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KERNEL OF LOCALLY NILPOTENT R-DERIVATIONS
OF R[X,Y]

S. M. BHATWADEKAR AND AMARTYA K. DUTTA

ABSTRACT. In this paper we study the kernel of a non-zero locally nilpotent
R-derivation of the polynomial ring R[X, Y] over a noetherian integral domain
R containing a field of characteristic zero. We show that if R is normal then
the kernel has a graded R-algebra structure isomorphic to the symbolic Rees
algebra of an unmixed ideal of height one in R, and, conversely, the symbolic
Rees algebra of any unmixed height one ideal in R can be embedded in R[X, Y]
as the kernel of a locally nilpotent R-derivation of R[X,Y]. We also give a
necessary and sufficient criterion for the kernel to be a polynomial ring in
general.

1. INTRODUCTION

Locally nilpotent R-derivations of the polynomial ring R[X,Y], where R is a
U.F.D. containing a field of characteristic zero, have been studied recently by
Daigle-Freudenburg in ([D-F]). In this situation the kernel of a non-zero locally
nilpotent R-derivation of R[X,Y] is a polynomial ring in one variable over R ([D-F],
2.1). In our paper we first investigate locally nilpotent R-derivations of R[X,Y]
over a noetherian normal domain R containing a field of characteristic zero. We
first describe the structure of the kernel of such derivations as a graded R-algebra.
We prove :

Theorem 3.5. Let R be a noetherian normal domain containing a field of charac-
teristc zero and let D be a non-zero locally nilpotent R-derivation of the polynomial
ring R[X,Y] with kernel A. Then A has the structure of a graded ring @ A, with
n>0
Ag = R and A, a finite reflexive R-module of rank one for every n. In fact, when
R is not a field, there exists an ideal I in R of unmized height one such that A is
isomorphic to the symbolic Rees algebra @ IMT™ s a graded R-algebra.
n>0
Conversely, let R be as above and let I be any ideal of unmized height one in R.
Then there exists a non-zero locally nilpotent R-derivation of R[X,Y] whose kernel
is isomorphic to the symbolic Rees algebra @ IMT™ as a graded R-algebra.
n>0

In fact we show (Proposition 3.3) that when R is a noetherian normal domain,
any inert subring of R[X,Y] of transcendence degree one over R has the graded
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R-algebra structure described above. The crucial step in the proof of this result is
a patching lemma (3.1).

The converse part of Theorem 3.5 would show (see 3.6) that the kernel of a locally
nilpotent R-derivation of R[X,Y] need not be finitely generated over R even when
R is normal. We discuss the question of finite generation of the kernel and its
connection with the class group of R (3.7 and 3.8). We also give an example (3.11)
to show that Theorem 3.5 is not valid if R is not normal.

In ([Rn]), Rentschler had shown that over a field K of characteristic zero the
kernel of a non-zero locally nilpotent K-derivation of K[X,Y] is a polynomial ring
K[F] where F is a variable in K[X,Y]. As mentioned earlier, in ([D-F]), Daigle and
Freudenburg have investigated locally nilpotent R-derivations of R[X,Y], where R
is a U.F.D. containing a field of characteristic zero. They proved that the kernel
of a non-zero locally nilpotent R-derivation of R[X,Y] is a polynomial ring R[F]
([D-F], 2.1) and gave a necessary and sufficient condition for F' to be a variable in
R[X,Y] (|D-F], 2.5). In general, when R is not a U.F.D., the kernel need not be
a polynomial ring over R (in fact it need not be finitely generated over R), even
when R is normal, as Theorem 3.5 (quoted above) shows.

In Section 4 of our paper we generalise the result ([D-F], 2.1) in another direction
—we give a necessary and sufficient condition for the kernel to be a polynomial
ring in one variable over R where R is any noetherian domain containing a field of
characteristic zero. We prove :

Theorem 4.7. Let R be a noetherian domain containing a field of characteristic
zero and let D be a non-zero irreducible locally nilpotent R-derivation of the poly-
nomial ring R[X,Y]. Then the kernel A of D is a polynomial ring in one variable
over R if and only if DX and DY either form a reqular R[X,Y]-sequence or are
comazimal in R[X,Y]. Moreover if DX and DY are comazimal in R[X,Y], then
R[X,Y] is a polynomial ring in one variable over A.

A crucial step in the proof of Theorem 4.7 is Proposition 4.5, which gives a
necessary and sufficient condition for a singly generated R-subalgebra of R[X,Y]
to be an inert subring of R[X,Y].

We also show (Proposition 4.11) that in the situation of Theorem 3.5 all locally
nilpotent A-derivations of R[X,Y] has a graded A-module structure.

In Section 2 we set up notations and quote the results which we use. In Section
3 we investigate in detail the case of noetherian normal domains and in Section 4
we discuss results over general noetherian domains.

2. PRELIMINARIES

In this section we first set up the notations, define some of the terms used in the
paper and recall their well-known properties. Finally we quote the results which
will be used in the paper.

Notations. Throughout the paper we will assume our rings to be commutative.
For a ring R, R* will denote the multiplicative group of units of R. For a prime ideal
P of R, k(P) denotes the field Rp/PRp. The notation A = R[™ will mean that A is
a polynomial ring in 7 variables over R. For an element F € R[X1,--- , X,,](= R"),
Fx, denotes the partial derivative of ' with respect to X;.

Definitions. Let R be an integral domain with quotient field K. An element F' €
R[X1,---, X,] is said to be a generic variable if K[X1, -+, X,] = K[F]"" and a
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residual variable if for every prime ideal P of R, k(P)[X1, -+, Xp] = k(P) [Fp)n-1,
where Fp denotes the image of F in k(P)[X1, -, X,].

Let B be an integral domain. A derivation D of B is said to be locally nilpotent
if for each b € B, there exists a positive integer n (n may depend on b) such that
D™(b) = 0. The derivation D on B is said to be irreducible if the only principal
ideal of B containing D(B) is B, or, equivalently, D = bD’ (with b € B and D’ a
derivation on B) implies that b € B*.

