A NOTE ON COMPLETE INTERSECTIONS BY

S. M. BHATWADEKAR

ABSTRACT. Let R be a regular local ring and let R[T] be a polynomial algebra in one variable over R. In this paper the author proves that every maximal ideal of R[T] is complete intersection in each of the following cases: (1) R is a local ring of an affine algebra over an infinite perfect field, (2) R is a power series ring over a field.

Introduction. Let R be a regular local ring. Let R[T] be a polynomial algebra in one variable over R. In [D-G] the following question has been asked.

Question. Is every maximal ideal of R[T] complete intersection?

In this paper we prove that the answer to the above question is affirmative in each of the following cases:

(1) R is a local ring of an affine algebra over an infinite perfect field.

(2) R is a power series ring over a field.

This paper is divided into three sections. In §1 we fix notations and state a theorem without proof which is used in §§2 and 3. In §2 we prove some lemmas and propositions which are used in proving the result when R is a local ring of an affine algebra. §3 deals with the power series case.

1. Throughout this paper we consider commutative noetherian rings with 1. For a ring R, dim R denotes its Krull dimension which we always assume to be finite. If R is a local ring then $\mathfrak{M}(R)$ will always denote its unique maximal ideal. If M is a finitely generated R-module then $\mu(M)$ will denote the minimal number of generators of M. For an ideal I of R ht(I) denotes the height of I.

DEFINITION. Let I be an unmixed ideal of R of height r. Then I is said to be complete intersection in R if $I = \sum_{i=1}^{r} Ra_i$, where a_1, a_2, \ldots, a_r is a regular R-sequence.

REMARK. If R is Cohen-Macaulay then I is complete intersection if and only if $\mu(I) = ht(I)$.

Let R and S be two local rings.

DEFINITION. R is said to be a local extension of S if S is a subring of R and $\mathfrak{M}(S) = \mathfrak{M}(R) \cap S$. R is said to be unramified over S if $\mathfrak{M}(S)R = \mathfrak{M}(R)$ and $R/\mathfrak{M}(R)$ is separable over $S/\mathfrak{M}(S)$.

Let L/K be a finite separable extension of K. Then L is a simple extension of K. By a minimal polynomial of L over K we always mean an irreducible monic polynomial over K satisfied by a generator of L over K.

Now we state a theorem which has been proved in [D-G, Theorem 3].

Received by the editors November 26, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 13B25; Secondary 13F20.

^{© 1982} American Mathematical Society 0002-9947/81/0000-1029/\$02.75

THEOREM. Let R be a regular ring. Let A = R[X, Y] be a polynomial algebra in two variables over R. Then every maximal ideal of A is complete intersection.

In subsequent sections this theorem will always be referred to as the D-G theorem.

2. In this section we prove the following theorem.

THEOREM 2.1. Let k be an infinite perfect field. Let C be an affine k-algebra. Let \Im be a prime ideal of C such that $C_{\Im} = R$ is regular. Let M be a maximal ideal of R[T]. Then M is complete intersection.

For the proof of this theorem we need some lemmas and propositions.

LEMMA 2.2. Let A be an affine domain of dim 1 over a field K. Let $\overline{\mathfrak{M}}$ be a nonregular maximal ideal of A such that $A/\overline{\mathfrak{M}}$ is a finite separable (therefore simple) extension of K. Then there exist $y_1, y_2, \ldots, y_r \in A$ such that

(1) A is integral over $K[y_1]$,

(2) the inclusion map $K[y_1]/\overline{\mathfrak{M}} \cap K[y_1] \to A/\overline{\mathfrak{M}}$ is an isomorphism,

(3) $\overline{\mathfrak{M}} = (f(y_1), y_2, \dots, y_r)$ where $r = \mu(\overline{\mathfrak{M}}/\overline{\mathfrak{M}}^2)$ and f is a minimal polynomial of $A/\overline{\mathfrak{M}}$ over K.

PROOF. Since A is one dimensional and $\overline{\mathfrak{M}}$ nonregular we have $\mu(\overline{\mathfrak{M}}/\overline{\mathfrak{M}}^2) = r \ge 2 = \dim A + 1$. Therefore by [Mo, Corollary 3] it follows that $\mu(\overline{\mathfrak{M}}) = \mu(\overline{\mathfrak{M}}/\overline{\mathfrak{M}}^2)$.

