A NOTE ON COMPLETE INTERSECTIONS

BY

S. M. BHATWADEKAR

Abstract. Let R be a regular local ring and let $R[T]$ be a polynomial algebra in one variable over R. In this paper the author proves that every maximal ideal of $R[T]$ is complete intersection in each of the following cases: (1) R is a local ring of an affine algebra over an infinite perfect field, (2) R is a power series ring over a field.

Introduction. Let R be a regular local ring. Let $R[T]$ be a polynomial algebra in one variable over R. In [D-G] the following question has been asked.

Question. Is every maximal ideal of $R[T]$ complete intersection?

In this paper we prove that the answer to the above question is affirmative in each of the following cases:

(1) R is a local ring of an affine algebra over an infinite perfect field.

(2) R is a power series ring over a field.

This paper is divided into three sections. In §1 we fix notations and state a theorem without proof which is used in §§2 and 3. In §2 we prove some lemmas and propositions which are used in proving the result when R is a local ring of an affine algebra. §3 deals with the power series case.

1. Throughout this paper we consider commutative noetherian rings with 1. For a ring R, $\dim R$ denotes its Krull dimension which we always assume to be finite. If R is a local ring then $\mathfrak{m}(R)$ will always denote its unique maximal ideal. If M is a finitely generated R-module then $\mu(M)$ will denote the minimal number of generators of M. For an ideal I of R $\ht(I)$ denotes the height of I.

Definition. Let I be an unmixed ideal of R of height r. Then I is said to be complete intersection in R if $I = \Sigma_{i=1}^{r}Ra_i$, where a_1, a_2, \ldots, a_r is a regular R-sequence.

Remark. If R is Cohen-Macaulay then I is complete intersection if and only if $\mu(I) = \ht(I)$.

Let R and S be two local rings.

Definition. R is said to be a local extension of S if S is a subring of R and $\mathfrak{m}(S) = \mathfrak{m}(R) \cap S$. R is said to be unramified over S if $\mathfrak{m}(S)R = \mathfrak{m}(R)$ and $R/\mathfrak{m}(R)$ is separable over $S/\mathfrak{m}(S)$.

Let L/K be a finite separable extension of K. Then L is a simple extension of K. By a minimal polynomial of L over K we always mean an irreducible monic polynomial over K satisfied by a generator of L over K.

Now we state a theorem which has been proved in [D-G, Theorem 3].

Received by the editors November 26, 1980.
1980 Mathematics Subject Classification. Primary 13B25; Secondary 13F20.

© 1982 American Mathematical Society
0002-9947/81/0000-1029/$02.75
Theorem. Let R be a regular ring. Let $A = R[X, Y]$ be a polynomial algebra in two variables over R. Then every maximal ideal of A is complete intersection.

In subsequent sections this theorem will always be referred to as the D-G theorem.

2. In this section we prove the following theorem.

Theorem 2.1. Let k be an infinite perfect field. Let C be an affine k-algebra. Let \mathfrak{m} be a prime ideal of C such that $C_{\mathfrak{m}} = R$ is regular. Let M be a maximal ideal of $R[T]$. Then M is complete intersection.

For the proof of this theorem we need some lemmas and propositions.

Lemma 2.2. Let A be an affine domain of dim 1 over a field K. Let \mathfrak{m} be a nonregular maximal ideal of A such that A/\mathfrak{m} is a finite separable (therefore simple) extension of K. Then there exist $y_1, y_2, \ldots, y_r \in A$ such that

1. A is integral over $K[y_1]$,
2. the inclusion map $K[y_1]/\mathfrak{m} \cap K[y_1] \to A/\mathfrak{m}$ is an isomorphism,
3. $\mathfrak{m} = (f(y_1), y_2, \ldots, y_r)$ where $r = \mu(\mathfrak{m}/\mathfrak{m}^2)$ and f is a minimal polynomial of \mathfrak{m} over K.

Proof. Since A is one dimensional and \mathfrak{m} nonregular we have $\mu(\mathfrak{m}/\mathfrak{m}^2) = r > 2 = \dim A + 1$. Therefore by [Mo, Corollary 3] it follows that $\mu(\mathfrak{m}) = \mu(\mathfrak{m}/\mathfrak{m}^2)$.

