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CONDITIONS FOR OPTIMALITY AND VALIDITY OF SIMPLE LEAST
SQUARES THEORY

By Suvsit Kumar MiTra AND C. RADHAKRISHNA RAo

Indian Statistical Institute

1. Notation and introduction. A matrix is denoted by a bold face letter such as
A, X, X ete. For a matrix X of order n X m

R (X)) represents the rank of X.

9N (X)) represents the linear space generated by the columns of X.

X" represents a g-inverse as defined by Rao (1962, 1966, 1967b).

Px = X (X'X) X' is the projection operator which projects arbitrary n-vectors
onto M (X).

X* denotes a matrix of maximum rank such that X'X* = 0.

I denotes an identity matrix. The order of I will usually not be explicitly men-
tioned but can always be determined from the context.

Consider the Gauss-Markoff model (Y, X8, ) where Y is a vector of observa-
tions, E(Y) = Xg and D (Y) = X, X being a given matrix of order n X m and § a
vector of unknown parameters. In the context of the discussion in the present
paper, the model will be simply referred to as (X, ). The best linear unbiased
estimator (BLUE) of an estimable parametric function p', where p is a vector,
under the model (X, £) is a linear function L'Y such that E(L'Y) = p'8 and
L'=L is a minimum. It is well known that a BLUE under (X, £) can be obtained
by the general method of least squares (see Rao, 1965, page 188 and Mitra and
Rao, 1968).

The BLUE of p'8 under (Xo, ) is said to be (X, £) optimal if it is also the
BLUE of p'3 under the model (X, £). The object of the present paper is to charac-
terize the set of (X, £) such that for every estimable parametric function the
BLUE under a given model (X,, ¢’I) is (X, £)-optimal. Further, the classes of
= for which different statistical methods based on (X, ¢°I) remain valid have
been obtained.

In previous papers Rao (1967a, 1968)' gave the necessary and sufficient con-
tions for BLUE under (X, ;) to be (X, £ )-optimal, in which case the investiga-

tion was confined to the characterization of X only. Similar results, but not pro- -

viding an exact representation of X, were also obtained by Zyskind (1967),
Watson (1967) and Kruskal (1968) in the special case of o = ¢’L.

2. The main results.
LemMma 2.1. If for every estimable parametric function the BLUE under (X,
o’1) is (X, o’1)-optimal, it is necessary and sufficient that X is of the form

(2.1) X =X, + @I — Px,)A,

Received 29 October 1968; revised 19 February 1969.
1 The results were first given in a lecture at the Fifth Berkeley Symposium in 1965.
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where A is any matrix such that

(2.2) MA") nME) = {0},
a set conststing exclusively of the null vector, or equivalently
(2.3) X =X+ I — Px,)FI + (I — Px,)D]*,

where D and F are arbitrary.

We note that from standard results in the Gauss-Markoff theory (see Rao,
1965, page 178) it suffices to investigate conditions under which the elements of
the vector X,'Y have the same expectations and minimum variance under the
models (Xo, ¢’I) and (X, o°I).

Sufficiency of (2.1) and (2.2). Let X be of the form given in (2.1) and (2.2).
Then

EXJY|X,0T) = X¢X8 = XoX§ = EXY|Xo, oT),

since I — Px, is symmetric and (I — Px,)Xo = 0.

Let Z = X*, in which case E(Z'Y|X, ¢'I) = 0. By definition X'Z = 0 =
X'Z + AT — Px,)Z, ie, X/Z = -A'1 - Px,)Z, which is a contradiction in
view of (2.2) unless X¢Z = 0. Hence by Lemma (i), page 257 in Rao, 1965,
sufficiency is established.

Necessity of (2.1) and (2.2). Let a BLUE under (Xo, ¢’I) be (X, ¢’I) optimal.
Necessity of (2.1) is obvious for expectations of X,'Y to be the same under the
two models. Now suppose that 9 (A’ (I — Px,)) n 9 (X,') contains a vector
a % 0, in which case @« = A’ — Px)u = Xo'Xo). for some vectors u and . Let
z = Xo» — (I — Px,)u. Check that X'z = 0 and observe that X,z = Xo'Xoh =
a # 0. This shows that at least some elements of X,'Y are correlated with z'Y
which is a contradiction. Hence 9 (A’ (I — Px,)) n M X, ) = {0}. Necessity
of (2.2) follows from the fact that, without loss of generality, one may take
A to be (I — Px,)A.

Necessity and sufficitency of (2.3). Using the condition of unbiasedness

EXJY|Xo,dT) = EX/Y|X,61) =X = Xy + (I — Px,)G.

Let Z = X* and C stand for covariance. Since X,'Y are BLUE’s under (X, ¢’I),
C(Z'Y, X/’Y|X, ¢'I) = 0 = X, = XH for some H.
Multiplying both sides of X = X, 4+ X¢*G by H and writing X, = XH we obtain
Xo = XH + X,'GH = X; = X¢H and GH = 0.