Let $A/\overline{\mathfrak{M}} = K[\alpha]$. Let f(X) be the minimal polynomial of α over K. Let $b \in A$ be such that $\alpha = b \mod \overline{\mathfrak{M}}$. Then α is separable over K and f(X) is its minimal polynomial imply that $f(b) \in \overline{\mathfrak{M}}$ and $\partial f(b)/\partial X \notin \overline{\mathfrak{M}}$. If $f(b) \in \overline{\mathfrak{M}}^2$ then replacing b by b + x for some $x \in \overline{\mathfrak{M}} - \overline{\mathfrak{M}}^2$ we get $f(b) \notin \overline{\mathfrak{M}}^2$. This in particular implies that b is not algebraic over K.

Since A is one dimensional affine, by the normalization theorem [**Z-S**, p. 200] there exists $y \in A$ such that A is integral over K[y]. Let $\overline{\mathfrak{M}} \cap K[y] = (h(y))$. Let $y_1 = b + h(y)^l$ where l is a positive integer. Then by taking sufficiently large $l \ge 2$ one can see that $K[y, b] = K[y_1, y]$ is integral over $K[y_1]$. Moreover

$$f(y_1) = f(b) + (\partial f/\partial X)(b)h(y)^l + ch(y)^{2l}, \quad c \in K[y, b].$$

Since $f(b) \notin \overline{\mathfrak{M}}^2$, $h(y) \in \overline{\mathfrak{M}}$ and $l \ge 2$ we get $\underline{f(y_1)} \in \overline{\mathfrak{M}} - \overline{\mathfrak{M}}^2$. Since A is integral over K[y, b], A is integral over $K[y_1]$ and $\overline{\mathfrak{M}} \cap K[y_1] = (f(y_1))$. Therefore the inclusion map $K[y_1]/\overline{\mathfrak{M}} \cap K[y_1] \to A/\overline{\mathfrak{M}}$ is an isomorphism.

Let $A' = A/(f(y_1))$, $\mathfrak{M}' = \mathfrak{M}/(f(y_1))$. Then A' is zero dimensional and $\mu(\mathfrak{M}'/\mathfrak{M}'^2) = \mu(\mathfrak{M}/\mathfrak{M}^2) - 1 = r - 1 \ge 1$. Therefore by [Mo, Corollary 3] there exist $y'_2, y'_3, \ldots, y'_r \in A'$ such that $\mathfrak{M}' = (y'_2, y'_3, \ldots, y'_r)$. Let y_i be a pull back of y'_i in A for $2 \le i \le r$. Then $\mathfrak{M} = (f(y_1), y_2, y_3, \ldots, y_r)$.

This completes the proof of Lemma 2.2. Now we state a lemma the proof of which is easy and can be found in [L, Lemma 2].

LEMMA 2.3. Let k be a perfect field. Let C be an affine k-algebra. Let \Im be a prime ideal of C such that $C_{\Im} = R$ is regular. Then there exists a field extension K/k and regular affine K-domain B contained in R such that

(1) $R = B_{\mathfrak{M}}$ for some maximal ideal \mathfrak{M} of B,

(2) $B/\mathfrak{M} = R/\mathfrak{M}(R)$ is a finite separable extension of K.

The following two propositions are very crucial for the proof of Theorem 2.1.

PROPOSITION 2.4. Let $k, C, \mathfrak{F}, R, K, B, \mathfrak{M}$ be as in Lemma 2.3. Let p be a prime ideal of R such that R/p is one dimensional and nonregular. Then R contains a local domain S such that

(1) S is a localization of a polynomial algebra C' over K at some maximal ideal η of C',

(2) there exists $h \in p \cap S$ such that the inclusion of S in R gives rise to an inclusion of S/hS in R/hR which is an isomorphism, i.e. S/hS = R/hR.

PROOF. Since $R = B_{\mathfrak{M}}$ there exists a prime ideal q of B such that $qB_{\mathfrak{M}} = p$. Then B/q is one dimensional and \mathfrak{M}/q is a nonregular maximal ideal of B/q.