Let $A/\mathfrak{m} = K[a]$. Let $f(X)$ be the minimal polynomial of a over K. Let $b \in A$ be such that $a = b \mod \mathfrak{m}$. Then α is separable over K and $f(X)$ is its minimal polynomial imply that $f(b) \in \mathfrak{m}$ and $\partial f(b)/\partial X \not\in \mathfrak{m}$. If $f(b) \in \mathfrak{m}^2$ then replacing b by $b + x$ for some $x \in \mathfrak{m} - \mathfrak{m}^2$ we get $f(b) \not\in \mathfrak{m}^2$. This in particular implies that b is not algebraic over K.

Since A is one dimensional affine, by the normalization theorem [Z-S, p. 200] there exists $y \in A$ such that A is integral over $K[y]$. Let $\mathfrak{m} \cap K[y] = (h(y))$. Let $y_1 = b + h(y)^l$ where l is a positive integer. Then by taking sufficiently large $l \geq 2$ one can see that $K[y, b] = K[y_1, y]$ is integral over $K[y_1]$. Moreover

$$f(y_1) = f(b) + (\partial f/\partial X)(b)h(y)^l + ch(y)^{2l}, \quad c \in K[y, b].$$

Since $f(b) \not\in \mathfrak{m}^2$, $h(y) \in \mathfrak{m}$ and $l \geq 2$ we get $f(y_1) \in \mathfrak{m} - \mathfrak{m}^2$. Since A is integral over $K[y, b]$, A is integral over $K[y_1]$ and $\mathfrak{m} \cap K[y_1] = (f(y_1))$. Therefore the inclusion map $K[y_1]/\mathfrak{m} \cap K[y_1] \to A/\mathfrak{m}$ is an isomorphism.

Let $A' = A/(f(y_1))$, $\mathfrak{m}' = \mathfrak{m}/(f(y_1))$. Then A' is zero dimensional and $\mu(\mathfrak{m}'/\mathfrak{m}'^2) = \mu(\mathfrak{m}/\mathfrak{m}^2) - 1 = r - 1 > 1$. Therefore by [Mo, Corollary 3] there exist $y_2', y_3', \ldots, y_r' \in A'$ such that $\mathfrak{m}' = (y_2', y_3', \ldots, y_r')$. Let y_i be a pull back of y_i' in A for $2 \leq i \leq r$. Then $\mathfrak{m} = (f(y_1), y_2, y_3, \ldots, y_r)$.

This completes the proof of Lemma 2.2. Now we state a lemma the proof of which is easy and can be found in [L, Lemma 2].

Lemma 2.3. Let k be a perfect field. Let C be an affine k-algebra. Let \mathfrak{m} be a prime ideal of C such that $C_{\mathfrak{m}} = R$ is regular. Then there exists a field extension K/k and regular affine K-domain B contained in R such that

1. $R = B_{\mathfrak{m}}$ for some maximal ideal \mathfrak{m} of B,
2. $B/\mathfrak{m} = R/\mathfrak{m}(R)$ is a finite separable extension of K.
The following two propositions are very crucial for the proof of Theorem 2.1.

Proposition 2.4. Let $k, C, \mathfrak{N}, R, K, B, \mathfrak{M}$ be as in Lemma 2.3. Let p be a prime ideal of R such that R/p is one dimensional and nonregular. Then R contains a local domain S such that

(1) S is a localization of a polynomial algebra C' over K at some maximal ideal η of C',

(2) there exists $h \in p \cap S$ such that the inclusion of S in R gives rise to an inclusion of S/hS in R/hR which is an isomorphism, i.e. $S/hS = R/hR$.

Proof. Since $R = B_{\mathfrak{M}}$, there exists a prime ideal q of B such that $qB_{\mathfrak{M}} = p$. Then B/q is one dimensional and \mathfrak{M}/q is a nonregular maximal ideal of B/q.