A subring A of a domain B is said to be an inert subring of B if for any pair of
non-zero elements z,y € B, the product zy € A if and only if both z,y € A.

A routine verification shows that an inert subring of a U.F.D. is a U.F.D.. If
A is an inert subring of B, then A is algebraically closed in B; further if S is a
multiplicatively closed subset in A then S~!A is an inert subring of S~!B.

Let B be an integral domain containing a field of characteristic zero. It is well-
known ([D-F], 1.1(1)) that the kernel A of a locally nilpotent derivation D on B
is an inert subring of B. Also it is easy to see that for any multiplicatively closed
subset S of A\ {0}, D extends to a locally nilpotent derivation of S~!B with kernel
S~1A and BNS~'A = A. Moreover if D is non-zero, then the transcendence degree
of B over A is one ([D-F|, 1.1(4)).

For an ideal I in a noetherian domain R, let Assg (R/I) = {Py,---,P-} and
S=R\( U P;). Then the n-th symbolic power I™) of I is defined to be the

1<i<r
ideal I™) = RN I"(S™'R).
We now quote the results to be used.

Lemma 2.1. For a non-zero element a in a noetherian domain R and a multi-
plicatively closed subset T of R the n-th symbolic power of the ideal I = RNaT 'R
is given by I = RN a"T~'R.

Proof. We may assume I is a proper ideal of R. Let aR = (Ny N ---N N,.) N
(Ny41N---NNg) be a primary decomposition, with N; being P;-primary, such that
P;NT = () precisely for 1 <i <r. Then I = (N;N---N,.) and aT 'R = IT7'R.
Moreover, T C S, where S = R\ ( U P;). Therefore

1<i<r

RNa"T'R=RNI"T"'RCRNI"S™'R =1,

Conversely let x € I™). Then there exists s € S such that sz € I" (C RNa"T~'R).
Since Assg (R/a"R) = Assr (R/aR), we have

Asspoig (T"'R/a"T™'R) = Assp1p (T"'R/aT *R) = {T7'P,,--- , T"'P,}.
Now let a"T~'R = Q1N---NQ, be a primary decomposition with Q; being T ' P;-

primary. Now sz € Q; Vi but s ¢ T~1P; for any 1 < i < r. Therefore z € Q; for
every 1 <4 <, and hence x € RN a™T~'R. Hence the result. (|

Lemma 2.2. Let R be a noetherian local ring such that depth R > 2 and I an
ideal in R such that depth (R/I) > 1. Then depthr I > 2.

Proof. Let k be the residue field of R. By our assumptions Hom (k, R), Ext! (k, R)
and Hom (k,R/I) are all zero modules. Hence from the exact sequence

0 — Hom(k,I) — Hom(k,R) — Hom(k,R/I) — Ext*(k,I) — Ext'(k, R)
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it follows that Hom (k,I) and Ext! (k,I) are both zero and therefore depth I >
2. O

We now state a standard result ([B-H], 1.4.1, pg.19) which gives a criterion for
a module to be reflexive.

Proposition 2.3. Let R be a noetherian ring and M a finite R-module. Then M
is reflexive if and only if

(i) Mp is reflexive for all P € Spec R with depth Rp <1, and

(ii) depth Mp > 2 for all P € Spec R with depth Rp > 2.

The following result on finite generation is due to Onoda ([O], 2.14, 2.20).

Theorem 2.4. Let R be a noetherian domain and A an overdomain of R such
that A[1/x] is finitely generated over R for some z(# 0) € A. Then the following
statements hold:

(i) If S is a multiplicatively closed subset of R such that S~ A is finitely generated
over STIR, then there exists s € S such that A[l1/s] is finitely generated over
R.

(ii) A is finitely generated over R if and only if Aps is finitely generated over Ry
for all mazimal ideals M in R.

As a consequence by ([G], 2.1) we have

Corollary 2.5. Let R be a noetherian domain and A an R-subalgebra of a finitely
generated overdomain of R. Then the statements (i) and (i) in Theorem (2.4)
hold.

We now quote a relevant portion of a result of Rentschler ([Rn]). An alternative
proof is also given in ([D-F], 1.2).

Theorem 2.6. If K is a field of characteristic zero and D a non-zero, locally nilpo-
tent K -derivation of K[X,Y], then there exist F,G such that K[X,Y] = K[F, G|
and ker D = K[F]. Moreover there exists a € K[F| such that D = aAp, where
Ar is the derivation defined by Ap(X) = —Fy and Ap(Y) = Fx.

The following result has been proved by Abhyankar-Eakin-Heinzer ([A-E-H], 4.1)
and Russell-Sathaye ([R-S], 3.4).

Theorem 2.7. If R — A — RI™ are U.F.D.s such that the transcendence degree
of A over R is one, then A = R

Corollary 2.8. Let R be a U.F.D. and A an R-algebra which is an inert subring
of R[X1, -+, Xm] (= R™) of transcendence degree one over R. Then A = RI,

The next theorem is due to Bass-Connell-Wright ([B-C-W], 4.4).

Theorem 2.9. Let A be a finitely presented R-algebra. Suppose that for all mazi-
mal ideals P of R, the Rp-algebra Ap is Rp-isomorphic to the symmetric algebra
of some Rp-module. Then A is R-isomorphic to the symmetric algebra Symp (M)
of a finitely presented R-module M.

Corollary 2.10. Let R be a locally factorial noetherian domain and A an R-algebra
which is an inert subring of R[X1,---, Xu] (= R™) of transcendence degree one

over R. Then A is R-isomorphic to the symmetric algebra of an invertible ideal of
R.
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Proof. For every maximal ideal P of R, Ap = Rp!!l by (2.8). Now by (2.5), A4 is
finitely generated over R and hence, applying 2.9, A & Symp (M), where M is
obviously a finitely generated projective R-module of rank one and hence isomorphic
to an invertible ideal of R. O

The following criterion of Russell-Sathaye follows from ([R-S], 2.3.1).