Let A = B/q, $\mathfrak{M} = \mathfrak{M}/q$. Then by Lemma 2.2 there exist $y_1, y_2, \ldots, y_r \in A$ satisfying properties 1, 2 and 3 of Lemma 2.2. Let $\phi: B \to A$ (= B/q) be the canonical map. Let $x_i \in B$ be such that $\phi(x_i) = y_i$ for $1 \le i \le r$. Then $q + (f(x_1), x_2, \ldots, x_r) = \mathfrak{M}$ and $f(x_1), x_2, \ldots, x_r$ generate $\mathfrak{M} \mod \mathfrak{M}^2 + q$ where $r = \dim_{B/\mathfrak{M}}(\mathfrak{M}/\mathfrak{M}^2 + q)$. Let $\dim_{B/\mathfrak{M}}(\mathfrak{M}/\mathfrak{M}^2) = \mu(\mathfrak{M} B_{\mathfrak{M}}) = \dim R = n$. Then since we have the following exact sequence

$$0 \to q/q \cap \mathfrak{M}^2 \to \mathfrak{M}/\mathfrak{M}^2 \to \mathfrak{M}/\mathfrak{M}^2 + q \to 0$$

we get $\dim_{B/\mathfrak{M}}(q/q \cap \mathfrak{M}^2) = n - r$. Let $x_{r+1}, x_{r+2}, \ldots, x_n \in q$ be such that $(x_{r+1}, x_{r+2}, \ldots, x_n) + q \cap \mathfrak{M}^2 = q$. Then it is easy to see that $(f(x_1), \ldots, x_r, x_{r+1}, \ldots, x_n) + \mathfrak{M}^2 = \mathfrak{M}$. Since $R = B_{\mathfrak{M}}$ is regular of dim *n* it follows that $(f(x_1), x_2, \ldots, x_n)R = \mathfrak{M}(R)$ and $f(x_1), x_2, \ldots, x_n$ are algebraically independent over *K*. Therefore x_1, x_2, \ldots, x_n are also algebraically independent over *K* and hence $C' = K[x_1, x_2, \ldots, x_n]$ is a polynomial algebra over *K* contained in *B*.

Let $\eta = C' \cap \mathfrak{M}$. Then $\eta = (f(x_1), x_2, \dots, x_n)$ is a maximal ideal of C' and the inclusion map $C'/\eta \to B/\mathfrak{M}$ is an isomorphism. Moreover $A \ (= B/q)$ is integral over C'/q_1 where $q_1 = q \cap C'$ and $\overline{\mathfrak{M}}$ is the only maximal ideal of A lying over the maximal ideal η/q_1 of C'/q_1 .

Let L = quotient field of B, L' = quotient field of C'. Then since B and C' are affine K-domains of dim n, L is a finite algebraic extension of L'. Let B' be the integral closure of C' in L. Then B' is a finitely generated C'-module contained in B.

Let $\mathfrak{M}' = \mathfrak{M} \cap B'$, $B'_{\mathfrak{M}'} = R'$, $C'_{\eta} = S$. Then we get a tower of local extensions $S \hookrightarrow R' \hookrightarrow R$. Since $S/\mathfrak{M}(S) = C'/\eta \to B/\mathfrak{M} = R/\mathfrak{M}(R)$ and R is unramified over S, R is also unramified over R' and $R'/\mathfrak{M}(R') \to R/\mathfrak{M}(R)$. But since R' and R have the same quotient field L and R' is normal, by Zariski's main theorem [**BI**, p. 93] we have R' = R.

Let $q' = q \cap B'$. Then we get a tower of integral extensions $C'/q_1 \Rightarrow B'/q' \Rightarrow B/q$ (= A). Since \mathfrak{M} (= \mathfrak{M}/q) is the only maximal ideal of A lying over η/q_1 , \mathfrak{M}'/q' will be the only maximal ideal of B'/q' lying over η/q_1 . Therefore $\eta B' + q'$ is \mathfrak{M}' -primary. Since $B'_{\mathfrak{M}'} = R' = R$ and $\eta R = \mathfrak{M}(R)$ we have $\eta B' + \mathfrak{M}'^2 = \mathfrak{M}'$. But this implies that $\eta B' + \mathfrak{M}'^{l} = \mathfrak{M}'$ for every positive integer l. Since $\eta B' + q'$ is \mathfrak{M}' -primary, there exists a positive integer, say l_0 , such that $\mathfrak{M}'^{l_0} \subset \eta B' + q'$. Therefore $\eta B' + q' = \mathfrak{M}'$. Moreover $\eta B' + \mathfrak{M}'^2 = \mathfrak{M}'$ implies that $\mathfrak{M}'/\eta B'$ is an idempotent and therefore principal ideal of $B'/\eta B'$. Hence there exists $t \in q'$ such that $tB' + \eta B' = \mathfrak{M}'$.

