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KERNEL OF LOCALLY NILPOTENT R-DERIVATIONS

OF R[X,Y ]

S. M. BHATWADEKAR AND AMARTYA K. DUTTA

Abstract. In this paper we study the kernel of a non-zero locally nilpotent
R-derivation of the polynomial ring R[X, Y ] over a noetherian integral domain
R containing a field of characteristic zero. We show that if R is normal then
the kernel has a graded R-algebra structure isomorphic to the symbolic Rees
algebra of an unmixed ideal of height one in R, and, conversely, the symbolic
Rees algebra of any unmixed height one ideal in R can be embedded in R[X, Y ]
as the kernel of a locally nilpotent R-derivation of R[X, Y ]. We also give a
necessary and sufficient criterion for the kernel to be a polynomial ring in
general.

1. Introduction

Locally nilpotent R-derivations of the polynomial ring R[X,Y ], where R is a
U.F.D. containing a field of characteristic zero, have been studied recently by
Daigle-Freudenburg in ([D-F]). In this situation the kernel of a non-zero locally
nilpotent R-derivation of R[X,Y ] is a polynomial ring in one variable over R ([D-F],
2.1). In our paper we first investigate locally nilpotent R-derivations of R[X,Y ]
over a noetherian normal domain R containing a field of characteristic zero. We
first describe the structure of the kernel of such derivations as a graded R-algebra.
We prove :

Theorem 3.5. Let R be a noetherian normal domain containing a field of charac-
teristc zero and let D be a non-zero locally nilpotent R-derivation of the polynomial

ring R[X,Y ] with kernel A. Then A has the structure of a graded ring
⊕
n≥0

An with

A0 = R and An a finite reflexive R-module of rank one for every n. In fact, when
R is not a field, there exists an ideal I in R of unmixed height one such that A is

isomorphic to the symbolic Rees algebra
⊕
n≥0

I(n)T n as a graded R-algebra.

Conversely, let R be as above and let I be any ideal of unmixed height one in R.
Then there exists a non-zero locally nilpotent R-derivation of R[X,Y ] whose kernel

is isomorphic to the symbolic Rees algebra
⊕
n≥0

I(n)T n as a graded R-algebra.

In fact we show (Proposition 3.3) that when R is a noetherian normal domain,
any inert subring of R[X,Y ] of transcendence degree one over R has the graded
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R-algebra structure described above. The crucial step in the proof of this result is
a patching lemma (3.1).

The converse part of Theorem 3.5 would show (see 3.6) that the kernel of a locally
nilpotent R-derivation of R[X,Y ] need not be finitely generated over R even when
R is normal. We discuss the question of finite generation of the kernel and its
connection with the class group of R (3.7 and 3.8). We also give an example (3.11)
to show that Theorem 3.5 is not valid if R is not normal.

In ([Rn]), Rentschler had shown that over a field K of characteristic zero the
kernel of a non-zero locally nilpotent K-derivation of K[X,Y ] is a polynomial ring
K[F ] where F is a variable in K[X,Y ]. As mentioned earlier, in ([D-F]), Daigle and
Freudenburg have investigated locally nilpotent R-derivations of R[X,Y ], where R
is a U.F.D. containing a field of characteristic zero. They proved that the kernel
of a non-zero locally nilpotent R-derivation of R[X,Y ] is a polynomial ring R[F ]
([D-F], 2.1) and gave a necessary and sufficient condition for F to be a variable in
R[X,Y ] ([D-F], 2.5). In general, when R is not a U.F.D., the kernel need not be
a polynomial ring over R (in fact it need not be finitely generated over R), even
when R is normal, as Theorem 3.5 (quoted above) shows.

In Section 4 of our paper we generalise the result ([D-F], 2.1) in another direction
—we give a necessary and sufficient condition for the kernel to be a polynomial
ring in one variable over R where R is any noetherian domain containing a field of
characteristic zero. We prove :

Theorem 4.7. Let R be a noetherian domain containing a field of characteristic
zero and let D be a non-zero irreducible locally nilpotent R-derivation of the poly-
nomial ring R[X,Y ]. Then the kernel A of D is a polynomial ring in one variable
over R if and only if DX and DY either form a regular R[X,Y ]-sequence or are
comaximal in R[X,Y ]. Moreover if DX and DY are comaximal in R[X,Y ], then
R[X,Y ] is a polynomial ring in one variable over A.

A crucial step in the proof of Theorem 4.7 is Proposition 4.5, which gives a
necessary and sufficient condition for a singly generated R-subalgebra of R[X,Y ]
to be an inert subring of R[X,Y ].

We also show (Proposition 4.11) that in the situation of Theorem 3.5 all locally
nilpotent A-derivations of R[X,Y ] has a graded A-module structure.

In Section 2 we set up notations and quote the results which we use. In Section
3 we investigate in detail the case of noetherian normal domains and in Section 4
we discuss results over general noetherian domains.

2. Preliminaries

In this section we first set up the notations, define some of the terms used in the
paper and recall their well-known properties. Finally we quote the results which
will be used in the paper.

Notations. Throughout the paper we will assume our rings to be commutative.
For a ring R, R∗ will denote the multiplicative group of units of R. For a prime ideal
P of R, k(P ) denotes the field RP /PRP . The notation A = R[n] will mean that A is
a polynomial ring in n variables overR. For an element F ∈ R[X1, · · · , Xn](= R[n]),
FXi denotes the partial derivative of F with respect to Xi.

Definitions. Let R be an integral domain with quotient field K. An element F ∈
R[X1, · · · , Xn] is said to be a generic variable if K[X1, · · · , Xn] = K[F ][n−1] and a
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residual variable if for every prime ideal P of R, k(P )[X1, · · · , Xn] = k(P )[FP ][n−1],
where FP denotes the image of F in k(P )[X1, · · · , Xn].

Let B be an integral domain. A derivation D of B is said to be locally nilpotent
if for each b ∈ B, there exists a positive integer n (n may depend on b) such that
Dn(b) = 0. The derivation D on B is said to be irreducible if the only principal
ideal of B containing D(B) is B, or, equivalently, D = bD′ (with b ∈ B and D′ a
derivation on B) implies that b ∈ B∗.

A subring A of a domain B is said to be an inert subring of B if for any pair of
non-zero elements x, y ∈ B, the product xy ∈ A if and only if both x, y ∈ A.