Theorem 2.11. Let R be an integral domain and A a finitely generated overdomain
of R. Suppose that there exists an element 7 in R which is prime in A such that
TANR=nR, Ay = R and the image of R/mR is algebraically closed in A/TA.
Then A = RU.

The following result occurs in ([B-D], 3.2).

Theorem 2.12. Let R be a noetherian domain such that either R contains a field
of characteristic zero or R is seminormal. Then an element F in R[X,Y] (= R?)
is a variable if and only if it is a residual variable.

3. LocALLY NILPOTENT DERIVATIONS OVER NORMAL NOETHERIAN DOMAINS

In this section we investigate in detail the kernel of locally nilpotent R-derivations
of R[X,Y] where R is a noetherian normal domain containing a field of character-
istic zero. The main result is Theorem 3.5, where we give a precise description of
the structure of the kernel of such derivations.

We first prove a patching lemma.

Lemma 3.1. Let R be a noetherian domain and A an overdomain of R such that
JANR = J for every ideal J of R. Suppose that there exist non-zero elements
x,y € R satisfying the conditions:

(i) = and y form an R-sequence.

(i) A, = R,

(iii) A, = R,

(iv) A=A, NA,.
Then A has a graded ring structure @ A, with Ag = R and A,, a finite type

n>0
reflexive R-module for all n. In fact A is isomorphic as a graded R-algebra to the

symbolic Rees algebra @ IMT™ of a reflexive ideal I in R of height one.
n>0

Remark 3.2. Let R C A C B be integral domains such that B is faithfully flat over
R. Then JAN R = J for every ideal J of R.

Proof of 3.1. Let A, = Rg[U] and A, = R,[V] where U,V € A. Since A,y =
Ry [U] = Rgy[V], it is easy to see that

V = (aU +c¢)/2™ for some c € R, a € RN Ry,*, m € Z%.

Now ¢ = 2™V —aU € (2™,a)AN R = (™,a)R, i.e., ¢ = 2™v — au for some
u,v € R. Let F=U —u and G =V —wv. Then

Az = R;[F), Ay = Ry[G] with G = A\F where A = a/z™ € R,,".
Now

Ay =P R.F" and A, = P R,G".

n>0 n>0
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Since
Ay = @ (Ro F™)y = @ (RyG")o
n>0 n>0

where

(Ran)y = RzyFn = RryGn = (RyGn)zv
it follows that

A=A, NA, =P A, where A, = R,F" N R,G".
n>0

Thus A is a graded R-algebra with Ag = R, N Ry, = R by (i).

We will now show that A; is R-isomorphic to an ideal I of R such that A,, = I(")
as R-modules for every n, which will show in particular that each A, is a finite
R-module.

If a € R,™, then putting H = G/a = F/x™, it is easy to see that A = A, NA, =
R[H] (= RY), and we are through. So we may assume that aR, is a proper ideal
and let

I=RNaR,.

Then I, = aR,, and hence [ is an ideal of height one.

We now show that for every n, A,, = I™) . (G"/a") as R-modules. Let f € A,,.
Then

f=0bG" = (ba" /") F" = cF"/2™" = ¢(G"/a")
where
be R, and ¢ =a"b€ a"R,N R, = a"R,NR=1M

by (2.1). Conversely if ¢ € I, then by (2.1), ¢ = a"b for some b € R,. Thus
c¢(G™/a™) = bG™ € R,G™; on the other hand ¢(G™/a") = (¢/x™™)F™ € R, F™,
so that ¢G™/a™ € R,G™ N R, F™ = A,. Thus A, = I™ . (G"/a") and the map
én - ¢(G™/a™) — ¢ gives an R-isomorphism of A,, onto I(™).

Using the above isomorphism we now check that A, is a reflexive R-module for
every n. Since Ay = R is obviously reflexive we assume that n > 1. Let P € Spec R.

If at least one of the elements z,y does not belong to P then by condition (ii) or
(iil) it follows easily that A, p is a free Rp-module; in particular, A, p is reflexive
and depth A, p = depth Rp.

If both =,y € P, then by hypothesis, they form an R-sequence so that depth Rp >
2. It follows that in this situation PRp cannot be an associated prime ideal of
Rp/a™Rp and hence PRp ¢ Assg, (Rp/I™ p), which shows that depth (Rp/I™ p)
> 1. Now since A, = I by (2.2), it follows that depth A, p > 2.

Thus we see that depth A, p > 2 whenever depth Rp > 2 (irrespective of whether
z,y € P or not). On the other hand if depth Rp < 1, then at least one of z,y does
not belong to P, and in this case A, p is seen to be reflexive. Therefore by (2.3),
A,, is reflexive.

Now consider the injective map A,(= R,[G]) — R,[T](= R,M) defined by
G — aT. Then since A,, = I(™ . (G"/a™), the image of A(= A, NA, = @ Ap) in

n>0
R,[T] is precisely the symbolic Rees algebra @ IM™MT" (— R[T)). O
n>0
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As a consequence of Lemma 3.1, we now give a description of the graded R-
algebra structure of an inert subring of the polynomial ring R[ X1, - -- , X;,,] of tran-
scendence degree one over R, when R is a noetherian normal domain.

Proposition 3.3. Let R be a noetherian normal domain and A an R-algebra which

is an inert subring of R[X1,--- , Xn] (= RI™) of transcendence degree one over R.
Then A has the structure of a graded ring @ A, with Ag = R and A,, a finite
n>0

reflexive R-module of rank one for every n. In fact, when R is not a field, there
exists an ideal I of unmized height one in R such that A is isomorphic to the
symbolic Rees algebra @ IMT™ as a graded R-algebra.

n>0

Proof. If R is a field or a Dedekind domain then the result follows immediately
from (2.8) or (2.10) respectively.