Let B'' = C'[t], $\mathfrak{M}'' = \mathfrak{M}' \cap B''$, $q'' = q' \cap B''$. It is obvious that $\mathfrak{M}''B' = \mathfrak{M}'$ and $B''/\mathfrak{M}'' \to B'/\mathfrak{M}'$. Since B' is a finitely generated B''-module we have $B''_{\mathfrak{M}'} = B'_{\mathfrak{M}'} = R$ and q''R = p.

Since B'' is a simple integral extension of C' and C' is a unique factorization domain we get B'' = C'[T]/(g(T)) where g(T) is a monic irreducible polynomial in T.

Let $\psi: C'[T] \to B'' (= C'[t])$ be the canonical map. Let $M = \psi^{-1}(\mathfrak{M}'')$. Since $\psi(T) = t \in \mathfrak{M}''$ we have $T \in M$. Also $\mathfrak{M}'' \cap C' = \eta$ implies $M \cap C' = \eta$. Therefore $M = TC'[T] + \eta C'[T]$.

Let $g(T) = T^i + a_{i-1}T^{i-1} + \cdots + a_1T + a_0$. Then g(t) = 0 and $t \in q''$ implies $a_0 \in q_1 = q'' \cap C'$. Since $B''_{\mathfrak{M}'} = R$ and $\eta R = \mathfrak{M}(R)$ it follows that $a_1 \notin \eta$, and therefore tR = hR where $h = a_0$. Therefore the map $S/hS \to R/hR$ is an isomorphism. Thus the proof of Proposition 2.4 is complete.

REMARK. Under the assumptions of Proposition 2.4 Lindel [L, Proposition 2] also has shown the existence of S and h. Our proof is a variation of his proof because of the requirement that h should belong to p.

PROPOSITION 2.5. Let K be an infinite field. Let $D = K[X_1, X_2, ..., X_n]$ be a polynomial algebra over K. Let $\mathfrak{M} = (f(X_1), X_2, ..., X_n)$ be a maximal ideal of D. Let p be a prime ideal of dim 1 contained in \mathfrak{M} . If $n \ge 3$ then D contains a K-algebra D' of dim n - 1 such that

(1) D = D'[Y],

(2) $p + \mathfrak{M}'D$ is \mathfrak{M} -primary where $\mathfrak{M}' = \mathfrak{M} \cap D'$.

PROOF. If p contains one of the generators $f(X_1), X_2, \ldots, X_n$, say $f(X_1)$, then $p + (X_2, \ldots, X_n) = \mathfrak{M}$. Therefore by taking $D' = K[X_2, \ldots, X_n]$ we get the required result.

Now we assume that $X_i \notin p$ for $2 \leq i \leq n$ and $f(X_1) \notin p$. Then $p + (X_n) = I$ is a zero dimensional ideal of D and hence contained in only finitely many maximal ideals of D. Let $T = \{\mathfrak{M} = \mathfrak{M}_1, \mathfrak{M}_2, \ldots, \mathfrak{M}_i\}$ be a finite set of maximal ideals of D containing I.

For every *i*, $2 \le i \le t$, let V_i denote a subspace of K^n consisting of *n*-tuples $(\lambda_1, \ldots, \lambda_n)$ such that $\lambda_1 f(X_1) + \lambda_2 X_2 + \cdots + \lambda_n X_n \in \mathfrak{M}_i$. Then $V_i \ne K^n$ for $2 \le i \le t$. Since *K* is infinite we have $\bigcup_{2 \le i \le t} V_i \ne K^n$. Let $(\beta_1, \beta_2, \ldots, \beta_n)$ be such that $(\beta_1, \beta_2, \ldots, \beta_n) \notin V_i$ for every *i*, $2 \le i \le t$. Let $Z = \beta_1 f(X_1) + \beta_2 X_2 + \cdots + \beta_n X_n$. Since $X_n \in \mathfrak{M}_i$ for every *i*, $2 \le i \le t$, we have $\beta_l \ne 0$ for some *l*, $1 \le l \le n - 1$.

