{I}} \bar{R}) \).

If \(\mathfrak{I} \) is a principal ideal of \(R[X, Y] \) say generated by \(f \) then \(H = uF = ur^2X - Y - rY^2 \) where \(u \) is a unit in \(R \) and \(uR \in \mathfrak{I} \). \(\mathfrak{I} \) is a principal ideal of \(R[X, Y] \).

Thus we prove that \(\mathfrak{I} \) cannot be principal.

We conclude this section with the proof of Theorem B.

Theorem 3.9. Let \(R \) be a ring containing a field \(k \) of characteristic zero. Let \(F \in R[X, Y] \) such that \(R[X, Y]/(F) = R[Z] \) as \(R \)-algebras. Then \(R[X, Y] = R[F]^{[1]} \).

Proof. As in Theorem 3.7, we can assume that \(R \) is reduced and \(R \) contains a noetherian subring \(S \) of finite Krull dimension such that \(F \in S[X, Y] \) and \(S[X, Y]/(F) = S[Z] \) as \(S \)-algebras. Moreover we can assume that \(S \) contains \(k \). Repeating the same arguments we see that there exists a positive integer \(m \) such that \(S[X, Y]^{[m]} = S[Z]^{[m+1]} \). Now since \(S \) contains \(k \) (a field of characteristic zero) by ([5], Theorem 2.8), \(S[X, Y] = S[F]^{[1]} \). Hence \(R[X, Y] = R[F]^{[1]} \).