Let $A = B/q$, $\mathfrak{N} = \mathfrak{M}/q$. Then by Lemma 2.2 there exist $y_1, y_2, \ldots, y_r \in A$ satisfying properties 1, 2 and 3 of Lemma 2.2. Let $\phi: B \rightarrow A$ (= B/q) be the canonical map. Let $x_i \in B$ be such that $\phi(x_i) = y_i$ for $1 \leq i \leq r$. Then $q + (f(x_1), x_2, \ldots, x_r) = \mathfrak{N}$ and $f(x_1), x_2, \ldots, x_r$ generate \mathfrak{M}/q modulo $\mathfrak{N}/q + q$ where $r = \dim_{B/\mathfrak{M}}(\mathfrak{M}/\mathfrak{N}^2 + q)$. Let $\dim_{B/\mathfrak{M}}(\mathfrak{M}/\mathfrak{N}^2) = \mu(B/\mathfrak{M}) = \dim R = n$. Then

we get $\dim B/\mathfrak{M}(q/q \cap \mathfrak{N}^2) = n - r$. Let $x_{r+1}, x_{r+2}, \ldots, x_n \in q$ be such that $(x_{r+1}, x_{r+2}, \ldots, x_n) + q \cap \mathfrak{N}^2 = q$. Then it is easy to see that $(f(x_1), \ldots, x_r, x_{r+1}, \ldots, x_n) + \mathfrak{M} = \mathfrak{N}$.

Since $R = B_{\mathfrak{M}}$ is regular of dim n it follows that $(f(x_1), x_2, \ldots, x_n)R = \mathfrak{M}(R)$ and $f(x_1), x_2, \ldots, x_n$ are algebraically independent over K. Therefore x_1, x_2, \ldots, x_n are also algebraically independent over K and hence $C' = K[x_1, x_2, \ldots, x_n]$ is a polynomial algebra over K contained in B.

Let $\eta = C' \cap \mathfrak{N}$. Then $\eta = (f(x_1), x_2, \ldots, x_n)$ is a maximal ideal of C' and the inclusion map $C'/\eta \rightarrow B/\mathfrak{M}$ is an isomorphism. Moreover $A (= B/q)$ is integral over C'/η_1, where $\eta_1 = q \cap C'$ and \mathfrak{N} is the only maximal ideal of A lying over the maximal ideal η/η_1 of C'/η_1.

Let $L = \text{quotient field of } B$, $L' = \text{quotient field of } C'$. Then since B and C' are affine K-domains of dim n, L is a finite algebraic extension of L'. Let B' be the integral closure of C' in L. Then B' is a finitely generated C'-module contained in B.

Let $\mathfrak{M}' = \mathfrak{M} \cap B'$, $B'_\mathfrak{M} = R'$, $C'_\mathfrak{M} = S$. Then we get a tower of local extensions $S \rightarrow R' \rightarrow R$. Since $S/\mathfrak{M}(S) = C'/\eta \rightarrow B/\mathfrak{M} = R/\mathfrak{M}(R)$ and R is unramified over S, R is also unramified over R' and $R'/\mathfrak{M}(R') \rightarrow R/\mathfrak{M}(R)$. But since R' and R have the same quotient field L and R' is normal, by Zariski’s main theorem [BI, p. 93] we have $R' = R$.

Let $q' = q \cap B'$. Then we get a tower of integral extensions $C'/\eta_1 \rightarrow B'/q' \rightarrow B/q (= A)$. Since $\mathfrak{M}' (= \mathfrak{M}/q)$ is the only maximal ideal of A lying over η/η_1, \mathfrak{M}'/q' will be the only maximal ideal of B'/q' lying over η/η_1. Therefore $\eta B' + q'$ is \mathfrak{M}'-primary. Since $B'_\mathfrak{M} = R' = R$ and $\eta R = \mathfrak{M}(R)$ we have $\eta B' + \mathfrak{M}'^2 = \mathfrak{M}'$. But this implies that $\eta B' + \mathfrak{M}'^l = \mathfrak{M}'$ for every positive integer l. Since $\eta B' + q'$ is \mathfrak{M}'-primary, there exists a positive integer, say l_0, such that $\mathfrak{M}'^{l_0} \subset \eta B' + q'$. Therefore $\eta B' + q' = \mathfrak{M}'$. Moreover $\eta B' + \mathfrak{M}'^2 = \mathfrak{M}'$ implies that $\mathfrak{M}'/\eta B'$ is an
idempotent and therefore principal ideal of $B'/\eta B'$. Hence there exists $t \in q'$ such that $tB' + \eta B' = \mathfrak{m}'$.