If $\beta_2 = 0$ then taking $D' = D[X_1, X_3, \dots, X_n]$ we get $X_n, Z \in \mathfrak{M}' = \mathfrak{M} \cap D'$, and the ideal $p + (X_n, Z)D$ is \mathfrak{M} -primary. Therefore $p + \mathfrak{M}'D$ is \mathfrak{M} -primary. Since $D = D'[X_2]$ we get the required result.

If $\beta_2 \neq 0$ then obviously $D = K[X_1, Z, X_3, \dots, X_n]$. Taking $D' = K[Z, X_3, \dots, X_n]$ we get X_n , $Z \in \mathfrak{M}' = \mathfrak{M} \cap D'$. Therefore as before we see that $\mathfrak{M}'D + p$ is \mathfrak{M} -primary. Since $D = D'[X_1]$ we get the required result. **PROOF OF THEOREM 2.1.** Let $p = M \cap R$. Then dim $R/p \le 1$. If R/p is regular then since ht(M/pR[T]) = 1, M/pR[T] is a principal ideal of R/p[T]. Therefore

$$\mu(M) \le 1 + \mu(pR[T]) = 1 + \mu(p) = 1 + ht(p) = ht(M).$$

Since we always have $ht(M) \le \mu(M)$ we get the equality $\mu(M) = ht(M)$ which shows that M is complete intersection.

Now we suppose that R/p is not regular. Then dim R/p = 1, ht(M) = ht(p) + 1 = dim R and dim $R \ge 2$.

Case 1. dim R = 2. Then dim R/p = 1 implies ht(p) = 1. Therefore we have ht(M) = ht(p) + 1 = 2. Since R[T] is regular, M is locally generated by a regular sequence of length 2. Therefore hd_{R[T]}M = 1 where hd_{R[T]}M denotes the homological dimension of the <math>R[T]-module M. Since</sub></sub>

$$\operatorname{Ext}^{1}_{R[T]}(M, R[T]) \simeq \operatorname{Ext}^{2}_{R[T]}(R[T]/M, R[T]) \simeq R[T]/M,$$

we get $\operatorname{Ext}_{R[T]}^{1}(M, R[T])$ to be a cyclic R[T]-module. Therefore by [S, p. 8] there is an exact sequence $0 \to R[T] \to P \to M \to 0$ with P finitely generated projective R[T]-module of rank 2. But by [Mu, Theorem] P is free. Therefore $\mu(P) = 2$. Since M is an epimorphic image of P we have

$$\mu(M) \leq \mu(P) = 2 = \operatorname{ht}(M) \leq \mu(M).$$

Hence *M* is complete intersection.

Case 2. dim $R = n \ge 3$. By Lemma 2.3 and Proposition 2.4 there exist a field extension K/k and a local domain S contained in R such that

(1) $S = K[X_1, ..., X_n]_{\eta}$ where η is a maximal ideal of $K[X_1, ..., X_n]$ generated by $f(X_1), X_2, ..., X_n$ for some irreducible monic polynomial f(X) over K.

(2) There exists $h \in p \cap S$ such that S/hS = R/hR and therefore S[T]/hS[T] = R[T]/hR[T].

Let $\tilde{M} = M \cap S[T]$. Since $h \in \tilde{M}$, \tilde{M} is a maximal ideal of S[T]. Moreover $\tilde{M}R[T] = M$ and $ht(\tilde{M}) = ht(M)$. Therefore it is enough to prove that \tilde{M} is a complete intersection ideal of S[T].

Let $q = S \cap p = \tilde{M} \cap S$. Then $h \in q$ and hence S/q = R/p. Therefore dim S/q = 1. Let $D = K[X_1, \ldots, X_n]$, $\tilde{M}' = \tilde{M} \cap D[T]$, $q' = q \cap D = \tilde{M}' \cap D$. Then since $D_\eta = S$ we have $\tilde{M}'S[T] = \tilde{M}$, ht $(\tilde{M}') = ht(\tilde{M}) = n = \dim D$ and ht(q') = ht(q) = n - 1. Therefore dim $q' = \dim D/q' = 1$.

Since $n \ge 3$ by Proposition 2.5 there exists a subalgebra D' of D of dim n - 1 such that

(1) D = D'[Y],

(2) $\eta' D + q'$ is η -primary where $\eta' = \eta \cap D'$.

