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A NOTE ON COMPLETE INTERSECTIONS

BY

S. M. BHATWADEKAR

Abstract. Let R be a regular local ring and let R[T] be a polynomial algebra in one

variable over R. In this paper the author proves that every maximal ideal of R[T] is

complete intersection in each of the following cases; (1) R is a local ring of an affine

algebra over an infinite perfect field, (2) R is a power series ring over a field.

Introduction. Let F be a regular local ring. Let R[T] be a polynomial algebra in

one variable over R. In [D-G] the following question has been asked.

Question. Is every maximal ideal of R[T] complete intersection?

In this paper we prove that the answer to the above question is affirmative in each

of the following cases:

(1) F is a local ring of an affine algebra over an infinite perfect field.

(2) F is a power series ring over a field.

This paper is divided into three sections. In §1 we fix notations and state a

theorem without proof which is used in §§2 and 3. In §2 we prove some lemmas and

propositions which are used in proving the result when F is a local ring of an affine

algebra. §3 deals with the power series case.

1. Throughout this paper we consider commutative noetherian rings with 1. For a

ring R, dim R denotes its Krull dimension which we always assume to be finite. If R

is a local ring then 911(F) will always denote its unique maximal ideal. If M is a

finitely generated F-module then ¡i(M) will denote the minimal number of genera-

tors of M. For an ideal I of R\\i(I) denotes the height of /.

Definition. Let / be an unmixed ideal of R of height r. Then I is said to be

complete intersection in R if I = 2lri=xRai, where ax, a2,...,ar is a regular R-

sequence.

Remark. If R is Cohen-Macaulay then I is complete intersection if and only if

p(/) = ht(7).

Let R and S be two local rings.

Definition. R is said to be a local extension of S if S is a subring of R and

91t(S) = 911(F) D S. R is said to be unramified over S if GJt(S)R = 911(F) and

F/91t(F) is separable over 5/91L(S).

Let L/K be a finite separable extension of K. Then L is a simple extension of K.

By a minimal polynomial of L over K we always mean an irreducible monic

polynomial over K satisfied by a generator of L over K.

Now we state a theorem which has been proved in [D-G, Theorem 3].
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Theorem. Let R be a regular ring. Let A — R[X, Y] be a polynomial algebra in two

variables over R. Then every maximal ideal of A is complete intersection.

In subsequent sections this theorem will always be referred to as the D-G theorem.

2. In this section we prove the following theorem.

Theorem 2.1. Let k be an infinite perfect field. Let C be an affine k-algebra. Let ^

be a prime ideal of C such that C^ = R is regular. Let M be a maximal ideal of R[T].

Then M is complete intersection.

For the proof of this theorem we need some lemmas and propositions.

Lemma 2.2. Let A be an affine domain of dim 1 over a field K. Let 911 be a

nonregular maximal ideal of A such that ,4/911 is a finite separable (therefore simple)

extension ofK. Then there exist y x, y2,...,yr E A such that

(\)A is integral over K[yx],

(2) the inclusion map Ä'[/1]/91t DK[yx] -* A/tyfLis an isomorphism,

(3) 911= (f(yx), y2,...,yr) where r — p(9H/91t2) and fis a minimal polynomial of

AßL over K.

Proof. Since A is one dimensional and 9H nonregular we have p(91L/91L2) = r 3*

2 = dim A+ 1. Therefore by [Mo, Corollary 3] it follows that p(9Ît) = p(9ÏÎ/9lï2).
Let ,4/911 = K[a]. Let/(X) be the minimal polynomial of a over K. Let b E A be

such that a = ¿> mod 911. Then a is separable over K and f(X) is its minimal

polynomial imply that f(b)_E 911 and df(b)/dX gjJÜ, If f(b) E 9t2 then replacing
b by b + x for some x E 911 — 9H2 we get f(b) E 91L2. This in particular implies that

b is not algebraic over K.

Since A is one dimensional affine, by the normalization theorem [Z-S, p. 200]

there exists y E A such that A is integral over K[y]. Let 91L ClÄ^y] = (h(y)). Let

yx = b + h(y)1 where / is a positive integer. Then by taking sufficiently large / 3* 2

one can see that K[y, b] = K[yx, y] is integral over K[yx]. Moreover

f(y¡)=f(b) + (df/dX)(b)h(y)' + ch(y)1',        c E K[y, b].