Let $B'' = C[t], \mathfrak{m}'' = \mathfrak{m}' \cap B'', q'' = q' \cap B''$. It is obvious that $\mathfrak{m}'' B' = \mathfrak{m}'$ and $B''/\mathfrak{m}'' \cong B'/\mathfrak{m}'$. Since B' is a finitely generated B''-module we have $B''_{\mathfrak{m}''} = B'_{\mathfrak{m}'} = R$ and $q'' R = p$.

Since B'' is a simple integral extension of C' and C' is a unique factorization domain we get $B'' = C'[T]/(g(T))$ where $g(T)$ is a monic irreducible polynomial in T.

Let $\psi: C'[T] \rightarrow B''$ be the canonical map. Let $M = \psi^{-1}(q'')$. Since $\psi(T) = t \in \mathfrak{m}''$ we have $T \in M$. Also $\mathfrak{m}'' \cap C' = \eta$ implies $M \cap C' = \eta$. Therefore $M = TC'[T] + \eta C'[T]$.

Let $g(T) = t^t + a_{t-1} t^{t-1} + \cdots + a_0$. Then $g(t) = 0$ and $t \in q''$ implies $a_0 \in q_1 = q'' \cap C'$. Since $B''_{\mathfrak{m}''} = R$ and $\eta R = \mathfrak{m}(R)$ it follows that $a_1 \not\in \eta$, and therefore $tR = hR$ where $h = a_0$. Therefore the map $S/hS \rightarrow R/hR$ is an isomorphism. Thus the proof of Proposition 2.4 is complete.

Remark. Under the assumptions of Proposition 2.4 Lindel [L, Proposition 2] also has shown the existence of S and h. Our proof is a variation of his proof because of the requirement that h should belong to p.

Proposition 2.5. Let K be an infinite field. Let $D = K[X_1, X_2, \ldots, X_n]$ be a polynomial algebra over K. Let $\mathfrak{m} = (f(X_1), X_2, \ldots, X_n)$ be a maximal ideal of D. Let p be a prime ideal of dim 1 contained in \mathfrak{m}. If $n \geq 3$ then D contains a K-algebra D' of dim $n - 1$ such that

1. $D = D'[Y]$,
2. $p + \mathfrak{m}' D$ is \mathfrak{m}-primary where $\mathfrak{m}' = \mathfrak{m} \cap D'$.

Proof. If p contains one of the generators $f(X_1), X_2, \ldots, X_n$, say $f(X_1)$, then $p + (X_2, \ldots, X_n) = \mathfrak{m}$. Therefore by taking $D' = K[X_2, \ldots, X_n]$ we get the required result.

Now we assume that $X_i \not\in p$ for $2 \leq i \leq n$ and $f(X_1) \not\in p$. Then $p + (X_2, \ldots, X_n) = \mathfrak{m}$. Therefore by taking $D' = K[X_2, \ldots, X_n]$ we get the required result.

For every i, $2 \leq i \leq t$, let V_i denote a subspace of K^n consisting of n-tuples $(\lambda_1, \ldots, \lambda_n)$ such that $\lambda_1 f(X_1) + \lambda_2 X_2 + \cdots + \lambda_n X_n \in \mathfrak{m}_i$. Then $V_i \neq K^n$ for $2 \leq i \leq t$. Since K is infinite we have $\bigcup_{2 \leq i \leq t} V_i = K^n$. Let $(\beta_1, \beta_2, \ldots, \beta_n) \not\in V_i$ for every $i, 2 \leq i \leq t$. Let $Z = \beta_1 f(X_1) + \beta_2 X_2 + \cdots + \beta_n X_n$. Since $X_i \in \mathfrak{m}_i$ for every $i, 2 \leq i \leq t$, we have $\beta_i \neq 0$ for some $l, 1 \leq l \leq n - 1$.

If $\beta_2 = 0$ then taking $D' = D[X_1, X_3, \ldots, X_n]$ we get $X_n, Z \in \mathfrak{m}' = \mathfrak{m} \cap D'$, and the ideal $p + (X_n, Z)D$ is \mathfrak{m}-primary. Therefore $p + \mathfrak{m}' D$ is \mathfrak{m}-primary. Since $D = D'[X_2]$ we get the required result.

