TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 270, Number 1, March 1982
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ABSTRACT. Let R be a regular local ring and let R[T'] be a polynomial algebra in one
variable over R. In this paper the author proves that every maximal ideal of R[T] is
complete intersection in each of the following cases: (1) R is a local ring of an affine
algebra over an infinite perfect field, (2) R is a power series ring over a field.

Introduction. Let R be a regular local ring. Let R[T] be a polynomial algebra in
one variable over R. In [D-G] the following question has been asked.

Question. Is every maximal ideal of R[T'] complete intersection?

In this paper we prove that the answer to the above question is affirmative in each
of the following cases:

(1) R is a local ring of an affine algebra over an infinite perfect field.

(2) R is a power series ring over a field.

This paper is divided into three sections. In §1 we fix notations and state a
theorem without proof which is used in §§2 and 3. In §2 we prove some lemmas and
propositions which are used in proving the result when R is a local ring of an affine
algebra. §3 deals with the power series case.

1. Throughout this paper we consider commutative noetherian rings with 1. For a
ring R, dim R denotes its Krull dimension which we always assume to be finite. If R
is a local ring then 9 (R) will always denote its unique maximal ideal. If M is a
finitely generated R-module then p(M ) will denote the minimal number of genera-
tors of M. For an ideal I of R ht(I) denotes the height of .

DEFINITION. Let I be an unmixed ideal of R of height r. Then I is said to be
complete intersection in R if I = Z/_, Ra;, where a,, a,,...,a, is a regular R-
sequence.

REMARK. If R is Cohen-Macaulay then I is complete intersection if and only if
w(I) = hy(I).

Let R and S be two local rings.

DEFINITION. R is said to be a local extension of S if S is a subring of R and
IM(S) = IM(R) N S. R is said to be unramified over S if M(S)R = YN(R) and
R /9L(R) is separable over S /IN(S).

Let L/K be a finite separable extension of K. Then L is a simple extension of K.
By a minimal polynomial of L over K we always mean an irreducible monic
polynomial over K satisfied by a generator of L over K.

Now we state a theorem which has been proved in [D-G, Theorem 3].
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THEOREM. Let R be a regular ring. Let A = R[ X, Y] be a polynomial algebra in two
variables over R. Then every maximal ideal of A is complete intersection.

In subsequent sections this theorem will always be referred to as the D-G theorem.
2. In this section we prove the following theorem.

THEOREM 2.1. Let k be an infinite perfect field. Let C be an affine k-algebra. Let 3
be a prime ideal of C such that Cy = R is regular. Let M be a maximal ideal of R[T].
Then M is complete intersection.

For the proof of this theorem we need some lemmas and propositions.

LEMMA 2.2. Let A be an affine domain of dim1 over a field K. Let M be a
nonregular maximal ideal of A such that A/ M is a finite separable (therefore simple)
extension of K. Then there exist y,, y,,...,y, € A such that

(1) A is integral over K[ y,], .

(2) the inclusion map K[y ]1/9MNK[y] :A/_")TL is an isomorphism,

B) M= (f(¥))s Y2»---,y,) where r = p(ON/M?) and f is a minimal polynomial of
A/ M over K.

PROOF. Since 4 is one dimensional and 9% nonregular we have  u( M/ M?) =r =
2 = dim A + 1. Therefore by [Mo, Corollary 3] it follows that p(9) = u(M/M2).

LetA/ M=K [a]. Let f( X) be the minimal polynomial of « over K. Let b € 4 be

such that a = bmod M. Then « is separable over K and f(X) is its minimal

polynomial imply that f(b) € M and 3f(b) /X & ON. If f(b) € M? then replacing
bby b + x for some x € M —IM? we get f(b) & M. This in particular implies that
b is not algebraic over K.

Since A4 is one dimensional affine, by the normalization theorem [Z-S, p. 200]
there exists y € A4 such that A4 is integral over K[y]. Let M NK[y] = (h(y)). Let
y, = b + h(y)' where [ is a positive integer. Then by taking sufficiently large / > 2
one can see that K[y, b] = K[y,, y]is integral over K[ y,]. Moreover

f(3n) = £(b) + (3f/3X)()h(») + ch(y)*', ¢ €K[y.b].
Since f(b) & M2, h(y) € Mand I = 2 we get f( y,) € M —M>. Since A4 is integral
over K[y, b], A is integral over K[y,] and CZ‘}_ILOK[y,] = (f(»,))- Therefore the
inclusion map K[y,]/‘?l?, NK([y]~- A/G.TIL is an isomorphism.