Since f(b) E 91t2, h(y) E 9Ï and / s* 2 we get f\yx) E 9Ü -91t2. Since A is integral

over K[y, b], A is integral over K[yx] and tylLHKly^ = (f(yx)). Therefore the

inclusion map K[ y,]/91t nÄrf^,] -* yl/91tis an isomorphism.

Let A' = A/(f(yx))^JJl' = ^t/(f(yx)). Then A' is zero dimensional and

p(91t'/9H'2) = p(9lc/91t2) - 1 = r - 1 > 1. Therefore by [Mo, Corollary 3] there

existy2, y¡,...,y'r E A' such that 911' = (y2, y¡,...,y'r). Lety¡ be a pull back of y[ in

A for 2 « i « r. Then 9Ï = (f(yx), y2, y„... ,yr).

This completes the proof of Lemma 2.2. Now we state a lemma the proof of which

is easy and can be found in [L, Lemma 2].

Lemma 2.3. Let k be a perfect field. Let C be an affine k-algebra. Let !g be a prime

ideal of C such that C- = R is regular. Then there exists a field extension K/k and

regular affine K-domain B contained in R such that

( 1) R = Bofa for some maximal ideal 91L of B,

(2) F/91L = F/91t(F) is a finite separable extension of K.
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The following two propositions are very crucial for the proof of Theorem 2.1.

Proposition 2.4. Let k, C,%, R, K, B, 9H be as in Lemma 2.3. Let p be a prime

ideal of R such that R/p is one dimensional and nonregular. Then R contains a local

domain S such that

(1) S is a localization of a polynomial algebra C over K at some maximal ideal tj of

C,
(2) there exists h E p D S such that the inclusion of S in R gives rise to an inclusion

of S/hS in R/hR which is an isomorphism, i.e. S/hS = R/hR.

Proof. Since R = B^ there exists a prime ideal q of B such that qB^ = p. Then

B/q is one dimensional and 91t/# is a nonregular maximal ideal of B/q.

Let A — B/q, 9TL = 91t/g. Then by Lemma 2.2 there exist yx, y2,...,yrE A

satisfying properties 1, 2 and 3 of Lemma 2.2. Let <j>: B -> A (= B/q) be the

canonical map. Let x¡ E B be such that <¡>(xi)=yí for 1 < i < r. Then q +

(f(xx), x2,...,xr) — 9H and f(xx), x2,...,xr generate 9Hmod 91L2 + q where r =

dimÄ/gil(91l/91L2 + q). Let dimß/%(91t/91t2) = pCDUA«.) = dim R = n. Then
since we have the following exact sequence

0 - q/q n 91L2 -» 9H/91L2 -» 9H/9H2 + q -. 0

we get dimB/c^q/q n 91t2) = n — r. Let xr+x, xr+2,...,xnE q be such that

(xr+x, xr+2,. . . ,xn) + q n 91t2 = q. Then it is easy to see that

(f(xx),...,xr, xr+x,...,xn) + 91L2 = 91L. Since R — B^ is regular of dim n it fol-

lows that (f(xx), x2,...,xn)R = 911(F) and/(*,), x2,.. .,xn are algebraically inde-

pendent over K. Therefore xx, x2,...,xn are also algebraically independent over K

and hence C = K[xx, x2,... ,xn] is a polynomial algebra over K contained in B.

Let T) = C D 911. Then 7j = (f(xx), x2,.. .,x„) is a maximal ideal of C and the

inclusion map C'/ij -» F/91L is an isomorphism. Moreover A (— B/q) is integral

over C'/qx where qx = q n C and 91L is the only maximal ideal of A lying over the

maximal ideal i)/qx of C'/qx.

Let L = quotient field of B, L' = quotient field of C. Then since B and C are

affine ^-domains of dim n, L is a finite algebraic extension of L'. Let B' be the

integral closure of C in L. Then B' is a finitely generated C'-module contained in B.

Let 911' = 911 n B', Béfo, = R', C,' = S. Then we get a tower of local extensions

S^R'^R. Since 5/9IL(5) = C'/ij ^F/91t = F/91t(F) and F is unramified

over S, R is also unramified over R' and F'/91t(F') ^F/9It(F). But since R' and

F have the same quotient field L and R' is normal, by Zariski's main theorem [BI, p.

93] we have R' = R.