If $\beta_2 \neq 0$ then obviously $D = K[X_1, Z, X_3, \ldots, X_n]$. Taking $D' = K[Z, X_3, \ldots, X_n]$ we get $X_n, Z \in \mathfrak{m}' = \mathfrak{m} \cap D'$. Therefore as before we see that $\mathfrak{m}' D + p$ is \mathfrak{m}-primary. Since $D = D'[X_1]$ we get the required result.
Proof of Theorem 2.1. Let $p = M \cap R$. Then $\dim R/p \leq 1$. If R/p is regular then since $\operatorname{ht}(M/pR[T]) = 1$, $M/pR[T]$ is a principal ideal of $R/p[T]$. Therefore

$$\mu(M) \leq 1 + \mu(pR[T]) = 1 + \mu(p) = 1 + \operatorname{ht}(p) = \operatorname{ht}(M).$$

Since we always have $\operatorname{ht}(M) \leq \mu(M)$ we get the equality $\mu(M) = \operatorname{ht}(M)$ which shows that M is complete intersection.

Now we suppose that R/p is not regular. Then $\dim R/p = 1$, $\operatorname{ht}(M) = \operatorname{ht}(p) + 1 = \dim R$ and $\dim R \geq 2$.

Case 1. $\dim R = 2$. Then $\dim R/p = 1$ implies $\operatorname{ht}(p) = 1$. Therefore we have $\operatorname{ht}(M) = \operatorname{ht}(p) + 1 = 2$. Since $R[T]$ is regular, M is locally generated by a regular sequence of length 2. Therefore $\operatorname{hd}_{R[T]} M = 1$ where $\operatorname{hd}_{R[T]} M$ denotes the homological dimension of the $R[T]$-module M. Since

$$\operatorname{Ext}^1_{R[T]}(M, R[T]) \cong \operatorname{Ext}^2_{R[T]}(R[T]/M, R[T]) \cong R[T]/M,$$

we get $\operatorname{Ext}^1_{R[T]}(M, R[T])$ to be a cyclic $R[T]$-module. Therefore by [S, p. 8] there is an exact sequence $0 \to R[T] \to P \to M \to 0$ with P finitely generated projective $R[T]$-module of rank 2. But by [Mu, Theorem] P is free. Therefore $\mu(P) = 2$. Since M is an epimorphic image of P we have

$$\mu(M) \leq \mu(P) = 2 = \operatorname{ht}(M) \leq \mu(M).$$

Hence M is complete intersection.

Case 2. $\dim R = n > 3$. By Lemma 2.3 and Proposition 2.4 there exist a field extension K/k and a local domain S contained in R such that

1. $S = K[X_1, \ldots, X_n]_\eta$ where η is a maximal ideal of $K[X_1, \ldots, X_n]$ generated by $f(X_1), X_2, \ldots, X_n$ for some irreducible monic polynomial $f(X)$ over K.

2. There exists $h \in p \cap S$ such that $S/hS = R/hR$ and therefore $S[T]/hS[T] = R[T]/hR[T]$.

Let $\tilde{M} = M \cap S[T]$. Since $h \in \tilde{M}$, \tilde{M} is a maximal ideal of $S[T]$. Moreover $\tilde{M}R[T] = M$ and $\operatorname{ht}(\tilde{M}) = \operatorname{ht}(M)$. Therefore it is enough to prove that \tilde{M} is a complete intersection ideal of $S[T]$.

Let $q = S \cap p = \tilde{M} \cap S$. Then $h \in q$ and hence $S/q = R/p$. Therefore $\dim S/q = 1$. Let $D = K[X_1, \ldots, X_n]$, $\tilde{M}' = \tilde{M} \cap D[T]$, $q' = q \cap D = \tilde{M}' \cap D$. Then since $D_\eta = S$ we have $\tilde{M}'S[T] = \tilde{M}$, $\operatorname{ht}(\tilde{M}') = \operatorname{ht}(\tilde{M}) = n = \dim D$ and $\operatorname{ht}(q') = \operatorname{ht}(q) = n - 1$. Therefore $\dim q' = \dim D/q' = 1$.

Since $n > 3$ by Proposition 2.5 there exists a subalgebra D' of D of dim $n-1$ such that

1. $D = D'[Y]$,
2. $\eta'D + q'$ is η-primary where $\eta' = \eta \cap D'$.