Consider the following commutative diagram

 \tilde{M}' is a prime ideal of D[T] of height $n = \dim D[T] - 1$. Therefore every prime ideal of D[T] which contains \tilde{M}' properly is a maximal ideal of D[T]. Let M_1 be one

such maximal ideal. Then since D', D, D[T] all are affine rings, $N_1 = M_1 \cap D'$ will be a maximal ideal of D'. If $\eta' = N_1$ then since $\tilde{M}' \subset M_1$ we have $\eta'D + q' \subset M_1 \cap$ D. But $\eta'D + q'$ is η -primary and η is maximal; therefore $\eta = M_1 \cap D$. Since $S = D_{\eta}, \eta = M_1 \cap D$ implies that $M_1S[T]$ is a prime ideal of S[T] which contains $\tilde{M}'S[T] = \tilde{M}$ properly which contradicts the fact that \tilde{M} is maximal. Therefore $N_1 \neq \eta'$.

The above discussion shows that no prime ideal of D[T] which contains \tilde{M}' properly can lie over a prime ideal of D' contained in η' . Therefore $\tilde{M}'S'[T]$ becomes a maximal of S'[T] of height = ht(\tilde{M}') where $S' = D'_{\eta'}[Y]$. Then by the D-G theorem $\tilde{M}'S'[T]$ is complete intersection. Now we have the following tower of rings:

$$D'[Y,T] = D[T] \hookrightarrow S'[T] \hookrightarrow S[T].$$

Since $\tilde{M}'S'[T]$ is complete intersection, $\tilde{M}'S[T] = \tilde{M}$ and $ht(\tilde{M}'S'[T]) = ht(\tilde{M}') = ht(\tilde{M})$, it follows that \tilde{M} is also complete intersection.

Thus the proof of Theorem 2.1 is complete.

3. We begin this section with the following theorem.

THEOREM 3.1. Let k be a field. Let $R = k[[X_1, X_2, ..., X_n]]$ be a power series ring in n variables over k. Let M be a maximal ideal of R[T]. Then M is complete intersection.

PROOF. Let $p = R \cap M$. If p = 0 then ht(M) = ht(p) + 1 = 1.

Since R[T] is a unique factorization domain, M will be a principal ideal and hence complete intersection.

If $p \neq 0$ then let f be a nonzero element of p. It is easy to see that there exist $Y_1, Y_2, \ldots, Y_n \in R$ such that $R = k[[Y_1, Y_2, \ldots, Y_n]]$ and f as a power series in Y_1, Y_2, \ldots, Y_n is regular in Y_n . Therefore without loss of generality we can assume that $f = f(X_1, \ldots, X_n)$ is regular in X_n . Then by the Weierstrass preparation theorem [**Z-S**, p. 139] there exists a unit $u(X_1, \ldots, X_n)$ in R such that

$$u(X_1,...,X_n)f(X_1,...,X_n) = f'(X_1,...,X_n) = X_n^r + g_1X_n^{r-1} + \cdots + g_r$$

where $g_i \in k[[X_1, \dots, X_{n-1}]]$ and $g_i(0, 0, \dots, 0) = 0$ for $1 \le i \le r$. Let $S = k[[X_1, \dots, X_{n-1}]][X_n] \subset R$. Then it also follows from the above-mentioned theorem that S/f'S = R/f'R. Therefore S[T]/f'S[T] = R[T]/f'R[T].

Let $\tilde{M} = M \cap S[T]$. Then since $f' \in p \cap S \subset \tilde{M}$ it follows that \tilde{M} is a maximal ideal of S[T], $\tilde{M}R[T] = M$ and $ht(\tilde{M}) = ht(M)$. Since $S[T] = k[[X_1, \ldots, X_{n-1}]][X_n, T]$ by the D-G theorem \tilde{M} is complete intersection. Hence M is also complete intersection.

This completes the proof of Theorem 3.1.

Let R be an equicharacteristic regular local ring. Let \hat{R} be the completion of R with respect to $\mathfrak{M}(R)$ -adic topology. Then $\hat{R} = k[[X_1, \ldots, X_n]]$ where k is the residue field of R and $n = \dim R$.

Now we state a proposition which is a generalization of Theorem 3.1.

PROPOSITION 3.2. Let R be an equicharacteristic regular local ring. Let \hat{R} be its completion with respect to $\mathfrak{M}(R)$ -adic topology. Let M be a maximal ideal of R[T]. Let $I = M\hat{R}[T]$. Then ht(I) = ht(M) and I is complete intersection.