A routine verification shows that an inert subring of a U.F.D. is a U.F.D.. If
A is an inert subring of B, then A is algebraically closed in B; further if S is a
multiplicatively closed subset in A then S−1A is an inert subring of S−1B.

Let B be an integral domain containing a field of characteristic zero. It is well-
known ([D-F], 1.1(1)) that the kernel A of a locally nilpotent derivation D on B
is an inert subring of B. Also it is easy to see that for any multiplicatively closed
subset S of A\{0}, D extends to a locally nilpotent derivation of S−1B with kernel
S−1A and B∩S−1A = A. Moreover if D is non-zero, then the transcendence degree
of B over A is one ([D-F], 1.1(4)).

For an ideal I in a noetherian domain R, let AssR (R/I) = {P1, · · · , Pr} and

S = R \ (
⋃

1≤i≤r
Pi). Then the n-th symbolic power I(n) of I is defined to be the

ideal I(n) = R ∩ In(S−1R).
We now quote the results to be used.

Lemma 2.1. For a non-zero element a in a noetherian domain R and a multi-
plicatively closed subset T of R the n-th symbolic power of the ideal I = R∩aT−1R
is given by I(n) = R ∩ anT−1R.

Proof. We may assume I is a proper ideal of R. Let aR = (N1 ∩ · · · ∩ Nr) ∩
(Nr+1∩· · ·∩Ns) be a primary decomposition, with Ni being Pi-primary, such that
Pi ∩ T = ∅ precisely for 1 ≤ i ≤ r. Then I = (N1 ∩ · · ·Nr) and aT−1R = IT−1R.

Moreover, T ⊆ S, where S = R \ (
⋃

1≤i≤r
Pi). Therefore

R ∩ anT−1R = R ∩ InT−1R ⊆ R ∩ InS−1R = I(n).

Conversely let x ∈ I(n). Then there exists s ∈ S such that sx ∈ In (⊆ R∩anT−1R).
Since AssR (R/anR) = AssR (R/aR), we have

AssT−1R (T−1R/anT−1R) = AssT−1R (T−1R/aT−1R) = {T−1P1, · · · , T−1Pr}.
Now let anT−1R = Q1∩· · ·∩Qr be a primary decomposition with Qi being T−1Pi-
primary. Now sx ∈ Qi ∀i but s /∈ T−1Pi for any 1 ≤ i ≤ r. Therefore x ∈ Qi for
every 1 ≤ i ≤ r, and hence x ∈ R ∩ anT−1R. Hence the result.

Lemma 2.2. Let R be a noetherian local ring such that depth R ≥ 2 and I an
ideal in R such that depth (R/I) ≥ 1. Then depthR I ≥ 2.

Proof. Let k be the residue field of R. By our assumptions Hom (k,R), Ext1 (k,R)
and Hom (k,R/I) are all zero modules. Hence from the exact sequence

0 → Hom(k, I) → Hom(k,R) → Hom(k,R/I) → Ext1(k, I) → Ext1(k,R)
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it follows that Hom (k, I) and Ext1 (k, I) are both zero and therefore depth I ≥
2.

We now state a standard result ([B-H], 1.4.1, pg.19) which gives a criterion for
a module to be reflexive.

Proposition 2.3. Let R be a noetherian ring and M a finite R-module. Then M
is reflexive if and only if

(i) MP is reflexive for all P ∈ Spec R with depth RP ≤ 1, and
(ii) depth MP ≥ 2 for all P ∈ Spec R with depth RP ≥ 2.

The following result on finite generation is due to Onoda ([O], 2.14, 2.20).

Theorem 2.4. Let R be a noetherian domain and A an overdomain of R such
that A[1/x] is finitely generated over R for some x(6= 0) ∈ A. Then the following
statements hold:

(i) If S is a multiplicatively closed subset of R such that S−1A is finitely generated
over S−1R, then there exists s ∈ S such that A[1/s] is finitely generated over
R.

(ii) A is finitely generated over R if and only if AM is finitely generated over RM

for all maximal ideals M in R.

As a consequence by ([G], 2.1) we have

Corollary 2.5. Let R be a noetherian domain and A an R-subalgebra of a finitely
generated overdomain of R. Then the statements (i) and (ii) in Theorem (2.4)
hold.

We now quote a relevant portion of a result of Rentschler ([Rn]). An alternative
proof is also given in ([D-F], 1.2).

Theorem 2.6. If K is a field of characteristic zero and D a non-zero, locally nilpo-
tent K-derivation of K[X,Y ], then there exist F,G such that K[X,Y ] = K[F,G]
and ker D = K[F ]. Moreover there exists α ∈ K[F ] such that D = α∆F , where
∆F is the derivation defined by ∆F (X) = −FY and ∆F (Y ) = FX .

The following result has been proved by Abhyankar-Eakin-Heinzer ([A-E-H], 4.1)
and Russell-Sathaye ([R-S], 3.4).

Theorem 2.7. If R ↪→ A ↪→ R[m] are U.F.D.s such that the transcendence degree
of A over R is one, then A = R[1].

Corollary 2.8. Let R be a U.F.D. and A an R-algebra which is an inert subring
of R[X1, · · · , Xm] (= R[m]) of transcendence degree one over R. Then A = R[1].

The next theorem is due to Bass-Connell-Wright ([B-C-W], 4.4).

Theorem 2.9. Let A be a finitely presented R-algebra. Suppose that for all maxi-
mal ideals P of R, the RP -algebra AP is RP -isomorphic to the symmetric algebra
of some RP -module. Then A is R-isomorphic to the symmetric algebra SymR (M)
of a finitely presented R-module M .

Corollary 2.10. Let R be a locally factorial noetherian domain and A an R-algebra
which is an inert subring of R[X1, · · · , Xm] (= R[m]) of transcendence degree one
over R. Then A is R-isomorphic to the symmetric algebra of an invertible ideal of
R.
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Proof. For every maximal ideal P of R, AP = RP
[1] by (2.8). Now by (2.5), A is

finitely generated over R and hence, applying 2.9, A ∼= SymR (M), where M is
obviously a finitely generated projectiveR-module of rank one and hence isomorphic
to an invertible ideal of R.

The following criterion of Russell-Sathaye follows from ([R-S], 2.3.1).

Theorem 2.11. Let R be an integral domain and A a finitely generated overdomain
of R. Suppose that there exists an element π in R which is prime in A such that

πA∩R = πR, Aπ = Rπ
[1] and the image of R/πR is algebraically closed in A/πA.