So we assume dim R > 2. Since A C R[X1, -+, X;n], JANR = J for every ideal
J of R. Therefore by (3.1), it is enough to show that there exist elements x,y € R
which form an R-sequence such that A, = Rz[l], Ay = Rym and A=A, NA,.

Let T = R\ {0} and let K denote the quotient field of R. Then clearly T—1A is
an inert subring of K[X1,- -, X,,] of transcendence degree one over K, and hence
by (2.8), T-'A = K. Now since A C R[X1,---,X,,], by (2.5), there exists an
element t € T such that A[1/t] is finitely generated. From this and the fact that
T-1'A = K[ it follows easily that there exists z € T such that

Ay = R,

If + € R*, then clearly A = R and all the statements in the theorem fol-
low trivially. So hence onward we assume that xR is a proper ideal in R. Let
Assp (R/xR) ={Py,---,P.}. Since R is a noetherian normal domain, ht(P;) =1

forall 1 <i<r. LetS=R\( U P;). Then clearly S™'R is a P..LD. and
1<i<lr

S~1Ais an inert subring of (ST'R)[X1,- -+, X,,] of transcendence degree one over

S~'R. Therefore, by (2.8), S~'A = (S~'R)[1. By (2.5) there exists s € S such

that A[1/s] is finitely generated over R. Hence from the above equation it follows

easily that there exists y € S such that

A, = R,M.

By construction the pair x,y form a regular sequence in R. We now show that
A=A,NA,y Let

c=a/z :b/yeeAmmAy; a,bc A; jl€ZT.

As z,y form a regular sequence in R and hence in R[X7,---,X,,], the equation
y'a = 27b yields that a € 2/ R[X1,---, X,n]. Now since A is an inert subring of
R[X1,- -+, Xy, it follows that A N2/ R[Xy,- -, X,,] = 27 A. Therefore ¢ = a/2’ €
A, showing that

A=A,NA,.
This completes the proof. O

Remark 3.4. Let I be an ideal of unmixed height one in a noetherian normal domain
R. Then I has a primary decomposition of the form I = Pl(m) n---N Pr(nr). Let
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[I] denote the element Z n;[P;] in Cl (R). Now a routine verification shows that
1<i<r

for any two unmixed ideals I and J of height one in R, the following statements

are equivalent.

(i) I = J as R-modules.
(ii) @ 1mn = @ JMT™ as graded R-algebras.
n>0 n>0
(iii) [I] = [J] in CI (R).
Thus in Proposition 3.3, given any inert subring A, the choice of I is unique up to
its image in the class group (in the above sense). Since for a U.F.D., Cl (R) = 0,

the above observation gives another way of explaining the result (2.8) and hence
the result ([D-F], 2.1).

We now prove our main theorem on the structure of the kernel of a non-zero
locally nilpotent R-derivation of R[X,Y] over a normal domain R containing a
field of characteristic zero.

Theorem 3.5. Let R be a noetherian normal domain containing a field of charac-
teristic zero and let D be a non-zero locally nilpotent R-derivation of the polynomial
ring R[X,Y] with kernel A. Then A has the structure of a graded ring EB A, with
n>0
Ag = R and A, a finite reflexive R-module of rank one for every n. In fact, when
R is not a field, there exists an ideal I of unmized height one in R such that A is
isomorphic to the symbolic Rees algebra @ I™MT™ s a graded R-algebra.
n>0
Conversely let R be as above and let I be an unmized ideal of height one in R.
Let B be the symbolic Rees algebra @ IMT™  Then there exists a locally nilpotent
n>0
R-derivation D of R[X,Y] whose kernel is isomorphic to B as a graded R-algebra.
In particular B can be embedded as an inert subring of R[X,Y].

Proof. Since the kernel A is an inert subring of R[X,Y] of transcendence degree
one over R, the first part of the theorem follows from Proposition 3.3.

We now prove the converse statement. Let Assg (R/I) = {Pi,---, P} and
S=R\( U P;). Then S™!'Ris a P.ID. and hence IS~ R is principal. Therefore
1<i<r

we can choose an element y € S such that IR, is principal, say, IR, = aR, for
some a € I. By (2.1) it would follow that IR, = a"R, ¥n > 0. Therefore
B, = Ry[g], where g = aT. If y € R*, then I is principal, so that B = R[!l and we
are through (for instance we may consider the R-derivation D defined by DX =Y
and DY = 0). So we assume y ¢ R*.

Let Assgp (R/yR) = {Q1, - ,Q¢}. Since ht Q; =1Vl < j<{landy ¢ P; for
any 4, P;  Q; for any 4, j and hence I Z ( U Q;). Choose x € I\ ( U Qj). By

1<j<e 1<j<e

construction z and y form an R-sequence, and since IR, = R, = zR,, B, = R.[f]
where f = xT. Clearly g = (a/x)f and a € Rj,. Moreover, since x € I and
I, = aR,, we have

z = (u/y™)a for some u € RN (Ryy)*, me Z7.
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We now show that B = B, N B,. Let b= 2Pc = yid € 2? BN y1B, where p,q € Z*
and ¢,d € B. Let ¢ = Y. ¢;T7 and d = Y, d;T79, where ¢;,d; € 1) Vj > 0.
Then zPc; = yd; Vj. Since x,y form a regular sequence in R and y is a non-zero
divisor in R/I, it follows that ¢; € y2RN IU) = 44710 Vj, showing that b € 2Py?B.
Thus 2P BN y?B = 2Py?B and hence B = B, N B,,.

Now define an R-derivation D on R[X,Y] by

DX = —u, DY ==x.

Then D2X = 0 = D?Y, so that D is locally nilpotent. Let A = Ker (D). We shall
show that the graded R-algebras B and A are isomorphic, which will complete the
proof.