Let q' = q D F'. Then we get a tower of integral extensions C'/qx «♦ F'/^r' =» F/^

(= yl). Since 91L (= 911/^) is the only maximal ideal of A lying over r\/qx, 9lt'/#'

will be the only maximal ideal of B'/q' lying over i\/qx. Therefore tjF' + q' is

9H'-primary. Since B^, = R' = R and tjR = 91L(R) we have i\B' + 91L'2 = 911'.

But this implies that tjF' + 911'' = 91L' for every positive integer /. Since r\B' + q' is

91t'-primary, there exists a positive integer, say l0, such that 9IL''° E t\B' + q'.

Therefore tjF' + q' = 911'. Moreover i\B' + 91L'2 = 91L' implies that 91t'/7jF' is an
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idempotent and therefore principal ideal of F'/tjF'. Hence there exists t E q' such

that tB' + r]B' = 911'.

Let B" = C'[t], 911" = 911' D B", q" = q' n B". It is obvious that 91t"F' = 911'

and 5"/9H" -> F'/9H'. Since B' is a finitely generated F"-module we have B^„ =

Bifo, = R and q"R = p.

Since B" is a simple integral extension of C and C is a unique factorization

domain we get B" = C'[T]/(g(T)) where g(T) is a monic irreducible polynomial in

F.

Let t//: C'[T] ^ B" ( = C'[r]) be the canonical map. Let M = t//"'(91t"). Since

i//(F) = / E 91L" we have T E M. Also 911" n C = tj implies A/ n C = tj. There-

fore A/ = TC'[T] + tjC'[F].

Let g(F) = T' + a,-,^-1 + • • • + ß,F + a0. Then g(/) = 0 and / E q" implies

a0 E qx = q" Fl C. Since Ä&,,, = F and tjä = 911(F) it follows that ax E tj, and

therefore tR — hR where h — a0. Therefore the map S/hS -* R/hR is an isomor-

phism. Thus the proof of Proposition 2.4 is complete.

Remark. Under the assumptions of Proposition 2.4 Lindel [L, Proposition 2] also

has shown the existence of S and h. Our proof is a variation of his proof because of

the requirement that h should belong to p.

Proposition 2.5. Let K be an infinite field. Let D = K[XX, X2,...,Xn] be a

polynomial algebra over K. Let 911 = ( /( Xx ), X2,..., Xn ) be a maximal ideal of D. Let

p be a prime ideal of dim 1 contained in 911. If n 3= 3 then D contains a K-algebra D'

of dim n — 1 such that

(l)D = D'[Y],

(2) p + 91L'D is ^primary where 9H' = 9H D D'.

Proof. If p contains one of the generators f(Xx), X2,...,Xn, say f(Xx), then

p + (X2,... ,Xn) = 911. Therefore by taking D' = K[X2,...,X„] we get the required

result.

Now we assume that X¡ E p for 2 « / < n and /( Xx) E p. Then p + (X„) = I is a

zero dimensional ideal of D and hence contained in only finitely many maximal

ideals of D. Let F = {91L = 911,, 9IL2,... ,9H,} be a finite set of maximal ideals of D

containing F

For every /', 2 < 1 < t, let V¡ denote a subspace of K" consisting of «-tuples

(A,,...,A„) such that Xxf(Xx) + X2X2+ ■■■ +XnXn E %. Then V¡ * K" for 2 < i

< t. Since K is infinite we have U 2</</ V¡ ¥= K". Let (ßx, ß2,.. .,ß„) be such that

(ßx,ß2,...,ßn) E Vi for every i, 2 < 1 < t. Let Z = ßxf(Xx) + ß2X2 + --- +ßnXn.

Since Xn E 911, for every i, 2 « i < t, we have ß, ¥= 0 for some /, 1 < / < n - 1.

If j82 = 0 then taking D' = D[XX, X3,.. .,Xn] we get Xn, Z E 91L' = 91L n D', and

the ideal p + (Xn, Z)D is 9It-primary. Therefore p + 91L'£> is 9H-primary. Since

D — D'[X2] we get the required result.

If 02 ̂  0 then obviously/) = K[XX, Z, X3,.. .,X„\ Taking/)' = K[Z, X3,.. .,Xn]

we get X„, Z E 9t' = 9H n D'. Therefore as before we see that 91t'F> + p is

91t-primary. Since D = D'[Xx] we get the required result.
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Proof of Theorem 2.1. Let p = M n R. Then dim R/p < 1. If R/p is regular

then since ht(M/pR[T]) = 1, M/pR[T] is a principal ideal of F/p[F]. Therefore

H(M) =£ 1 + ¡x(pR[T]) = 1 + p(/>) = 1 + ht(p) = ht(M).