Then A = R[1].

The following result occurs in ([B-D], 3.2).

Theorem 2.12. Let R be a noetherian domain such that either R contains a field
of characteristic zero or R is seminormal. Then an element F in R[X,Y ] (= R[2])
is a variable if and only if it is a residual variable.

3. Locally Nilpotent Derivations over Normal Noetherian Domains

In this section we investigate in detail the kernel of locally nilpotent R-derivations
of R[X,Y ] where R is a noetherian normal domain containing a field of character-
istic zero. The main result is Theorem 3.5, where we give a precise description of
the structure of the kernel of such derivations.

We first prove a patching lemma.

Lemma 3.1. Let R be a noetherian domain and A an overdomain of R such that
JA ∩ R = J for every ideal J of R. Suppose that there exist non-zero elements
x, y ∈ R satisfying the conditions:

(i) x and y form an R-sequence.

(ii) Ax = Rx
[1].

(iii) Ay = Ry
[1].

(iv) A = Ax ∩Ay.
Then A has a graded ring structure

⊕
n≥0

An with A0 = R and An a finite type

reflexive R-module for all n. In fact A is isomorphic as a graded R-algebra to the

symbolic Rees algebra
⊕
n≥0

I(n)T n of a reflexive ideal I in R of height one.

Remark 3.2. Let R ⊆ A ⊆ B be integral domains such that B is faithfully flat over
R. Then JA ∩R = J for every ideal J of R.

Proof of 3.1. Let Ax = Rx[U ] and Ay = Ry[V ] where U, V ∈ A. Since Axy =
Rxy[U ] = Rxy[V ], it is easy to see that

V = (aU + c)/xm for some c ∈ R, a ∈ R ∩Rxy
∗, m ∈ Z+.

Now c = xmV − aU ∈ (xm, a)A ∩ R = (xm, a)R, i.e., c = xmv − au for some
u, v ∈ R. Let F = U − u and G = V − v. Then

Ax = Rx[F ], Ay = Ry[G] with G = λF where λ = a/xm ∈ Rxy
∗.

Now

Ax =
⊕
n≥0

RxF
n and Ay =

⊕
n≥0

RyG
n.



3308 S. M. BHATWADEKAR AND AMARTYA K. DUTTA

Since

Axy =
⊕
n≥0

(RxF
n)y =

⊕
n≥0

(RyG
n)x

where

(RxF
n)y = RxyF

n = RxyG
n = (RyG

n)x,

it follows that

A = Ax ∩Ay =
⊕
n≥0

An where An = RxF
n ∩RyG

n.

Thus A is a graded R-algebra with A0 = Rx ∩Ry = R by (i).

We will now show that A1 is R-isomorphic to an ideal I of R such that An ∼= I(n)

as R-modules for every n, which will show in particular that each An is a finite
R-module.

If a ∈ Ry
∗, then putting H = G/a = F/xm, it is easy to see that A = Ax∩Ay =

R[H ] (= R[1]), and we are through. So we may assume that aRy is a proper ideal
and let

I = R ∩ aRy.

Then Iy = aRy, and hence I is an ideal of height one.

We now show that for every n, An = I(n) · (Gn/an) as R-modules. Let f ∈ An.
Then

f = bGn = (ban/xmn)Fn = cFn/xmn = c(Gn/an)

where

b ∈ Ry and c = anb ∈ anRy ∩Rx = anRy ∩R = I(n)

by (2.1). Conversely if c ∈ I(n), then by (2.1), c = anb for some b ∈ Ry. Thus
c(Gn/an) = bGn ∈ RyG

n; on the other hand c(Gn/an) = (c/xmn)Fn ∈ RxF
n,

so that cGn/an ∈ RyG
n ∩ RxF

n = An. Thus An = I(n) · (Gn/an) and the map

φn : c(Gn/an) → c gives an R-isomorphism of An onto I(n).
Using the above isomorphism we now check that An is a reflexive R-module for

every n. Since A0 = R is obviously reflexive we assume that n ≥ 1. Let P ∈ Spec R.
If at least one of the elements x, y does not belong to P then by condition (ii) or

(iii) it follows easily that AnP is a free RP -module; in particular, AnP is reflexive
and depth AnP = depth RP .

If both x, y ∈ P , then by hypothesis, they form anR-sequence so that depth RP ≥
2. It follows that in this situation PRP cannot be an associated prime ideal of
RP /a

nRP and hence PRP /∈AssRP (RP /I
(n)

P ), which shows that depth (RP /I
(n)

P )
≥ 1. Now since An ∼= I(n), by (2.2), it follows that depth AnP ≥ 2.

Thus we see that depth AnP ≥ 2 whenever depth RP ≥ 2 (irrespective of whether
x, y ∈ P or not). On the other hand if depth RP ≤ 1, then at least one of x, y does
not belong to P , and in this case AnP is seen to be reflexive. Therefore by (2.3),
An is reflexive.

Now consider the injective map Ay(= Ry[G]) ↪→ Ry[T ](= Ry
[1]) defined by

G→ aT . Then since An = I(n) · (Gn/an), the image of A(= Ax ∩Ay =
⊕
n≥0

An) in

Ry[T ] is precisely the symbolic Rees algebra
⊕
n≥0

I(n)T n (↪→ R[T ]).
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As a consequence of Lemma 3.1, we now give a description of the graded R-
algebra structure of an inert subring of the polynomial ring R[X1, · · · , Xm] of tran-
scendence degree one over R, when R is a noetherian normal domain.

Proposition 3.3. Let R be a noetherian normal domain and A an R-algebra which
is an inert subring of R[X1, · · · , Xm] (= R[m]) of transcendence degree one over R.

Then A has the structure of a graded ring
⊕
n≥0

An with A0 = R and An a finite

reflexive R-module of rank one for every n. In fact, when R is not a field, there
exists an ideal I of unmixed height one in R such that A is isomorphic to the

symbolic Rees algebra
⊕
n≥0

I(n)T n as a graded R-algebra.

Proof. If R is a field or a Dedekind domain then the result follows immediately
from (2.8) or (2.10) respectively.

So we assume dim R ≥ 2. Since A ⊆ R[X1, · · · , Xm], JA∩R = J for every ideal
J of R. Therefore by (3.1), it is enough to show that there exist elements x, y ∈ R
which form an R-sequence such that Ax = Rx

[1], Ay = Ry
[1] and A = Ax ∩Ay .