Note that D induces locally nilpotent derivations D, (resp. D,) on R[X,Y]
(resp. Ry[X,Y]) with kernels A, (resp. Ay). Now let

F=zX+uY, G=aX +ymY.
Then F,G € A and G = aF/x (since zy™ = au). Since
Ry [F] C Ay C Ro[X,Y] (= R.[F)M)

and the transcendence degree of R, [X, Y] over A, is one, it follows that A, = R, [F].
Similarly A, = R,[G]. Also note that since x,y form a regular R-sequence and A is
an inert subring of R[X, Y], we have (as in the proof of Proposition 3.3) A = A,NA,.

Now let ¢ : By(= Ry[f]) = A.(= R.[F]) be the R,-isomorphism defined by
f — F and ¢ : By(= Rylg]) = Ay(= R,[G]) be the R,-isomorphism defined by
g — G. In Ay, we have ¢(g) = ¢(af/z) = aF/x = G = 1(g). Thus both ¢ and
1 induce the same isomorphism By, = Azy. Hence their restrictions induce an
isomorphism B(= B, N B,) — A(= A, N A,). Hence the result. O

Note that if R is a locally factorial domain (for instance if R is regular) containing
a field of characteristic zero, then by (2.10), the kernel A of a locally nilpotent R-
derivation of R[X,Y] is finitely generated over R. However, from Theorem 3.5 it
follows that in general the kernel need not be finitely generated (even when R is
normal), as the following example illustrates.

Example 3.6. Let C be a non-singular elliptic curve in P% defined by a homo-
geneous irreducible polynomial F in C[X,Y,Z] (for instance, take F =
(Y2Z—-X?4+XZ?). Let R=C[X,Y, Z](x,v,z)/(F). Then R is a two-dimensional
normal local domain whose class group is not torsion. Therefore there exists a
prime ideal P in R of height one such that P(™ is not a principal ideal (for each
n > 1). Hence the symbolic Rees algebra B = @ PUT™ is not finitely generated
n>0
over R (for the proof see [R] or [C]). Now by Theorem 3.5 there exists a locally
nilpotent R-derivation of R[?! whose kernel is isomorphic to B and hence is not
finitely generated over R. O

However, in the situation of Theorem 3.5, if the group Cl (R)/Pic (R) is tor-
sion, then for any unmixed height one ideal I of R, I) would be an invertible
ideal for some £. Then it is easy to see that I*) = (IV)* and hence 1™+t =
I (WYY 0 < m <1 —1. Thus @ I™ is finitely generated. Therefore by

n>0
Theorem 3.5 we have
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Corollary 3.7. Let R be a noetherian normal domain containing a field of char-
acteristic zero such that the group Cl (R)/Pic (R) is torsion. Then the kernel of
any locally nilpotent R-derivation of R[X,Y] is finitely generated over R.

Using Theorem 3.5, we give below an example to show that the above condition
is not necessary for the kernel of every locally nilpotent R-derivation of R[X,Y] to
be finitely generated over R.

Example 3.8. Let R = C[X,Y,Z,W]/(XY — ZW), P = (X,Z)R and Q =
(X,W)R. Then it is well known that Pic (R) = 0 and CI (R) = Z and is generated
by [P](= —[Q])-

Let B be the associated graded ring @ (P"/P™*1). Consider the C[Y,W]-

n>0

algebra epimorphism ¢ : C[Y,W][U,V]/(YU — WV) — B defined by U —
X(mod P?) and V. — Z(mod P?). We first prove that ¢ is an isomorphism,
which will show in particular that B is an integral domain. Let J be the ideal
@ (P™/P™1) in B and let S be the multiplicatively closed subset R/P \ {0} in
n>1

B. Then it is easy to see that S~1B = C(Y, W)Y with S~1J as a maximal ideal,
showing that ht J = 1. Now since dim (R/P) = 2, it follows that dim B = 3, and
hence ¢ is an isomorphism.

Since B is an integral domain, a routine induction argument would show that
P" is P-primary, i.e., P(") = P". Similarly one can check that Q™ = Q™. Thus
P"™ and Q™ are unmixed ideals of height one in R with [P"] = n[P] and [Q™] = n[Q)]
in Cl (R).

Now let I be an unmixed ideal of height one in R. Then [I] = n[P] or n[Q] for
some non-negative integer n, say [I] = n[P](= [P"]). Therefore I = P™. Hence
there exists f € K* such that If = P™. Therefore I f™ = P = (P")(™) =
Itm) fm g0 that I™ = I™) ¥m. Thus by Theorem 3.5 the kernel of any non-zero
locally nilpotent R-derivation of R[?! is R-isomorphic to the Rees algebra of an ideal
I (of unmixed height one) in R, and hence is finitely generated over R. |

Remark 3.9. Let R be a noetherian normal domain. The group C! (R)/Pic (R) is
torsion if and only if CI (Rjs) is torsion for all maximal ideals M of R.

Remark 3.10. In the above example dim R = 3. However if R is a noetherian nor-
mal domain of dim 2, then by a result of Cowsik ([C]), Theorem 3.5 and 2.5 it would
follow that the condition that Cl (R)/Pic (R) is torsion is indeed necessary for the
kernel of every locally nilpotent R-derivation of R[X,Y] to be finitely generated.

We now give an example to show that Proposition 3.3 and Theorem 3.5 are not
valid if R is not normal. Note that if R is a one-dimensional noetherian domain,
then the symbolic power I(™ of a non-zero ideal I in R obviously coincides with
I™, and hence the symbolic Rees algebra @ IMT™ is finitely generated over R.

n>0
However the following example shows that when R is a one-dimensional noetherian
domain (containing Q) then the kernel of a non-zero locally nilpotent R-derivation
of R[X,Y] need not be finitely generated if R is not normal; in particular, it need
not be of the form @ 1,
n>0
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Example 3.11. Let R =R + (t)C[[t]]. R is a noetherian local domain with max-
imal ideal M = (¢)C[[t]. Let R be the normalisation C[[t]] of R. Define a locally
nilpotent R-derivation D of R[X,Y] by

D(X) =it and D(Y) = —t.