Let A" =A/(f(y)), M = @—Tl/( f(y,)). Then A’ is zero dimensional and
p(OM’ /M2y = w(M/M?) — 1 = r — 1 = 1. Therefore by [Mo, Corollary 3] there
exist y;, y3,...,y, € A’ such that MM’ = (y;, y5,...,/). Let y, be a pull back of y; in
Afor2<i<r.Then = (f()), Vo» V3r--- V-

This completes the proof of Lemma 2.2. Now we state a lemma the proof of which
is easy and can be found in [L, Lemma 2].

LEMMA 2.3. Let k be a perfect field. Let C be an affine k-algebra. Let X be a prime
ideal of C such that C = R is regular. Then there exists a field extension K/k and
regular affine K-domain B contained in R such that

(1) R = By for some maximal ideal O of B,

(2) B/9% = R/IN(R) is a finite separable extension of K.
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The following two propositions are very crucial for the proof of Theorem 2.1.

PROPOSITION 2.4. Let k, C, ¥, R, K, B, 9 be as in Lemma 2.3. Let p be a prime
ideal of R such that R/p is one dimensional and nonregular. Then R contains a local
domain S such that

(1) S is a localization of a polynomial algebra C’ over K at some maximal ideal 1 of
c,

(2) there exists h € p N S such that the inclusion of S in R gives rise to an inclusion
of S/hS in R/hR which is an isomorphism, i.e. S/hS = R /hR.

PROOF. Since R = By, there exists a prime ideal g of B such that ¢By; = p. Then
B/q is one dimensional and 91 /q is a nonregular maximal ideal of B/gq.

Let A =B/q, o = 9M/q. Then by Lemma 2.2 there exist y,, y,,...,y, € 4
satisfying properties 1, 2 and 3 of Lemma 2.2. Let ¢: B—> A4 (= B/q) be the
canonical map. Let x; € B be such that ¢(x;) =y, for 1 <i<r. Then ¢q+
(f(x))s X35...,x,) = 9N and f(x,), X,,...,x, generate Mmod IM? + g where r =
dim g o (M/M? + g). Let dimy, o (M/M?) = p(M By ) = dim R = n. Then
since we have the following exact sequence

0-g/qNM* > M/IM? > M/M? + g >0

we get dimy ou(g/q N M) =n—r. Let X,,|,X,13,...,X, €q be such that
(Xpi1> Xpi2se--5X,) + g N OM? = q. Then it is easy to see that
(f(X))se oo Xpy Xy 1sn e, X,) + ON* = 9. Since R = By is regular of dim n it fol-
lows that ( f(x,), x,,...,x,)R = ONU(R) and f(x,), x,,...,x, are algebraically inde-
pendent over K. Therefore x|, x,,...,x, are also algebraically independent over K
and hence C' = K[x,, x,,...,x,] is a polynomial algebra over K contained in B.

Let n = C’ N 9. Then n = (f(x,), X,,-..,x,) is a maximal ideal of C’ and the
inclusion map C’/n — B/9N is an isomorphism. Moreover 4 (= B/q) is integral
over C’/q, where g, = ¢ N C’ and 9N is the only maximal ideal of 4 lying over the
maximal ideal n/q, of C’/q,.

Let L = quotient field of B, L’ = quotient field of C’. Then since B and C’ are
affine K-domains of dim n, L is a finite algebraic extension of L’. Let B’ be the
integral closure of C’ in L. Then B’ is a finitely generated C’-module contained in B.

Let O’ =9 N B, By, =R/, C,; =~S. Then we get a tower of local extensions
S = R"= R. Since S/M(S)=C"/q—->B/M =R/IM(R) and R is unramified
over S, R is also unramified over R’ and R’ /9IL(R’) :R/GJIL(R). But since R’ and
R have the same quotient field L and R’ is normal, by Zariski’s main theorem [BI, p.
93] we have R’ = R.