Let T = R \ {0} and let K denote the quotient field of R. Then clearly T−1A is
an inert subring of K[X1, · · · , Xm] of transcendence degree one over K, and hence
by (2.8), T−1A = K [1]. Now since A ⊆ R[X1, · · · , Xm], by (2.5), there exists an
element t ∈ T such that A[1/t] is finitely generated. From this and the fact that
T−1A = K [1] it follows easily that there exists x ∈ T such that

Ax = Rx
[1].

If x ∈ R∗, then clearly A = R[1] and all the statements in the theorem fol-
low trivially. So hence onward we assume that xR is a proper ideal in R. Let
AssR (R/xR) = {P1, · · · , Pr}. Since R is a noetherian normal domain, ht(Pi) = 1

for all 1 ≤ i ≤ r. Let S = R \ (
⋃

1≤i≤r
Pi). Then clearly S−1R is a P.I.D. and

S−1A is an inert subring of (S−1R)[X1, · · · , Xm] of transcendence degree one over
S−1R. Therefore, by (2.8), S−1A = (S−1R)[1]. By (2.5) there exists s ∈ S such
that A[1/s] is finitely generated over R. Hence from the above equation it follows
easily that there exists y ∈ S such that

Ay = Ry
[1].

By construction the pair x, y form a regular sequence in R. We now show that
A = Ax ∩Ay. Let

c = a/xj = b/y` ∈ Ax ∩ Ay; a, b ∈ A; j, ` ∈ Z+.

As x, y form a regular sequence in R and hence in R[X1, · · · , Xm], the equation
y`a = xjb yields that a ∈ xjR[X1, · · · , Xm]. Now since A is an inert subring of
R[X1, · · · , Xm], it follows that A ∩ xjR[X1, · · · , Xm] = xjA. Therefore c = a/xj ∈
A, showing that

A = Ax ∩ Ay.
This completes the proof.

Remark 3.4. Let I be an ideal of unmixed height one in a noetherian normal domain

R. Then I has a primary decomposition of the form I = P
(n1)
1 ∩ · · · ∩ P (nr)

r . Let
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[I] denote the element
∑

1≤i≤r
ni[Pi] in Cl (R). Now a routine verification shows that

for any two unmixed ideals I and J of height one in R, the following statements
are equivalent.

(i) I ∼= J as R-modules.

(ii)
⊕
n≥0

I(n)T n ∼=
⊕
n≥0

J (n)T n as graded R-algebras.

(iii) [I] = [J ] in Cl (R).

Thus in Proposition 3.3, given any inert subring A, the choice of I is unique up to
its image in the class group (in the above sense). Since for a U.F.D., Cl (R) = 0,
the above observation gives another way of explaining the result (2.8) and hence
the result ([D-F], 2.1).

We now prove our main theorem on the structure of the kernel of a non-zero
locally nilpotent R-derivation of R[X,Y ] over a normal domain R containing a
field of characteristic zero.

Theorem 3.5. Let R be a noetherian normal domain containing a field of charac-
teristic zero and let D be a non-zero locally nilpotent R-derivation of the polynomial

ring R[X,Y ] with kernel A. Then A has the structure of a graded ring
⊕
n≥0

An with

A0 = R and An a finite reflexive R-module of rank one for every n. In fact, when
R is not a field, there exists an ideal I of unmixed height one in R such that A is

isomorphic to the symbolic Rees algebra
⊕
n≥0

I(n)T n as a graded R-algebra.

Conversely let R be as above and let I be an unmixed ideal of height one in R.

Let B be the symbolic Rees algebra
⊕
n≥0

I(n)T n. Then there exists a locally nilpotent

R-derivation D of R[X,Y ] whose kernel is isomorphic to B as a graded R-algebra.
In particular B can be embedded as an inert subring of R[X,Y ].

Proof. Since the kernel A is an inert subring of R[X,Y ] of transcendence degree
one over R, the first part of the theorem follows from Proposition 3.3.

We now prove the converse statement. Let AssR (R/I) = {P1, · · · , Pr} and

S = R\(
⋃

1≤i≤r
Pi). Then S−1R is a P.I.D. and hence IS−1R is principal. Therefore

we can choose an element y ∈ S such that IRy is principal, say, IRy = aRy for

some a ∈ I. By (2.1) it would follow that I(n)Ry = anRy ∀n ≥ 0. Therefore

By = Ry[g], where g = aT . If y ∈ R∗, then I is principal, so that B = R[1] and we
are through (for instance we may consider the R-derivation D defined by DX = Y
and DY = 0). So we assume y /∈ R∗.

Let AssR (R/yR) = {Q1, · · · , Q`}. Since ht Qj = 1 ∀1 ≤ j ≤ ` and y /∈ Pi for

any i, Pi 6⊆ Qj for any i, j and hence I 6⊆ (
⋃

1≤j≤`
Qj). Choose x ∈ I \(

⋃
1≤j≤`

Qj). By

construction x and y form an R-sequence, and since IRx = Rx = xRx, Bx = Rx[f ]
where f = xT . Clearly g = (a/x)f and a ∈ R∗xy. Moreover, since x ∈ I and
Iy = aRy, we have

x = (u/ym)a for some u ∈ R ∩ (Rxy)
∗, m ∈ Z+.
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We now show that B = Bx ∩By. Let b = xpc = yqd ∈ xpB ∩ yqB, where p, q ∈ Z+

and c, d ∈ B. Let c =
∑

j cjT
j and d =

∑
j djT

j, where cj , dj ∈ I(j) ∀j ≥ 0.
Then xpcj = yqdj ∀j. Since x, y form a regular sequence in R and y is a non-zero

divisor in R/I, it follows that cj ∈ yqR∩ I(j) = yqI(j) ∀j, showing that b ∈ xpyqB.
Thus xpB ∩ yqB = xpyqB and hence B = Bx ∩By.

Now define an R-derivation D on R[X,Y ] by

DX = −u, DY = x.

Then D2X = 0 = D2Y , so that D is locally nilpotent. Let A = Ker (D). We shall
show that the graded R-algebras B and A are isomorphic, which will complete the
proof.

Note that D induces locally nilpotent derivations Dx (resp. Dy) on Rx[X,Y ]
(resp. Ry[X,Y ]) with kernels Ax (resp. Ay). Now let

F = xX + uY, G = aX + ymY.