Since we always have ht(Af) <p(M) we get the equality ¡i(M) = ht(M) which

shows that M is complete intersection.

Now we suppose that R/p is not regular. Then dim R/p — l,ht(M) = hl(p) + 1

= dim R and dim R>2.

Case 1. dim R = 2. Then dim R/p — 1 implies ht(p) = 1. Therefore we have

ht(M) = ht(p) + 1 = 2. Since R[T] is regular, M is locally generated by a regular

sequence of length 2. Therefore hdR[T]M = 1 where hdR[TXM denotes the homologi-

cal dimension of the F[F]-module M. Since

ExtR[T](M, R[T]) - Ext2R[T](R[T]/M, R[T]) - R[T]/M,

we get ExtR[T](M, R[T]) to be a cyclic F[F]-module. Therefore by [S, p. 8] there is

an exact sequence 0 -» R[T] -» F — M -» 0 with F finitely generated projective

F[F]-module of rank 2. But by [Mu, Theorem] F is free. Therefore n(P) = 2. Since

A/ is an epimorphic image of F we have

n(M)<fi(P) = 2 = ht(A/) <p(M).

Hence M is complete intersection.

Case 2. dim F = n > 3. By Lemma 2.3 and Proposition 2.4 there exist a field

extension K/k and a local domain S contained in R such that

(1) S = K[Xx,...,Xn]r¡ where tj is a maximal ideal of K[Xx,...,Xn] generated by

f(Xx), X2,...,Xn for some irreducible monic polynomial f(X) over K.

(2) There exists h E p D S such that S/hS = R/hR and therefore S[T]/hS[T] =

R[T]/hR[T].
Let M = A/ n 5[F]. Since « E M, M is a maximal ideal of S[T]. Moreover

MR[T] = M and ht(M) = ht(Ai). Therefore it is enough to prove that A? is a

complete intersection ideal of S[T].

Let q=Sr\p = MDS. Then h E q and hence S/q = R/p. Therefore dim S/q

= 1. Let D = K[Xx,...,Xn], M' = M D D[T], q' = q n D = M' D D. Then since

D^ = 5 we have A/'S[F] = A/, ht(M') = ht(M) = n = dim D and ht(^f') = ht(q) =

n — 1. Therefore dim ¿¡r' = dim Z)/^' = 1.

Since « 3= 3 by Proposition 2.5 there exists a subalgebra D' of Z> of dim n — 1

such that

(\)D = D'[Y],

(2) tj'D + q' is Tj-primary where tj' = tj D D'.

Consider the following commutative diagram

D'    ^    D'[Y] = D    ^    DV = S

D[T] t* 5[F]

M' is a prime ideal of D[T] of height « = dim D[T]— 1. Therefore every prime

ideal of D[T] which contains M' properly is a maximal ideal of D[T]. Let M, be one
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such maximal ideal. Then since D', D, D[T] ail are affine rings, Nx — Mx C\ D' will

be a maximal ideal of D'. If tj' = Nx then since M' C Mx we have tj'F> + q' C Mx D

D. But Tj'Z) + q' is Tj-primary and tj is maximal; therefore tj = A/, D D. Since

S — Dn, tj = M, n Z) implies that A/^F] is a prime ideal of S[T] which contains

M'S[T] — M properly which contradicts the fact that M is maximal. Therefore

Nx # T,'.

The above discussion shows that no prime ideal of D[T] which contains M'

properly can lie over a prime ideal of D' contained in tj'. Therefore M'S'[T] becomes

a maximal of S'[T] of height = ht(M') where S' = D^,[Y]. Then by the D-G

theorem M'S'[T] is complete intersection. Now we have the following tower of

rings:

D'[Y, T] = D[T]^S'[T] c->S[F].

Since M'S'[T] is complete intersection, M'S[T] = M and ht(M'S'[T]) = ht(M')

= ht(M), it follows that M is also complete intersection.

Thus the proof of Theorem 2.1 is complete.

3. We begin this section with the following theorem.

Theorem 3.1. Let k be a field. Let R = k[[Xx, X2,.. .,Xn]] be a power series ring in

n variables over k. Let M be a maximal ideal of R[T]. Then M is complete intersection.