Let ¢" = g N B’. Then we get a tower of integral extensions C’/q, = B’ /q’ = B /q
(= A). Since O (= 9M/q) is the only maximal ideal of A lying over 1/q,, N’ /q’
will be the only maximal ideal of B’/q’ lying over n/q,. Therefore nB’ + ¢’ is
OI'-primary. Since Bf. = R’ = R and 7R = 9M(R) we have nB’ + M2 = 9.
But this implies that nB” + 9" = 9N’ for every positive integer /. Since nB’ + ¢’ is
ON'-primary, there exists a positive integer, say /,, such that 9o C nB’ + ¢'.
Therefore nB” + ¢’ = IMN'. Moreover 7B’ + M’ = M’ implies that O’ /7B’ is an
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idempotent and therefore principal ideal of B’ /nB’. Hence there exists ¢ € g’ such
that tB’ + 9B’ = 9.

Let B” = C'[1], M” =9IM" N B”,q" =q N B”. It is obvious that M"B’" = M’
and B” /9" — B’ /9. Since B’ is a finitely generated B”-module we have B, =
Bé, = Rand ¢”"R = p.

Since B” is a simple integral extension of C’ and C’ is a unique factorization
domain we get B” = C'[T]/(g(T)) where g(T) is a monic irreducible polynomial in
T.

Let y: C'[T] - B” (= C'[t]) be the canonical map. Let M = ¢~ (9N"). Since
WT)=1t€EM” we have T € M. Also I’ N C’' = n implies M N C’ = 7. There-
fore M = TC'[T] + nC'[T].

Let g(T)=T'+a,_,T""'+--- +a,T + a,. Then g(t) =0 and ¢t € q” implies
a, € q, =q” N C'. Since By = R and nR = 9(R) it follows that a, & 7, and
therefore tR = hR where h = a. Therefore the map S/hS — R/hR is an isomor-
phism. Thus the proof of Proposition 2.4 is complete.

REMARK. Under the assumptions of Proposition 2.4 Lindel [L, Proposition 2] also
has shown the existence of S and h. Our proof is a variation of his proof because of
the requirement that 4 should belong to p.

PROPOSITION 2.5. Let K be an infinite field. Let D = K[X,, X,,...,X,] be a
polynomial algebra over K. Let M = ( f( X,), X,,...,X,) be a maximal ideal of D. Let
p be a prime ideal of dim 1 contained in 9. If n = 3 then D contains a K-algebra D’
of dim n — 1 such that

(1) D = DY},

(2) p + 9D is OM-primary where M’ =AM N D’.

PrOOF. If p contains one of the generators f( X)), X,,...,X,, say f(X,), then
p + (X,,...,X,) = 9. Therefore by taking D’ = K[X,,...,X,] we get the required
result.

Now we assume that X; & p for2<i<nand f(X,) € p. Thenp + (X,) =1Iisa
zero dimensional ideal of D and hence contained in only finitely many maximal
ideals of D. Let T = {9 = M, IM,,...,9M,} be a finite set of maximal ideals of D
containing /.

For every i, 2<i<t, let V, denote a subspace of K" consisting of n-tuples
(Ays..-,A,) such that A, f( X)) + A, X, + -+ +X, X, EIN,. Then V; # K" for2 <
< 1. Since K is infinite we have U ,_,_, V; # K". Let (84, B,,...,8,) be such that
(B, By,....B,) & Viforeveryi,2<i<t Let Z= B, f(X)+ B, X, + - +B,X,.
Since X, € O, for every i,2 <i <t, wehave B, # 0 forsome/, 1 </<n — 1.

If 8, = 0 then taking D’ = D[ X,, X;,...,X,]weget X,, Z € M’ = M N D', and
the ideal p + (X,, Z)D is OM-primary. Therefore p + ON'D is IM-primary. Since
D = D[ X,] we get the required result.