Then F,G ∈ A and G = aF/x (since xym = au). Since

Rx[F ] ⊆ Ax ⊆ Rx[X,Y ] (= Rx[F ][1])

and the transcendence degree ofRx[X,Y ] overAx is one, it follows thatAx = Rx[F ].
Similarly Ay = Ry[G]. Also note that since x, y form a regular R-sequence and A is
an inert subring ofR[X,Y ], we have (as in the proof of Proposition 3.3)A = Ax∩Ay.

Now let φ : Bx(= Rx[f ])
'→ Ax(= Rx[F ]) be the Rx-isomorphism defined by

f → F and ψ : By(= Ry[g])
'→ Ay(= Ry[G]) be the Ry-isomorphism defined by

g → G. In Axy, we have φ(g) = φ(af/x) = aF/x = G = ψ(g). Thus both φ and

ψ induce the same isomorphism Bxy
'→ Axy. Hence their restrictions induce an

isomorphism B(= Bx ∩By)
'→ A(= Ax ∩ Ay). Hence the result.

Note that if R is a locally factorial domain (for instance if R is regular) containing
a field of characteristic zero, then by (2.10), the kernel A of a locally nilpotent R-
derivation of R[X,Y ] is finitely generated over R. However, from Theorem 3.5 it
follows that in general the kernel need not be finitely generated (even when R is
normal), as the following example illustrates.

Example 3.6. Let C be a non-singular elliptic curve in P2
C defined by a homo-

geneous irreducible polynomial F in C[X,Y, Z] (for instance, take F =
(Y 2Z−X3 +XZ2)). Let R = C[X,Y, Z](X,Y,Z)/(F ). Then R is a two-dimensional
normal local domain whose class group is not torsion. Therefore there exists a
prime ideal P in R of height one such that P (n) is not a principal ideal (for each

n ≥ 1). Hence the symbolic Rees algebra B =
⊕
n≥0

P (n)T n is not finitely generated

over R (for the proof see [R] or [C]). Now by Theorem 3.5 there exists a locally
nilpotent R-derivation of R[2] whose kernel is isomorphic to B and hence is not
finitely generated over R.

However, in the situation of Theorem 3.5, if the group Cl (R)/P ic (R) is tor-
sion, then for any unmixed height one ideal I of R, I(`) would be an invertible
ideal for some `. Then it is easy to see that I(t`) = (I(l))t and hence I(m+tl) =

I(m)(I(l))t ∀ 0 ≤ m ≤ l − 1. Thus
⊕
n≥0

I(n) is finitely generated. Therefore by

Theorem 3.5 we have
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Corollary 3.7. Let R be a noetherian normal domain containing a field of char-
acteristic zero such that the group Cl (R)/P ic (R) is torsion. Then the kernel of
any locally nilpotent R-derivation of R[X,Y ] is finitely generated over R.

Using Theorem 3.5, we give below an example to show that the above condition
is not necessary for the kernel of every locally nilpotent R-derivation of R[X,Y ] to
be finitely generated over R.

Example 3.8. Let R = C[X,Y, Z,W ]/(XY − ZW ), P = (X,Z)R and Q =
(X,W )R. Then it is well known that Pic (R) = 0 and Cl (R) = Z and is generated
by [P ](= −[Q]).

Let B be the associated graded ring
⊕
n≥0

(Pn/Pn+1). Consider the C[Y,W ]-

algebra epimorphism φ : C[Y,W ][U, V ]/(Y U − WV ) → B defined by U →
X(mod P 2) and V → Z(mod P 2). We first prove that φ is an isomorphism,
which will show in particular that B is an integral domain. Let J be the ideal⊕
n≥1

(Pn/Pn+1) in B and let S be the multiplicatively closed subset R/P \ {0} in

B. Then it is easy to see that S−1B = C(Y,W )[1] with S−1J as a maximal ideal,
showing that ht J = 1. Now since dim (R/P ) = 2, it follows that dim B = 3, and
hence φ is an isomorphism.

Since B is an integral domain, a routine induction argument would show that
Pn is P -primary, i.e., P (n) = Pn. Similarly one can check that Q(n) = Qn. Thus
Pn and Qn are unmixed ideals of height one in R with [Pn] = n[P ] and [Qn] = n[Q]
in Cl (R).

Now let I be an unmixed ideal of height one in R. Then [I] = n[P ] or n[Q] for
some non-negative integer n, say [I] = n[P ](= [Pn]). Therefore I ∼= Pn. Hence
there exists f ∈ K∗ such that If = Pn. Therefore Imfm = Pnm = (Pn)(m) =
I(m)fm, so that Im = I(m) ∀m. Thus by Theorem 3.5 the kernel of any non-zero
locally nilpotent R-derivation of R[2] is R-isomorphic to the Rees algebra of an ideal
I (of unmixed height one) in R, and hence is finitely generated over R.

Remark 3.9. Let R be a noetherian normal domain. The group Cl (R)/P ic (R) is
torsion if and only if Cl (RM ) is torsion for all maximal ideals M of R.

Remark 3.10. In the above example dim R = 3. However if R is a noetherian nor-
mal domain of dim 2, then by a result of Cowsik ([C]), Theorem 3.5 and 2.5 it would
follow that the condition that Cl (R)/P ic (R) is torsion is indeed necessary for the
kernel of every locally nilpotent R-derivation of R[X,Y ] to be finitely generated.

We now give an example to show that Proposition 3.3 and Theorem 3.5 are not
valid if R is not normal. Note that if R is a one-dimensional noetherian domain,
then the symbolic power I(n) of a non-zero ideal I in R obviously coincides with

In, and hence the symbolic Rees algebra
⊕
n≥0

I(n)T n is finitely generated over R.

However the following example shows that when R is a one-dimensional noetherian
domain (containing Q) then the kernel of a non-zero locally nilpotent R-derivation
of R[X,Y ] need not be finitely generated if R is not normal; in particular, it need

not be of the form
⊕
n≥0

I(n)T n.
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Example 3.11. Let R = R + (t)C[[t]]. R is a noetherian local domain with max-
imal ideal M = (t)C[[t]]. Let R be the normalisation C[[t]] of R. Define a locally
nilpotent R-derivation D of R[X,Y ] by

D(X) = it and D(Y ) = −t.
It is easy to see that ker (D) = R[X + iY ]. Now D restricts to a locally nilpotent
R-derivation D of R[X,Y ] with kernel A, and it is easy to see that

A = R +MR[X + iY ].