It is easy to see that ker (D) = R[X +4Y]. Now D restricts to a locally nilpotent
R-derivation D of R[X,Y] with kernel A, and it is easy to see that

A=R+ MR[X +iY].

We now show that A is not even noetherian, and hence is not finitely generated
over R. Since R[X +iY]/MR[X +iY] (= Cl!l) is not finitely generated as a module
over A/MR[X +iY] (= R), clearly R[X + Y] cannot be a finite A-module, and
hence for any f(# 0) € M, fR[X +iY] (C A) is not finitely generated as an ideal
in A. Thus A is not noetherian. |

In the next section we shall show (Proposition 4.11) that all locally nilpotent R-
derivations of R[X,Y] over a normal domain R (containing a field of characteristic
zero) with a fixed kernel A together with the zero derivation has a graded A-module
structure.

4. LoCcALLY NILPOTENT DERIVATIONS OVER GENERAL NOETHERIAN DOMAINS

In this section we shall give a necessary and sufficient condition for the kernel of
an irreducible locally nilpotent R-derivation of the polynomial ring R[X,Y] to be
R (Theorem 4.7). The crucial step in the proof is Proposition 4.5. Before that
we prove some lemmas.

To avoid the tedium of repetition we shall hence onwards assume that R denotes
a noetherian domain containing a field of characteristic zero and K denotes the
quotient field of R.

Lemma 4.1. For any F € K[X,Y]\ K, (Fx, Fy)K[X,Y] N K[F] # (0).

Proof. Let S = K[F]\ {0}, L = S7!K[F] (= K(F)) and C = S7!K[X,Y]. We
have the exact sequence

Qryx L C 5 Qs — Qo — 0.

Since L is a perfect field, C' is smooth and hence ¢/, is a projective C-module of
rank one ([A-K], pp. 159-162). Hence the exact sequence

0— Im (0) = Qc/x — Qe — 0

splits. Now as Q¢ is a free C-module of rank two with basis dX and dY and
Im (o) is generated by FxdX + FydY, the elements F'x and Fy are comaximal in
C and hence (Fx, Fy)K[X,Y] N K[F] # (0). |

Lemma 4.2. For any F € K[X,Y]|\ K, if K[F] is an inert subring of K[X,Y],
then the ideal (Fx,Fy)K[X,Y] is not contained in any proper principal ideal of
K[X,Y].

Proof. If possible let (Fx, Fy)K[X,Y] C pK[X,Y] where p is a prime element of
K[X,Y]. By (4.1), pK[X,Y]N K[F] # (0) and hence it is generated by a non-zero
irreducble element ¢(F) of K[F]. The inertness condition and the irreducibility of
¢(F) imply a relation p = ugp(F') for some v € K*. But that would imply that Fx
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and Fy both belong to the ideal ¢(F)K[X,Y], which is absurd by simple degree
considerations. Hence the result. O

Lemma 4.3. Let F € (X,Y)R[X,Y] and I be an ideal of R. Then F € IR[X,Y]
if and only if both Fx and Fy are in IR[X,Y].

Proof. Let F = Z ainin, ai; € R. Note that aggp = 0. Since R contains Q, Fx
,J

(=>_ O aiY7)iX1) is an element of IR[X,Y] if and only if a;; € I for all

i
(4,7) for which ¢ > 0. Similarly Fy € IR[X,Y] if and only if a;; € I for all (¢, j)
for which j > 0. Hence the result. O

Proposition 4.4. Let F be a generic variable in R[X,Y]. Then R[X,Y] = R[F]!
if Fx, Fy are comazimal in R[X,Y].

Proof. By (2.12) it is enough to show that F' is a residual variable in R[X,Y]. Let
P € Spec R and F the image of F' in k(P)[X,Y]. Without loss of generality we
may assume that R is local with maximal ideal P and residue field k (= R/P), and
prove that k[X,Y] = k[F]! by induction on ht P (= dim R) = d, say. If d = 0,
there is nothing to prove.

Let d = 1. Now since R is a one-dimensional noetherian local domain, by the
Krull-Akizuki theorem ([N], p.115) it is easy to see that there exists a discrete
valuation ring (C,7) such that R C C' C K and the residue field L = C/7 is
finite over k. We first show that F is a variable in C[X,Y]. Since F is a generic

variable in C[X,Y], by (2.11) it is enough to show that L[F] is algebraically closed
in L[X,Y]. But the algebraic closure of L[F] in L[X,Y] is clearly of the form
L[G], and by the comaximality assumption of Fx, Fy it follows easily that F' is
linear in G, showing that L[F] = L[G] is algebraically closed in L[X,Y]. Thus
C[X,Y] = C[F], and hence L[X,Y] = L[F]". Now L being finite separable over
k, it follows that k[X,Y] = k[F]M.

Now the case d > 2 follows by an easy induction argument. O

Proposition 4.5. For an element F in R[X,Y]\ R, the following statements are
equivalent :
(i) R[F] is an inert subring of R[X,Y].
(ii) K[F] is an inert subring of K[X,Y] and the ideal (Fx,Fy)R[X,Y] is either
the unit ideal or has grade 2.

Proof. (i)=-(ii). Suppose (i) holds. Then a routine verification shows that K[F] is
an inert subring of K[X,Y].

Without loss of generality we may assume that F' € (X,Y)R[X,Y]. If Fx € R*,
then we are through. If Fiy = 0, then F € YR[X,Y], and hence by the inertness
condition it follows easily that F' = uwY for some u € R*, ie.,, Fy € R*, and
we are through. Thus we may assume that F'x is a non-zero non-unit element
of R[X,Y] and show that Fy is a non-zero divisor in R[X,Y]|/FxR[X,Y]. Let
Q € Assgix,y)(R[X,Y]/FxR[X,Y]). Then depth (R[X,Y]q) = 1. It suffices to
show that Fy ¢ Q.