If B, # O then obviously D = K[ X, Z, X;,...,X,]. Taking D’ = K[Z, X;,...,X,]
we get X,, Z €O =M N D’'. Therefore as before we see that IM'D + p is
M -primary. Since D = D’[ X,] we get the required result.
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PrOOF OF THEOREM 2.1. Let p = M N R. Then dim R/p < 1. If R/p is regular

then since ht(M /pR[T]) = 1, M/pR[T] is a principal ideal of R /p[T]. Therefore
p(M)<1+p(pR[T])=1+p(p)=1+ht(p)=ht(M).

Since we always have ht(M) < u(M) we get the equality p(M) = ht(M) which

shows that M is complete intersection.

Now we suppose that R /p is not regular. Thendim R/p = 1, ht(M) = ht(p) + 1
= dim R and dim R = 2.

Case 1. dim R = 2. Then dim R/p = 1 implies ht( p) = 1. Therefore we have
ht(M) = ht(p) + 1 = 2. Since R[T] is regular, M is locally generated by a regular
sequence of length 2. Therefore hd g7yM = 1 where hd z;7; M denotes the homologi-
cal dimension of the R[T ]-module M. Since

Extyr)(M, R[T]) = Extyr(R[T]/M, R[T]) = R[T]/M,

we get Ext‘Rm(M, R[TY)) to be a cyclic R[T]-module. Therefore by [S, p. 8] there is
an exact sequence 0 —» R[T] - P - M - 0 with P finitely generated projective
R[T]-module of rank 2. But by [Mu, Theorem] P is free. Therefore u(P) = 2. Since
M is an epimorphic image of P we have

p(M) <p(P) =2=ht(M) <p(M).
Hence M is complete intersection.

Case 2. dim R = n = 3. By Lemma 2.3 and Proposition 2.4 there exist a field
extension K /k and a local domain S contained in R such that

(1) § = K[X,...,X,], where n is a maximal ideal of K[X),..., X,] generated by
f(X)), X;,...,X, for some irreducible monic polynomial f( X) over K.

(2) There exists # € p N S such that S/AS = R/hR and therefore S[T]/hS[T] =
R[T]/hRIT).

Let M =M N S[T]. Since h € M, M is a maximal ideal of S[T]. Moreover
MR[T] = M and ht(M) = ht(M). Therefore it is enough to prove that M is a
complete intersection ideal of S[T].

Letg=SNp=MnNS. Then h € g and hence S/q = R/p. Therefore dim S/q
= 1. Let D=KI[X,,...,X,], M =M N D[T], ¢ =qN D= M N D. Then since
D, = S we have M'S[T] = M, ht(M’) = ht(M) = n = dim D and ht(q’) = ht(¢q) =
n — 1. Therefore dim ¢’ = dim D/q’ = 1.

Since n = 3 by Proposition 2.5 there exists a subalgebra D’ of D of dimn — 1
such that

(1) D = DY},

(2)n'D + q’ is n-primary wheren’ =7 N D".

Consider the following commutative diagram

D & DplY]=D & D=8
1 1
p[T] &  S[T]

M’ is a prime ideal of D[T] of height n = dim D[T] — 1. Therefore every prime
ideal of D[T'] which contains M’ properly is a maximal ideal of D[T]. Let M, be one
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such maximal ideal. Then since D’, D, D[T] all are affine rings, N, = M, N D’ will
be a maximal ideal of D". If ¥ = N, then since M’ C M, we have n’'D + ¢’ C M, N
D. But w'D + g’ is n-primary and 7 is maximal; therefore 7 = M| N D. Since
S~——— D,, = M, N D implies that M,S[T] is a prime ideal~ of S[T'] which contains
M'S[T] = M properly which contradicts the fact that M is maximal. Therefore
N, #7.

The above discussion shows that no prime ideal of D[T] which contains M’
properly can lie over a prime ideal of D’ contained in 7. Therefore M’S’[T | becomes
a maximal of S'[T] of height = ht(M’) where §’ = Dy[Y]. Then by the D-G
theorem M’S’[T] is complete intersection. Now we have the following tower of
rings:

DY, T]=D[T]S S|T]<S[T].

Since M'S’[T] is complete intersection, M'’S[T] = M and ht(M’S[T]) = ht(M")
= ht(M), it follows that M is also complete intersection.

Thus the proof of Theorem 2.1 is complete.