We now show that A is not even noetherian, and hence is not finitely generated
over R. Since R[X+iY ]/MR[X+iY ] (= C[1]) is not finitely generated as a module
over A/MR[X + iY ] (= R), clearly R[X + iY ] cannot be a finite A-module, and
hence for any f(6= 0) ∈M , fR[X + iY ] (⊆ A) is not finitely generated as an ideal
in A. Thus A is not noetherian.

In the next section we shall show (Proposition 4.11) that all locally nilpotent R-
derivations of R[X,Y ] over a normal domain R (containing a field of characteristic
zero) with a fixed kernel A together with the zero derivation has a graded A-module
structure.

4. Locally Nilpotent Derivations over General Noetherian Domains

In this section we shall give a necessary and sufficient condition for the kernel of
an irreducible locally nilpotent R-derivation of the polynomial ring R[X,Y ] to be
R[1] (Theorem 4.7). The crucial step in the proof is Proposition 4.5. Before that
we prove some lemmas.

To avoid the tedium of repetition we shall hence onwards assume that R denotes
a noetherian domain containing a field of characteristic zero and K denotes the
quotient field of R.

Lemma 4.1. For any F ∈ K[X,Y ] \K, (FX , FY )K[X,Y ] ∩K[F ] 6= (0).

Proof. Let S = K[F ] \ {0}, L = S−1K[F ] (= K(F )) and C = S−1K[X,Y ]. We
have the exact sequence

ΩL/K ⊗L C
σ→ ΩC/K → ΩC/L → 0.

Since L is a perfect field, C is smooth and hence ΩC/L is a projective C-module of
rank one ([A-K], pp. 159-162). Hence the exact sequence

0 → Im (σ) → ΩC/K → ΩC/L → 0

splits. Now as ΩC/K is a free C-module of rank two with basis dX and dY and
Im (σ) is generated by FXdX +FY dY , the elements FX and FY are comaximal in
C and hence (FX , FY )K[X,Y ] ∩K[F ] 6= (0).

Lemma 4.2. For any F ∈ K[X,Y ] \K, if K[F ] is an inert subring of K[X,Y ],
then the ideal (FX , FY )K[X,Y ] is not contained in any proper principal ideal of
K[X,Y ].

Proof. If possible let (FX , FY )K[X,Y ] ⊆ pK[X,Y ] where p is a prime element of
K[X,Y ]. By (4.1), pK[X,Y ]∩K[F ] 6= (0) and hence it is generated by a non-zero
irreducble element φ(F ) of K[F ]. The inertness condition and the irreducibility of
φ(F ) imply a relation p = uφ(F ) for some u ∈ K∗. But that would imply that FX
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and FY both belong to the ideal φ(F )K[X,Y ], which is absurd by simple degree
considerations. Hence the result.

Lemma 4.3. Let F ∈ (X,Y )R[X,Y ] and I be an ideal of R. Then F ∈ IR[X,Y ]
if and only if both FX and FY are in IR[X,Y ].

Proof. Let F =
∑
i,j

aijX
iY j , aij ∈ R. Note that a00 = 0. Since R contains Q, FX

(=
∑
i

(
∑
j

aijY
j)iX i−1) is an element of IR[X,Y ] if and only if aij ∈ I for all

(i, j) for which i > 0. Similarly FY ∈ IR[X,Y ] if and only if aij ∈ I for all (i, j)
for which j > 0. Hence the result.

Proposition 4.4. Let F be a generic variable in R[X,Y ]. Then R[X,Y ] = R[F ][1]

if FX , FY are comaximal in R[X,Y ].

Proof. By (2.12) it is enough to show that F is a residual variable in R[X,Y ]. Let
P ∈ Spec R and F the image of F in k(P )[X,Y ]. Without loss of generality we
may assume that R is local with maximal ideal P and residue field k (= R/P ), and
prove that k[X,Y ] = k[F ][1] by induction on ht P (= dim R) = d, say. If d = 0,
there is nothing to prove.

Let d = 1. Now since R is a one-dimensional noetherian local domain, by the
Krull-Akizuki theorem ([N], p.115) it is easy to see that there exists a discrete
valuation ring (C, π) such that R ⊆ C ⊆ K and the residue field L = C/π is
finite over k. We first show that F is a variable in C[X,Y ]. Since F is a generic
variable in C[X,Y ], by (2.11) it is enough to show that L[F ] is algebraically closed
in L[X,Y ]. But the algebraic closure of L[F ] in L[X,Y ] is clearly of the form
L[G], and by the comaximality assumption of FX , FY it follows easily that F is
linear in G, showing that L[F ] = L[G] is algebraically closed in L[X,Y ]. Thus
C[X,Y ] = C[F ][1], and hence L[X,Y ] = L[F ][1]. Now L being finite separable over
k, it follows that k[X,Y ] = k[F ][1].

Now the case d ≥ 2 follows by an easy induction argument.

Proposition 4.5. For an element F in R[X,Y ] \R, the following statements are
equivalent :

(i) R[F ] is an inert subring of R[X,Y ].
(ii) K[F ] is an inert subring of K[X,Y ] and the ideal (FX , FY )R[X,Y ] is either

the unit ideal or has grade 2.

Proof. (i)⇒(ii). Suppose (i) holds. Then a routine verification shows that K[F ] is
an inert subring of K[X,Y ].

Without loss of generality we may assume that F ∈ (X,Y )R[X,Y ]. If FX ∈ R∗,
then we are through. If FX = 0, then F ∈ Y R[X,Y ], and hence by the inertness
condition it follows easily that F = uY for some u ∈ R∗, i.e., FY ∈ R∗, and
we are through. Thus we may assume that FX is a non-zero non-unit element
of R[X,Y ] and show that FY is a non-zero divisor in R[X,Y ]/FXR[X,Y ]. Let
Q ∈ AssR[X,Y ](R[X,Y ]/FXR[X,Y ]). Then depth (R[X,Y ]Q) = 1. It suffices to
show that FY /∈ Q.