Consider the following commutative diagram

$$
\begin{array}{ccc}
D' & \hookrightarrow & D'[Y] = D \\
\downarrow & & \downarrow \\
D[T] & \hookrightarrow & S[T]
\end{array}
$$

\tilde{M}' is a prime ideal of $D[T]$ of height $n = \dim D[T] - 1$. Therefore every prime ideal of $D[T]$ which contains \tilde{M}' properly is a maximal ideal of $D[T]$. Let M_1 be one
such maximal ideal. Then since \(D', D, D[T] \) all are affine rings, \(N_i = M_i \cap D' \) will be a maximal ideal of \(D' \). If \(\eta' = N_i \) then since \(M' \subset M_i \) we have \(\eta' D + q' \subset M_i \cap D \). But \(\eta' D + q' \) is \(\eta \)-primary and \(\eta \) is maximal; therefore \(\eta = M_i \cap D \). Since \(S = D_\eta, \eta = M_i \cap D \) implies that \(M_i S[T] \) is a prime ideal of \(S[T] \) which contains \(\tilde{M}'S[T] = \tilde{M} \) properly which contradicts the fact that \(\tilde{M} \) is maximal. Therefore \(N_i \neq \eta' \).

The above discussion shows that no prime ideal of \(D[T] \) which contains \(\tilde{M}' \) properly can lie over a prime ideal of \(D' \) contained in \(\eta' \). Therefore \(\tilde{M}'S[T] \) becomes a maximal of \(S'[T] \) of height = \(\text{ht}(\tilde{M}') \) where \(S' = D_\eta'[Y] \). Then by the D-G theorem \(\tilde{M}'S[T] \) is complete intersection. Now we have the following tower of rings:

\[
D'[Y,T] = D[T] \hookrightarrow S'[T] \hookrightarrow S[T].
\]

Since \(\tilde{M}'S[T] \) is complete intersection, \(\tilde{M}'S[T] = \tilde{M} \) and \(\text{ht}(\tilde{M}'S[T]) = \text{ht}(\tilde{M}') = \text{ht}(\tilde{M}) \), it follows that \(\tilde{M} \) is also complete intersection.

Thus the proof of Theorem 2.1 is complete.

3. We begin this section with the following theorem.

Theorem 3.1. Let \(k \) be a field. Let \(R = k[[X_1, X_2, \ldots, X_n]] \) be a power series ring in \(n \) variables over \(k \). Let \(M \) be a maximal ideal of \(R[T] \). Then \(M \) is complete intersection.

Proof. Let \(p = R \cap M \). If \(p = 0 \) then \(\text{ht}(M) = \text{ht}(p) + 1 = 1 \).

Since \(R[T] \) is a unique factorization domain, \(M \) will be a principal ideal and hence complete intersection.

If \(p \neq 0 \) then let \(f \) be a nonzero element of \(p \). It is easy to see that there exist \(Y_1, Y_2, \ldots, Y_n \in R \) such that \(R = k[[Y_1, Y_2, \ldots, Y_n]] \) and \(f \) as a power series in \(Y_1, Y_2, \ldots, Y_n \) is regular in \(Y_n \). Therefore without loss of generality we can assume that \(f = f(X_1, \ldots, X_n) \) is regular in \(X_n \). Then by the Weierstrass preparation theorem [Z-S, p. 139] there exists a unit \(u(X_1, \ldots, X_n) \) in \(R \) such that

\[
u(X_1, \ldots, X_n)f(X_1, \ldots, X_n) = f'(X_1, \ldots, X_n) = X_n^r + g_1X_n^{r-1} + \cdots + g_r,
\]

where \(g_i \in k[[X_1, \ldots, X_{n-1}]] \) and \(g_i(0, 0, \ldots, 0) = 0 \) for \(1 \leq i \leq r \). Let \(S = k[[X_1, \ldots, X_{n-1}][[X_n]] \subset R \). Then it also follows from the above-mentioned theorem that \(S/f'S = R/f'R \). Therefore \(S[T]/f'S[T] = R[T]/f'R[T] \).

Let \(\tilde{M} = M \cap S[T] \). Then since \(f' \in p \cap S \subset \tilde{M} \) it follows that \(\tilde{M} \) is a maximal ideal of \(S[T] \), \(\tilde{M}R[T] = M \) and \(\text{ht}(\tilde{M}) = \text{ht}(M) \). Since \(S[T] = k[[X_1, \ldots, X_{n-1}][[X_n, T]] \) by the D-G theorem \(\tilde{M} \) is complete intersection. Hence \(M \) is also complete intersection.