Let P = QN R. If P = (0), then QK[X, Y] € Assxx.v(K[X,Y]/FxK[X,Y]),
and hence is a prime ideal of height one and therefore a principal prime ideal. Hence
by (4.2), Fy ¢ QK[X,Y], and we are through.
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Now suppose that P # (0) and let a be a non-zero element of P. Since
depth (R[X,Y]q) = 1, Q € Asspx,y)(R[X,Y]/aR[X,Y]); and since a € R, Q
is extended from R. Thus PR[X,Y] = Q € Assgx y|(R[X,Y]/aR[X,Y]). Hence
P € Assg(R/aR), i.e., there exists b € R\ aR such that bP C aR, and therefore

bQ C aR[X,Y], b€ R\ aR.

Now if F' € @, then by the above relation it would follow that bF = aG for some
G € R[X,Y]. Since bF € R[F], condition (i) would imply that G € R[F] and hence
G = cF for some ¢ € R. But this relation would imply b(= ac) € aR, contradicting
the choice of b. Thus F ¢ @, and hence by (4.3), Fy ¢ Q.

(ii) = (i) Assume (ii) holds. Since K[F] is an inert subring of K[X,Y], it is
enough to prove that R[X,Y]N K[F] = R[F], i.e., to show that cR[X,Y]|NR[F] =
cR[F] Ve € R. Thus the proof will be complete if we prove the following claim.

Claim. If (Fx,Fy)R[X,Y] is either the unit ideal or has grade 2, then cR[X,Y]N
R[F] = cR[F|Vc € R.

Proof of the Claim. Let G € R[X,Y] and ¢(F) = > a;F", a; € R, be such that
0<i<n
c¢G = ¢(F'). To prove the claim it is enough to show that a; € cR Vi.
We first show that the first derivative ¢'(F) € cR[X,Y]. Now

(*) CGX = ¢I(F)FX and CGY = ¢/(F)Fy

Let cR[X,Y] = (| N; be a primary decomposition of ¢R[X,Y] and let P; be the
associated prime ideal of R[X,Y]/N;. Now, P;Rp, being the associated prime ideal
of R[X,Y]p,/cR[X,Y]p,, depth (R[X,Y]p,) = 1. Hence from the given conditions
on Fx and Fy, at least one of them becomes unit in R[X,Y] p;, i.e., at least one of
them does not belong to P;. Hence by (x) we have ¢/(F) € N;. Since this would
hold for every j, we have ¢/(F) € cR[X,Y].

The above argument shows, by induction, that the m-th derivative (") (F)
€ ¢cR[X,Y] ¥m, 1 < m < n. In particular ¢ divides ¢ (F) and as Q — R, it
shows that a,, € cR.

Let ¢.(F) = Z a;F*. By an easy inductive argument as above it follows
0<i<n—r

that ¢ divides a,, the leading coefficient of ¢, for every r, 0 < r < n. Hence the

result. O

Corollary 4.6. An inert subring A of R[X,Y] of transcendence degree one over
R is isomorphic to R if and only if there exists an element F' € A such that Fx
and Fy either form a sequence or are comazimal in R[X,Y].

We now prove the main result of this section.

Theorem 4.7. Let D be a locally nilpotent R-derivation of R[X,Y] and let A de-
note the kernel of D. Then the following statements are equivalent:
(i) D is irreducible and A = R,
(i) DX and DY either form an R[X,Y]-sequence or are comaximal in R[X,Y].
Moreover if DX and DY are comazimal in R[X,Y], then R[X,Y] = All.
Proof. (i) = (ii). Let A = R[F]. Since R[F] is an inert subring of R[X, Y], by (4.5),
Fx and Fy either form a sequence or are comaximal. Hence from the equation

FxDX 4+ Fy DY =DF =0
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we conclude that
DX = uFy and DY = —uFx for some u € R[X,Y].

Since D is irreducible it follows that v € R*. Hence DX and DY either form a
sequence or are comaximal (since F'x and Fy have the same property).

(ii) = (i). The irreducibility of D is obvious.

Now D induces a non-zero locally nilpotent derivation on K[X,Y] with kernel
S71A, where S = R\ {0}. By (2.6), S™'A = K|[H], where H is a variable in
K[X,Y]. We may choose the above H to be in the ideal (X,Y)R[X,Y]. From the
equation

HxDX + HyDY =DH =0
and from condition (ii), it follows that
Hx = gDY and Hy = —gDX for some g € R[X,Y].
Since H is a variable in K[X,Y], it follows that
g€ K*NR[X,Y]= R\ {0}.
Hence by (4.3), it is easy to see that
H = gF, where F € A and DX = —Fy, DY = Fy.

Thus K[F] (= K[H]) is an inert subring of K[X,Y] with the property that Fx
and Fy either form a sequence or are comaximal. Hence by (4.5), R[F] is an inert
subring of R[X,Y]. Now since A is contained in the quotient field of R[F], it follows
easily that A = R[F].

If DX, DY (and hence Fyx,Fy) are comaximal in R[X,Y], then since F is a
generic variable, by (4.4) it follows that R[X,Y] = R[F]1! = Alll. O

Remark 4.8. Note that when R is a U.F.D., any irreducible locally nilpotent R-
derivation of R[X,Y] obviously satisfies condition (ii) in Theorem 4.7 and any lo-
cally nilpotent derivation is a multiple of an irreducible locally nilpotent derivation.
Therefore when R is noetherian the result ([D-F], 2.1) follows from Theorem 4.7.
The above theorem also shows that the result ([D-F], 2.5), which was proved for a
U.F.D., is true when R is any noetherian domain (containing a field of characteristic
7€ero).

Corollary 4.9. The following statements are equivalent.
(i) D is a locally nilpotent derivation of R[X,Y] with kernel R[F](= RIM).
(ii) D = aAp, where F is a generic variable in R[X,Y] such that Fx, Fy either
form a sequence or are comaximal in R[X,Y], a € R[F]\ {0} and Ap is the
derivation defined by Ap(X) = —Fy and Ap(Y) = Fx.