Let P = Q ∩ R. If P = (0), then QK[X,Y ]∈AssK[X,Y ](K[X,Y ]/FXK[X,Y ]),
and hence is a prime ideal of height one and therefore a principal prime ideal. Hence
by (4.2), FY /∈ QK[X,Y ], and we are through.
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Now suppose that P 6= (0) and let a be a non-zero element of P . Since
depth (R[X,Y ]Q) = 1, Q ∈ AssR[X,Y ](R[X,Y ]/aR[X,Y ]); and since a ∈ R, Q
is extended from R. Thus PR[X,Y ] = Q ∈ AssR[X,Y ](R[X,Y ]/aR[X,Y ]). Hence
P ∈ AssR(R/aR), i.e., there exists b ∈ R \ aR such that bP ⊆ aR, and therefore

bQ ⊆ aR[X,Y ], b ∈ R \ aR.
Now if F ∈ Q, then by the above relation it would follow that bF = aG for some
G ∈ R[X,Y ]. Since bF ∈ R[F ], condition (i) would imply that G ∈ R[F ] and hence
G = cF for some c ∈ R. But this relation would imply b(= ac) ∈ aR, contradicting
the choice of b. Thus F /∈ Q, and hence by (4.3), FY /∈ Q.

(ii) ⇒ (i) Assume (ii) holds. Since K[F ] is an inert subring of K[X,Y ], it is
enough to prove that R[X,Y ]∩K[F ] = R[F ], i.e., to show that cR[X,Y ]∩R[F ] =
cR[F ] ∀c ∈ R. Thus the proof will be complete if we prove the following claim.

Claim. If (FX , FY )R[X,Y ] is either the unit ideal or has grade 2, then cR[X,Y ] ∩
R[F ] = cR[F ] ∀c ∈ R.

Proof of the Claim. Let G ∈ R[X,Y ] and φ(F ) =
∑

0≤i≤n
aiF

i, ai ∈ R, be such that

cG = φ(F ). To prove the claim it is enough to show that ai ∈ cR ∀i.
We first show that the first derivative φ′(F ) ∈ cR[X,Y ]. Now

cGX = φ′(F )FX and cGY = φ′(F )FY .(*)

Let cR[X,Y ] =
⋂
Nj be a primary decomposition of cR[X,Y ] and let Pj be the

associated prime ideal of R[X,Y ]/Nj. Now, PjRPj being the associated prime ideal
of R[X,Y ]Pj/cR[X,Y ]Pj , depth (R[X,Y ]Pj ) = 1. Hence from the given conditions
on FX and FY , at least one of them becomes unit in R[X,Y ]Pj , i.e., at least one of
them does not belong to Pj . Hence by (∗) we have φ′(F ) ∈ Nj. Since this would
hold for every j, we have φ′(F ) ∈ cR[X,Y ].

The above argument shows, by induction, that the m-th derivative φ(m)(F )
∈ cR[X,Y ] ∀m, 1 ≤ m ≤ n. In particular c divides φ(n)(F ) and as Q ↪→ R, it
shows that an ∈ cR.

Let φr(F ) =
∑

0≤i≤n−r
aiF

i. By an easy inductive argument as above it follows

that c divides ar, the leading coefficient of φr for every r, 0 ≤ r ≤ n. Hence the
result.

Corollary 4.6. An inert subring A of R[X,Y ] of transcendence degree one over
R is isomorphic to R[1] if and only if there exists an element F ∈ A such that FX
and FY either form a sequence or are comaximal in R[X,Y ].

We now prove the main result of this section.

Theorem 4.7. Let D be a locally nilpotent R-derivation of R[X,Y ] and let A de-
note the kernel of D. Then the following statements are equivalent:

(i) D is irreducible and A = R[1].
(ii) DX and DY either form an R[X,Y ]-sequence or are comaximal in R[X,Y ].

Moreover if DX and DY are comaximal in R[X,Y ], then R[X,Y ] = A[1].

Proof. (i) ⇒ (ii). Let A = R[F ]. Since R[F ] is an inert subring of R[X,Y ], by (4.5),
FX and FY either form a sequence or are comaximal. Hence from the equation

FXDX + FYDY = DF = 0
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we conclude that

DX = uFY and DY = −uFX for some u ∈ R[X,Y ].

Since D is irreducible it follows that u ∈ R∗. Hence DX and DY either form a
sequence or are comaximal (since FX and FY have the same property).

(ii) ⇒ (i). The irreducibility of D is obvious.
Now D induces a non-zero locally nilpotent derivation on K[X,Y ] with kernel

S−1A, where S = R \ {0}. By (2.6), S−1A = K[H ], where H is a variable in
K[X,Y ]. We may choose the above H to be in the ideal (X,Y )R[X,Y ]. From the
equation

HXDX +HYDY = DH = 0

and from condition (ii), it follows that

HX = gDY and HY = −gDX for some g ∈ R[X,Y ].

Since H is a variable in K[X,Y ], it follows that

g ∈ K∗ ∩R[X,Y ] = R \ {0}.
Hence by (4.3), it is easy to see that

H = gF, where F ∈ A and DX = −FY , DY = FX .

Thus K[F ] (= K[H ]) is an inert subring of K[X,Y ] with the property that FX
and FY either form a sequence or are comaximal. Hence by (4.5), R[F ] is an inert
subring of R[X,Y ]. Now since A is contained in the quotient field of R[F ], it follows
easily that A = R[F ].

If DX,DY (and hence FX , FY ) are comaximal in R[X,Y ], then since F is a
generic variable, by (4.4) it follows that R[X,Y ] = R[F ][1] = A[1].

Remark 4.8. Note that when R is a U.F.D., any irreducible locally nilpotent R-
derivation of R[X,Y ] obviously satisfies condition (ii) in Theorem 4.7 and any lo-
cally nilpotent derivation is a multiple of an irreducible locally nilpotent derivation.
Therefore when R is noetherian the result ([D-F], 2.1) follows from Theorem 4.7.
The above theorem also shows that the result ([D-F], 2.5), which was proved for a
U.F.D., is true when R is any noetherian domain (containing a field of characteristic
zero).

Corollary 4.9. The following statements are equivalent.

(i) D is a locally nilpotent derivation of R[X,Y ] with kernel R[F ](= R[1]).
(ii) D = α∆F , where F is a generic variable in R[X,Y ] such that FX , FY either

form a sequence or are comaximal in R[X,Y ], α ∈ R[F ] \ {0} and ∆F is the
derivation defined by ∆F (X) = −FY and ∆F (Y ) = FX .

The sum of two locally nilpotent derivations need not be locally nilpotent. For
instance, define D1, D2 on R[X,Y ] by D1(X) = 0, D1(Y ) = X and D2(X) =
Y,D2(Y ) = 0. Then (D1 +D2)

n (X + Y ) = X + Y ∀n. However we can make the
following observation.