Observe that Xo = X(H=H = I 4+ (I — Px, )D for some D and since GH = 0,

G =FH") = FI+ (I — Px,)D]".
Hence ’
X =X+ (I~— Px,)FI+ (I — Px,.)D]*,

where F and D are arbitrary.
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CoroLLARY 1. A sufficient condition that for every estimable function the BLUE
under (Xo, o’I) is (X, o’1)-optimal is
(2.4) X =Xo+ [I — Xo (Xo'Xo) X Bl — X¢'%o(Xo'X)],

where B is arbitrary.
CoroLLARY 2. If R (Xo) ts equal to the number of columns in X, , then the condi-
tions of Lemma 2.1 reduce to X = X,.

Proor.
2.5) EXJY|X,dT) = X/'X8 = X = X, + Xo*G,
for some G. Since X,'Y are BLUE’s under X, o'T),
(2.6) CXY,Z2Y) =0=X,Z = 0= X, = XD,

for some D. From (2.5) and (2.6),
XD = XD + X,*GD = X,.
Multiplying by Xy,
XoXo = X¢X;)D=D =1,

since Xo'X, is non-singular. Then X, = X from (2.6).
LemMA 2.2. For the BLUE under (Xo, o’I) to be (X, =)-optimal for every es-
timable parametric function, 1t is necessary and sufficient that

2.7) X =X+ ZG,

(2.8) = = XAX, + ZBZ, + X:A'G'Z) + Z,GAX,,

where A, B, G are arbitrary except that £ is non-negative definite and Zy is written
f07' Xo*.

PrOOF OF NECESSITY. As in Lemma 2.1, we consider the functions X,'Y. The
condition that E (X,'Y) is the same for (Xo, ¢’I) and (X, £) implies that

(2.9) X = Xo + ZG,
for some G. If X,'Y is optimal for (X, =), then
CXY,Z'Y|X, =) = X/=Z = 0,

where Z = X*. We write

(2.10) = = XoZXo + ZoEZo + XoE:Zo + ZoZ5'X0,
where X; and X, are symmetrical, as in Rao (1968, equation 2.8). Then
Xi2Z = X X=X + XoZ:Zo)Z = 0 = X Xo'Xo + Zo23'Xo'Xo

= XM = XM + ZiGM = X=Xo'Xo = XM, Xo=Xo = XM(Xo'Xo) X0,

Zo='XoXo = ZGM,  Ze='Xy) = Z,GM (Xo'Xo) X,

Writing A = M (Xo'Xo) ", B = X, = can be written in the form (2.8).
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Notk 1. In Corollary 2 to Lemma 2.1, it was noted that X = X, when the rank
of X, is full and X is restricted to the form ¢°I. This result need not be true, when
a general X, as in (2.10), is considered.

NorE 2. Lemma 2.2 asserts that, when X and X are asin (2.7, 2.8), a BLUE of
an estimable parametric function under (Xo, ¢’I) is also a BLUE under (X, ).
But this does not imply that the minimum variances attained in the two models
are the same. To compare the variances let us first compute the dispersion
matrices of Xo'Y under the two models.

D X)Y |Xo,dT) = c’Xo'Xo,
DX, Y| X, Z asin 2.8) = X¢X:AX('Xo.

If the variances of a BLUE are to be equal, a necessary and sufficient condition
is
(2.11) 7Xo'Xo = Xo'XoAX,'Xo ,

or A = o*(X¢'X,)”, while B and G in (2.8) can be arbitrary.

LeMMaA 2.3. Let P be a matrix of order m X k such that SITZ(P) c Em(Xo ) and
R(®P) = k. A necessary and sufficient condition for L 'Y = P'XXo) XY to be_the
BLUEs for P'8 under (X, o) is that

(2.12) X =X+ [[ - (LL7)][CB” + D{ — BB7)],

where B = (P7)L'L, C = L — X(B and D an arbitrary matriz of order n X m.

Proor oF surriciENCY. The sufficiency part follows from the fact that
L'X =L'X, = P and XB = X;B + I — (LL7)IC = X;B + C = L since
RP)=k=R@L)=k=R®B)=k=BB=I1adLC=LL—-LXB =
L'L — PB = 0.

Proor oF NECESSI’I‘Y To establish the necessity part note that
EWL'Y|Y, X8, s'T) = L(X—Xo) 0=X=X+[I — AL)G.
Further, the fact that L Y is BLUE for P’'g under (Y, X8, 1) = L = XB for
some B=LL = L'XB = P'B= B = (P)'L'L. The rest of the lemma follows
from the general solution (G) of the equatlon AGB = C, given in Theorem 2d
of Rao (1967b) substituting A = I — (LL7)".

LeEmMA 2.4. Let us consider two altematwe models X, I) and (X, 2) where
has the general representation = =XE,X' + ZE,Z + X=,Z' + ZxX'. Then the
following are true.