This completes the proof of Theorem 3.1.

Let \(R \) be an equicharacteristic regular local ring. Let \(\hat{R} \) be the completion of \(R \) with respect to \(\mathfrak{m}(R) \)-adic topology. Then \(\hat{R} = k[[X_1, \ldots, X_n]] \) where \(k \) is the residue field of \(R \) and \(n = \dim R \).

Now we state a proposition which is a generalization of Theorem 3.1.

Proposition 3.2. Let \(R \) be an equicharacteristic regular local ring. Let \(\hat{R} \) be its completion with respect to \(\mathfrak{m}(R) \)-adic topology. Let \(M \) be a maximal ideal of \(R[T] \). Let \(I = M \hat{R}[T] \). Then \(\text{ht}(I) = \text{ht}(M) \) and \(I \) is complete intersection.
PROOF. Let \(\hat{R} = k[[X_1, \ldots, X_n]] \) where \(k = R/\mathfrak{m}(R) \). Since \(M \) is locally generated by a regular sequence of length \(= \text{ht}(M) \) and \(\hat{R}[T] \) is a faithfully flat extension of \(R[T] \) it follows that \(\text{ht}(M) = \text{ht}(I) \). If \(\text{ht}(M) = 1 \) then \(M \) itself is complete intersection and therefore \(I \) is also complete intersection. Now we assume that \(\text{ht}(M) \geq 2 \).

Let \(J = I \cap \hat{R} \). Then \(\text{ht}(I) = \text{ht}(M) \geq 2 \) implies that \(J \neq 0 \). Then as in Theorem 3.1 we can assume that \(J \) contains an element \(f \) such that \(f \in S, S/fS = R/fR \) where \(S = k[[X_1, \ldots, X_{n-1}]][X_n] \). Moreover we can assume that \(f \) is monic in \(X_n \).

Let \(I' = I \cap S[T] \). Since \(f \in I' \) we have \(\mu(I'/I'^2) = \mu(I/I^2) \) and \(I'R[T] = I \). But \(\hat{R}[T] \) is faithfully flat over \(R[T] \), \(M\hat{R}[T] = I \) and \(M \) is a maximal ideal of \(R[T] \). Therefore \(\mu(I/I^2) = \mu(M/M^2) = \text{ht}(M) = \text{ht}(I) \).

Since \(S[T] = k[[X_1, \ldots, X_{n-1}]][T][X_n] \) and \(f \in I' \), \(I' \) contains a monic polynomial in \(X_n \) with coefficients in \(k[[X_1, \ldots, X_{n-1}]][T] \). Since \(\mu(I'/I'^2) = \mu(I/I^2) = \text{ht}(I) \geq 2 \) and \(\dim S[T]/I' = \dim R[T]/I = 0 \) (this is easy to check) by [Mo, Theorem 5] there exists a finitely generated projective \(S[T] \)-module \(P \) of rank \(= \mu(I'/I'^2) \) and a surjective homomorphism \(\psi: P \to I' \). But by [L-L, Theorem 2] \(P \) is free and therefore \(\mu(P) = \text{rank}(P) = \mu(I'/I'^2) \). This implies that \(\mu(I') \leq \mu(I'/I'^2) = \mu(I/I^2) = \text{ht}(I) \). Since \(I'\hat{R}[T] = I \), we have \(\mu(I) \leq \mu(I') \leq \text{ht}(I) \leq \mu(I) \). Therefore \(I \) is complete intersection.

This completes the proof of Proposition 3.2.

REMARK. In view of known results regarding projective modules over \(R[T] \) when \(R \) is regular local, one can obtain the results of §§2 and 3 in one stroke if one can prove the following theorem.

THEOREM. Let \(R \) be a regular local ring. Let \(M \) be a maximal ideal of \(R[T] \). Then there exists a projective \(R[T] \)-module \(P \) of rank \(= \text{ht}(M) \) and a surjective homomorphism \(\psi: P \to M \).

REFERENCES

SCHOOL OF MATHEMATICS, TATA INSTITUTE OF FUNDAMENTAL RESEARCH, BOMBAY 400 005, INDIA