3. We begin this section with the following theorem.

THEOREM 3.1. Let k be a field. Let R = k[[ X,, X,,...,X,]] be a power series ring in
n variables over k. Let M be a maximal ideal of R[T). Then M is complete intersection.

PROOF. Letp = RN M. If p =0thenht(M)=ht(p) + 1 = 1.

Since R[T'] is a unique factorization domain, M will be a principal ideal and hence
complete intersection.

If p # 0 then let f be a nonzero element of p. It is easy to see that there exist
Y,,Y,,...,Y, €ER such that R=k[[Y,Y,,....Y,]] and f as a power series in
Y,,Y,,..., Y, is regular in Y,. Therefore without loss of generality we can assume
that f = f( X,,...,X,) is regular in X,. Then by the Weierstrass preparation theorem
[Z-S, p. 139] there exists a unit u( X|,..., X,) in R such that

u( Xy, W X)X X)) = (X, 0 X)) = X, + g X7+ +g,
where g, € k[[X,,...,X,_;]] and £,0,0,...,00 =0 for 1 <i<r. Let §S=
k([ X,--..X,- ][ X,] C R. Then it also follows from the above-mentioned theorem
that S/f’S = R/f'R. Therefore S[T]/f'S[T] = R[T1/f'R[T].

Let M = M N S[T). Then since f' € p N S C M it follows that M is a maximal
ideal of S[T], MR[T] = M and ht(M) = ht(M). Since S[T] =
k[ X,,...,X,- ] X,, T] by the D-G theorem M is complete intersection. Hence M is
also complete intersection.

This completes the proof of Theorem 3.1.

Let R be an equicharacteristic regular local ring. Let R be the completion of R
with respect to OM(R)-adic topology. Then R = k[[X,,...,X,]] where k is the
residue field of R and n» = dim R.

Now we state a proposition which is a generalization of Theorem 3.1.

PROPOSITION 3.2. Let R be an equicharacteristic regular local ring. Let R be its
completion with respect to JU(R)-adic topology. Let M be a maximal ideal of R[T).
Let I = MR[T]. Then ht(1) = ht(M) and I is complete intersection.
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PROOF. Let R = k[[ X, 1»---»X,]] where K = R /9NL(R). Since M is locally generated
by a regular sequence of length = ht(M) and IQ[T ] is a faithfully flat extension of
R[T] it follows that ht(M) = ht(I). If ht(M) =1 then M itself is complete
intersection and therefore I is also complete intersection. Now we assume that
ht(M) = 2.

LetJ = I N R. Then ht(/) = ht(M) = 2 implies that J 5 0. Then as in Theorem
3.1 we can assume that J contains an element f such that f € S, S /fS = R/fR where
S = k[[X,,....X,_ ][ X,]. Moreover we can assume that f is monic in X,,.

Let I' =1 N S[T). Since f € I’ we have p(I'/I'*) = p(I/1?) and I'R[T] = L
But R[T] is faithfully flat over R[T], MR[T] = I and M is a maximal ideal of R[T].
Therefore u(1/12) = p(M/M?) = ht(M) = ht([).

Since S[T'] = k[[ X,,..., X, IT]IX,] and f € I’, I’ contains a monic polynomial
in X, with coefficients in k[[X,,...,X,_,][T]. Since n(I’'/1"*) = p(1/I1*) = ht(1)
=2 and dim S[T]/I’ = dim R[T']/I = O (this is easy to check) by [Mo, Theorem 5]
there exists a finitely generated projective S[T']-module P of rank = p(I’/I'*) and a
surjective homomorphism y: P — I’. But by [L-L, Theorem 2] P is free and therefore
p(P) = rank(P) = u(I'/I'*). This implies that p(I") <u(I'/I'*)=p(l/I*) =
ht(7). Since I'R[T]1=1, we have u(I)<p(I')<ht(])< w(I). Therefore I is
complete intersection.

This completes the proof of Proposition 3.2.

REMARK. In view of known results regarding projective modules over R[T'] when
R is regular local, one can obtain the results of §§2 and 3 in one stroke if one can
prove the following theorem.

THEOREM. Let R be a regular local ring. Let M be a maximal ideal of R[T). Then
there exists a projective R[T |-module P of rank = ht(M) and a surjective homomor-
phism y: P > M.
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