PROOF. Let $\hat{R} = k[[X_1, \ldots, X_n]]$ where $k = R/\mathfrak{M}(R)$. Since *M* is locally generated by a regular sequence of length = ht(*M*) and $\hat{R}[T]$ is a faithfully flat extension of R[T] it follows that ht(*M*) = ht(*I*). If ht(*M*) = 1 then *M* itself is complete intersection and therefore *I* is also complete intersection. Now we assume that ht(*M*) ≥ 2 .

Let $J = I \cap \hat{R}$. Then $ht(I) = ht(M) \ge 2$ implies that $J \ne 0$. Then as in Theorem 3.1 we can assume that J contains an element f such that $f \in S$, S/fS = R/fR where $S = k[[X_1, \ldots, X_{n-1}]][X_n]$. Moreover we can assume that f is monic in X_n .

Let $I' = I \cap S[T]$. Since $f \in I'$ we have $\mu(I'/I'^2) = \mu(I/I^2)$ and $I'\hat{R}[T] = I$. But $\hat{R}[T]$ is faithfully flat over R[T], $M\hat{R}[T] = I$ and M is a maximal ideal of R[T]. Therefore $\mu(I/I^2) = \mu(M/M^2) = \operatorname{ht}(M) = \operatorname{ht}(I)$.

Since $S[T] = k[[X_1, ..., X_{n-1}]][T][X_n]$ and $f \in I'$, I' contains a monic polynomial in X_n with coefficients in $k[[X_1, ..., X_{n-1}]][T]$. Since $\mu(I'/I'^2) = \mu(I/I^2) = \operatorname{ht}(I)$ ≥ 2 and dim $S[T]/I' = \operatorname{dim} R[T]/I = 0$ (this is easy to check) by [Mo, Theorem 5] there exists a finitely generated projective S[T]-module P of rank $= \mu(I'/I'^2)$ and a surjective homomorphism $\psi: P \to I'$. But by [L-L, Theorem 2] P is free and therefore $\mu(P) = \operatorname{rank}(P) = \mu(I'/I'^2)$. This implies that $\mu(I') \le \mu(I'/I'^2) = \mu(I/I^2) =$ $\operatorname{ht}(I)$. Since $I'\hat{R}[T] = I$, we have $\mu(I) \le \mu(I') \le \operatorname{ht}(I) \le \mu(I)$. Therefore I is complete intersection.

This completes the proof of Proposition 3.2.

REMARK. In view of known results regarding projective modules over R[T] when R is regular local, one can obtain the results of §§2 and 3 in one stroke if one can prove the following theorem.

THEOREM. Let R be a regular local ring. Let M be a maximal ideal of R[T]. Then there exists a projective R[T]-module P of rank = ht(M) and a surjective homomorphism $\psi: P \to M$.

References

[BI] Birger Iversen, Generic local structure in commutative algebra, Lecture Notes in Math., vol. 310, Springer-Verlag, Berlin, Heidelberg and New York, 1973.

[D-G] E. D. Davis and A. V. Geramita, *Generation of maximal ideals in polynomial rings*, Trans. Amer. Math. Soc. 231 (1977), 497–505.

[L] H. Lindel, On a question of Bass, Quillen and Suslin concerning projective modules over polynomial rings, preprint.

[L-L] H. Lindel and W. Lütkebohmert, Projective Moduln über Polynomial Erweiterungen von Potenzreihenalgebren, Arch. Math. 28 (1977), 51-54.

[Mo] N. Mohan Kumar, On two conjectures about polynomial rings, Invent. Math. 46 (1978), 225-236.

[Mu] M. P. Murthy, Projective A[X]-modules, J. London Math. Soc. (2) 41 (1966), 453-456.

[S] J.-P. Serre, Sur les modules projectifs, Sem. Dubriel-Pisot, no. 2 (1960-61), Secrétariat Math., Paris, 1963. MR 28 # 3911.

[Z-S] O. Zariski and P. Samuel, Commutative algebra. Vol. 2, Van Nostrand, Princeton, N. J., 1958.

SCHOOL OF MATHEMATICS, TATA INSTITUTE OF FUNDAMENTAL RESEARCH, BOMBAY 400 005, INDIA