The sum of two locally nilpotent derivations need not be locally nilpotent. For
instance, define Dq,Dy on R[X,Y] by D1(X) = 0,D1(Y) = X and Dy(X) =
Y,D2(Y) =0. Then (D1 + D3)" (X +Y) =X +Y V¥n. However we can make the
following observation.

Lemma 4.10. Let A be the kernel of a non-zero locally nilpotent R-derivation of
R[X,Y]. Then any non-zero locally nilpotent A-derivation of R[X,Y] has kernel A.
Moreover the set of all locally nilpotent A-derivations of R[X,Y] has an A-module
structure.
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Proof. Let M be the set of all locally nilpotent A-derivations of R[X,Y]. Let D(#
0) € M. Now A C ker D C R[X,Y]. Since R[X,Y] has the same transcendence
degree over both ker D and A, ker D is algebraic over A. But A is algebraically
closed in R[X,Y]. Hence ker D = A.

Let S = R\ {0}. Now any non-zero D € M extends to a locally nilpotent
K-derivation D of K[X,Y] with kernel S~'A and, by (2.6), S~'A = K|[F] for
some element F' in R[X,Y]. Thus again by (2.6), D = aApr for some non-zero
a € K[F](= S7tA). From this description it clearly follows that if Dy, Dy € M,
then D; 4 D5 is locally nilpotent and hence belongs to M. Also it is easy to see
that if D € M and a € A, then aD € M. Thus M is an A-module. O

If the kernel A of some non-zero locally nilpotent R-derivation of R[X,Y] is RI!
(for instance if R is a U.F.D.), then by (4.9) and (4.10), all locally nilpotent A-
derivations of R[X,Y] has an A-module structure isomorphic to any principal ideal
of A. We now give a description of the A-module structure of all locally nilpotent
A-derivations of R[X,Y] when R is normal.

Proposition 4.11. Let R be a noetherian normal domain and let A be the kernel
of a non-zero locally nilpotent R-derivation of R[X,Y]. Then A is a graded R-

algebra @ A, isomorphic to the symbolic Rees algebra of an unmized height one
n>0
ideal of R. Let M be the set of all locally nilpotent A-derivations of R[X,Y]. Then
M has a graded A-module structure. Moreover M is isomorphic to @ A, as a
n>1
graded A-module.

Proof. The graded R-algebra structure of A has been deduced in (3.5). Also, by
(4.10) M has an A-module structure and the kernel of any non-zero element of M
is A.

Now as in the proof of (3.3) there exist elements z,y € R such that A, = R,
A, = R, and A = A, N A,. Again as in the proof of (3.3) there exist an element
a € RN Ry,” and elements F,G € A such that A, = R;[F], A, = R,[G] and
G = \F, where A = a/2™ for some m € ZT. As before, let I = RN aR,.

Now let D € M. Then D induces a locally nilpotent R,-derivation D, (resp.
Ry-derivation D) on R,[X,Y] (resp. Ry[X,Y]) with kernel A, = R,[F] (resp.
A, = Ry[G)). By (4.9), D, = aAp and D, = SAg for some a € A,,3 € A,.
Now on Ay, the two patch up. Therefore aAp = fAg = (Ba/x™)Ar, and hence
Ba=z"a€ A, NA, = A.

Conversely it is easy to see that for any 3 € A, such that Ba € A, BAg € M.

Hence D € M if and only if D = BA¢ for some § € A, satisfying fa € A. Since
G and a are fixed, we can therefore give an A-module isomorphism M — AN ad,
by D(= 8A¢g) — afB. Now by (3.3) the proof will be complete if we prove the
following claim.

Claim. ANaAy, = @ AU A

n>1
Proof of the Claim. Consider the inclusion A, (= Ry[G]) — Ry[T], where T' = G/a.
As in the proof of (3.1), the image of A in R,[T] is @ I™T". On the other

n>0



3318 S. M. BHATWADEKAR AND AMARTYA K. DUTTA

hand, the image of aA, is clearly @ a1 R,T". Now by (2.1) I™ Nna"t'R, =
n>0

RNa"t'R, = I Therefore the image of ANaA, in R,[T] is @ [+

n>0
g 1.

n>1

O

We now give an example to illustrate Proposition 4.11.

Example 4.12. Let R = C[X,Y,Z, W|/(XY — ZW). Let x,y,z,w denote the
images of X,Y, Z W respectively in R. Let P = (z,z). Let F,G be elements of
R[U, V] = R defined as follows:

F=zU+wV, G=2z2U-+yV.
Let Ap and Ag be two R-derivations of R[U, V] defined as follows:
Ap(U) =w,Ap(V) = -z, Ac(U) =y, Ac(V) = —2.

Then Ap and Ag are two irreducible locally nilpotent derivations such that ker Ap

=ker A¢, which we denote by A. Moreover, A, = R,[F] and A, = Ry[G].

Since P(™) = P" (see Example 3.8), it is easy to see that A = R[F,G] (the R-

subalgebra of R[U,V] generated by F and G). Moreover, A = @ Ay, where A,
n>0

= Ziﬂ-:n RFGY.

Since zAp = zAg, again using the fact P(") = P™ it is easy to see that the
A-module M of all locally nilpotent A-derivations of R[U, V] is generated by Ag
and Ag.

Let I = @An. Then [ is an ideal of A generated by F' and G. Since zF = xG,

n>1
for elements a,b in A, aF + bG = 0 if and only if za + zb = 0. Since Ap(V)=—zx
and Ag(V) = —z, aAp + bAg = 0 if and only if za + zb = 0.

The above discussion shows that F' — Ap and G — Ag is a well defined

isomorphism of the A-modules I and M. O

We conclude the paper with the following observation.
The triangulability criterion ([D-F], 2.8) formulated for U.F.D. is true in general
in the following form :

Remark 4.13. Let D be an irreducible locally nilpotent R-derivation on R[X,Y]
with kernel A = R, Then D is triangulable over R if and only if there exists a
variable G in R[X,Y] such that K[X,Y] = (A®gr K)[G].
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