Proof. Letp = R D M. If p = 0 then ht(M) = ht(p) + 1 = 1.

Since R[T] is a unique factorization domain, M will be a principal ideal and hence

complete intersection.

If p ¥" 0 then let / be a nonzero element of p. It is easy to see that there exist

Yx,Y2,...,Yn E R such that R = k[[Yx, Y2,.. .*Yn]] and / as a power series in

Yx, Y2,..., Yn is regular in Y„. Therefore without loss of generality we can assume

that f = f(Xx,...,Xn)is regular in Xn. Then by the Weierstrass preparation theorem

[Z-S, p. 139] there exists a unit u(Xx,...,Xn)in R such that

u(Xx,...,Xn)f(Xx,...,X„)=f'(Xx,...,Xn) = X,r, + gxXri + ---+gr

where g, E k[[Xx,... ,Xn_x]] and g,(0,0,... ,0) = 0 for 1 < i < r. Let S =

k[[Xx,...,Xn_x]][Xn] C R. Then it also follows from the above-mentioned theorem

that S/f'S = R/f'R. Therefore S[T]/f'S[T] = R[T]/f'R[T].
Let M — M n S[T]. Then since /' E p D 5 E M it follows that M is a maximal

ideal    of    S[T],    MR[T] = M    and    ht(M) =  ht(Af).    Since    S[T) =

k[[Xx,...,Xn_ x]][Xn, T] by the D-G theorem M is complete intersection. Hence M is

also complete intersection.

This completes the proof of Theorem 3.1.

Let R be an equicharacteristic regular local ring. Let R be the completion of R

with respect to 91t(F)-adic topology. Then R = k[[Xx,.. .,Xn]] where k is the

residue field of R and n = dim R.

Now we state a proposition which is a generalization of Theorem 3.1.

Proposition 3.2. Let R be an equicharacteristic regular local ring. Let R be its

completion with respect to 9ll(F)-ac/ic topology. Let M be a maximal ideal of R[T].

Let I = MR[T]. Then ht(I) = ht(Af) and I is complete intersection.
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Proof. Let R = k[[Xx,...,X„]] where k = F/91L(F). Since M is locally generated

by a regular sequence of length = ht(M) and R[T] is a faithfully flat extension of

R[T] it follows that ht(Af) = ht(7). If ht(M) = 1 then M itself is complete

intersection and therefore / is also complete intersection. Now we assume that

ht(M)>2.

Let J = I n R. Then ht(7) = ht(Af) 3= 2 implies that J =£ 0. Then as in Theorem

3.1 we can assume that J contains an element/such that/ E S, S/fS = R/fR where

5 = k [[ Xx,..., Xn _, ]][ Xn ]. Moreover we can assume that / is monic in Xn.

Let I' = I il S[T]. Since / E F we have K1'/1'2) = P(V/2) and I'R[T] = I.

But R[T] is faithfully flat over R[T], MR[T] = 1 and M is a maximal ideal of R[T].

Therefore p(//12) = n(M/M2) = ht(M) = ht(I).

Since S [ T ] - k [[ Xx,..., Xn _, ]][ F ][ Xn ] and / E F, F contains a monic polynomial

in A; with coefficients in k[[Xx,.. .,Xn_x]][T]. Since n(I'/I'2) = p(///2) = ht(7)

s= 2 and dim 5[F]/F = dim F[F]/7 = 0 (this is easy to check) by [Mo, Theorem 5]

there exists a finitely generated projective S[F]-module F of rank = p(/'//'2) and a

surjective homomorphism \¡>: P -> /'. But by [L-L, Theorem 2] F is free and therefore

p(F) = rank(F) = p(F/F2). This implies that n(I') < fi(I'/I'2) = p(///2) =

ht(7). Since I'R[T] = /, we have p(7) < p(F) < ht(7) < p(/). Therefore / is

complete intersection.

This completes the proof of Proposition 3.2.

Remark. In view of known results regarding projective modules over R[T] when

R is regular local, one can obtain the results of §§2 and 3 in one stroke if one can

prove the following theorem.

Theorem. Let R be a regular local ring. Let M be a maximal ideal of R[T]. Then

there exists a projective R[T]-module P of rank = ht(M) and a surjective homomor-

phism \p: P -» A/.
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