Lemma 4.10. Let A be the kernel of a non-zero locally nilpotent R-derivation of
R[X,Y ]. Then any non-zero locally nilpotent A-derivation of R[X,Y ] has kernel A.
Moreover the set of all locally nilpotent A-derivations of R[X,Y ] has an A-module
structure.



KERNEL OF LOCALLY NILPOTENT R-DERIVATIONS OF R[X, Y ] 3317

Proof. Let M be the set of all locally nilpotent A-derivations of R[X,Y ]. Let D(6=
0) ∈ M . Now A ⊆ ker D ⊆ R[X,Y ]. Since R[X,Y ] has the same transcendence
degree over both ker D and A, ker D is algebraic over A. But A is algebraically
closed in R[X,Y ]. Hence ker D = A.

Let S = R \ {0}. Now any non-zero D ∈ M extends to a locally nilpotent

K-derivation D̃ of K[X,Y ] with kernel S−1A and, by (2.6), S−1A = K[F ] for

some element F in R[X,Y ]. Thus again by (2.6), D̃ = α∆F for some non-zero
α ∈ K[F ](= S−1A). From this description it clearly follows that if D1, D2 ∈ M ,
then D1 + D2 is locally nilpotent and hence belongs to M . Also it is easy to see
that if D ∈M and a ∈ A, then aD ∈M . Thus M is an A-module.

If the kernel A of some non-zero locally nilpotent R-derivation of R[X,Y ] is R[1]

(for instance if R is a U.F.D.), then by (4.9) and (4.10), all locally nilpotent A-
derivations of R[X,Y ] has an A-module structure isomorphic to any principal ideal
of A. We now give a description of the A-module structure of all locally nilpotent
A-derivations of R[X,Y ] when R is normal.

Proposition 4.11. Let R be a noetherian normal domain and let A be the kernel
of a non-zero locally nilpotent R-derivation of R[X,Y ]. Then A is a graded R-

algebra
⊕
n≥0

An isomorphic to the symbolic Rees algebra of an unmixed height one

ideal of R. Let M be the set of all locally nilpotent A-derivations of R[X,Y ]. Then

M has a graded A-module structure. Moreover M is isomorphic to
⊕
n≥1

An as a

graded A-module.

Proof. The graded R-algebra structure of A has been deduced in (3.5). Also, by
(4.10) M has an A-module structure and the kernel of any non-zero element of M
is A.

Now as in the proof of (3.3) there exist elements x, y ∈ R such that Ax = Rx
[1],

Ay = Ry
[1] and A = Ax ∩Ay . Again as in the proof of (3.3) there exist an element

a ∈ R ∩ Rxy
∗ and elements F,G ∈ A such that Ax = Rx[F ], Ay = Ry[G] and

G = λF , where λ = a/xm for some m ∈ Z+. As before, let I = R ∩ aRy.
Now let D ∈ M . Then D induces a locally nilpotent Rx-derivation Dx (resp.

Ry-derivation Dy) on Rx[X,Y ] (resp. Ry[X,Y ]) with kernel Ax = Rx[F ] (resp.
Ay = Ry[G]). By (4.9), Dx = α∆F and Dy = β∆G for some α ∈ Ax, β ∈ Ay.
Now on Axy, the two patch up. Therefore α∆F = β∆G = (βa/xm)∆F , and hence
βa = xmα ∈ Ax ∩Ay = A.

Conversely it is easy to see that for any β ∈ Ay such that βa ∈ A, β∆G ∈M .
Hence D ∈M if and only if D = β∆G for some β ∈ Ay satisfying βa ∈ A. Since

G and a are fixed, we can therefore give an A-module isomorphism M → A ∩ aAy
by D(= β∆G) → aβ. Now by (3.3) the proof will be complete if we prove the
following claim.

Claim. A ∩ aAy ∼=
⊕
n≥1

I(n)T n.

Proof of the Claim. Consider the inclusion Ay(= Ry[G]) ↪→ Ry[T ], where T = G/a.

As in the proof of (3.1), the image of A in Ry[T ] is
⊕
n≥0

I(n)T n. On the other
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hand, the image of aAy is clearly
⊕
n≥0

an+1RyT
n. Now by (2.1) I(n) ∩ an+1Ry =

R ∩ an+1Ry = I(n+1). Therefore the image of A ∩ aAy in Ry[T ] is
⊕
n≥0

I(n+1)T n ∼=⊕
n≥1

I(n)T n.

We now give an example to illustrate Proposition 4.11.

Example 4.12. Let R = C[X,Y, Z,W ]/(XY − ZW ). Let x, y, z, w denote the
images of X,Y, Z,W respectively in R. Let P = (x, z). Let F,G be elements of
R[U, V ] = R[2] defined as follows:

F = xU + wV, G = zU + yV.

Let ∆F and ∆G be two R-derivations of R[U, V ] defined as follows:

∆F (U) = w,∆F (V ) = −x , ∆G(U) = y,∆G(V ) = −z.
Then ∆F and ∆G are two irreducible locally nilpotent derivations such that ker ∆F

=ker ∆G, which we denote by A. Moreover, Ax = Rx[F ] and Ay = Ry[G].

Since P (n) = Pn (see Example 3.8), it is easy to see that A = R[F,G] (the R-

subalgebra of R[U, V ] generated by F and G). Moreover, A =
⊕
n≥0

An, where An

=
∑

i+j=n RF
iGj .

Since z∆F = x∆G, again using the fact P (n) = Pn it is easy to see that the
A-module M of all locally nilpotent A-derivations of R[U, V ] is generated by ∆F

and ∆G.

Let I =
⊕
n≥1

An. Then I is an ideal of A generated by F and G. Since zF = xG,

for elements a, b in A, aF + bG = 0 if and only if xa+ zb = 0. Since ∆F (V ) = −x
and ∆G(V ) = −z, a∆F + b∆G = 0 if and only if xa+ zb = 0.

The above discussion shows that F 7→ ∆F and G 7→ ∆G is a well defined
isomorphism of the A-modules I and M .

We conclude the paper with the following observation.
The triangulability criterion ([D-F], 2.8) formulated for U.F.D. is true in general

in the following form :

Remark 4.13. Let D be an irreducible locally nilpotent R-derivation on R[X,Y ]
with kernel A = R[1]. Then D is triangulable over R if and only if there exists a
variable G in R[X,Y ] such that K[X,Y ] = (A⊗R K)[G].
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