(a) D(XYIaI) = D(XY|2:) =X =0 (XX)“

(b) Let Ry = mmg Y — Xg) (Y —XB) = YT — Py)Y. Then

EY' 0 —Px)Y|dI] = EY'T — Px)Y|Z] = trace ZEZ' = (n — r)d’
where r is the rank of X and n is the number of elements in Y.

(¢) Let Y have K multivariate normal distribution. Then the distribution R¢/o"
under (X, =) is x> on (n — r) degrees of freedom iff Zx2"))e" = A — Px) If
further X 'Y and Ry’ are to be independently distributed, then Xx.Z' = Zx/X = 0.
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Proor. The result (a) is easily established. To prove (b), we observe that
(213) EY'(d — Px)Y| =] = trace [I — Px)Z]
trace (ZX.Z' 4 ZEX') = trace ZX,Z'.

Since E(Y' (I — Px)Y|oI) = (n — r)o’, the result (b) is established.
The necessary and sufficient condition for Y'(I — Px)Y/s’ to have a x’-dis-
tribution is (using the condition on page 443 of Rao, 1965)

EI - Px)E(I — Px)E = o’=(I — Px)=
& (2ZEZ' + X5,2')(Z%.2') (222" + Z%'X)
(2.14) = o’ (ZE.Z' + XX%:2') (Z2.Z" + Z2,'X))
= Z2'25.2'75,2'2%,2'7 = ¢’2'2%,2'23,2'7
& (ZBZ')(ZEZ' ) ZEZ') = ¢ (Z2Z') (Z2Z))
& (Z%,2')/d" is idempotent.
The df of % is (see page 443 Rao, 1965)

(2.15) trace (I — Px)X/d" = trace (ZE.Z' + Zx:X') /o
= trace ZX,Z'/o".

If trace ZE,Z' = (n — 7)o, then we should have

(2.16) Z%,2' = o*(I — Px).

If Z'Y and Y (I — Px)Y are to be independently distributed, then X'S (I — Px) =
0= X3%;Z' = Z=,X' = 0. Thus (c) is proved.

The following table gives the necessary and sufficient conditions on = for dif-
ferent procedures in the simple least squares theory (i.e. assuming £ = o¢’I) to
be optimal or valid.

Property Representation of X
(i) Every SLSE is BLUE X5 X'+ Zx,Z'
(ii) Expression for variance of a o?Px + ZX,Z" + XX:Z2' + Z=,'X!
SLSE remains the same
(iii) Re*/o? is a x2 on (n — r) df X=X+ oI — Px) + X=:Z' + Zx4/X’
(iv) Every SLSE and R are inde- X=X+ Zx,Z'
pendently distributed
(v) In addition to (iv), Ro?/o? is a X=X’ + o2(I — Pyx)
x2on (n — r) df
(vi) In addition to (v), (ii) is satis- a2l
fied
(vii) In addition to (v), the variance o2l + XAX’ where p’Ap =0

of a particular SLSE, say that
of p’g is the same
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From the table we observe that while some of the procedures based on simple
least squares theory are valid for a wider class of =, for the full battery of pro-
cedures on estimation and testing to be applicable (case vi), it is necessary that
= = ¢’I. Case (vii) shows that if the procedures are to be valid for particular
parametric functions, then £ can belong to a wider class. A well known example
which falls in this category is the treatment of two way classification (mixed
model) discussed in Rao (1965, page 216).

3. Tests of linear hypotheses when (2.1) holds. Consider a parametric func-
tion p'8 which is estimable under the model (Y, X¢8, o’I). It is clear that if the
true model (Y, X8, ’I) satisfies the conditions of Lemma 2.1, the expression for
the BLUE of p'8 and for its variance as well remain unchanged in either case.
Notice, however, that if R,® denotes the residual sum of squares obtained under
(Yy XO@; UZI)

E[RS|X8,6'I] = E[trY' (I — Px,)Y | X8, o’T]

= E[tr I — Px,)YY'|X8, o’T]

(3.1) = tr I — Px,) (T + X38'X’)
= (n — 1)’ + §X' I — Px,)X8
= (n — ) + 8A'T — Px,)AB

which is equal to (n — r)¢” if and only if (I — Px,)A8 = O that is X3 = X¢8.

This shows that if the two models are distinet (a) Ro’/(n — r) overestimates
o and (b) Ry’/o” is distributed as noncentral chi-square on (n — r) df, with the
noncentrality parameter A = A’ — Py, )AB/d’, independently of the BLUE
p'8. Hence

®'8 — p'8)/Ip' XXo) PR/ (n — 1)}

is distributed as the ratio of a standard normal variable and an independent root
mean (noncentral) chi-square on (n — r) df. Also the usual F-statistic, computed
for testing several linear hypotheses on unknown parameters, is, in the null case,
distributed as the ratio of a (central) mean chi-square and an independent mean
(noncentral ) chi-square on (n — r) df. For various values of the noncentrality
parameter A, the following table gives the true level attained by the F-test under
the model (X, ¢’I) when 1 per cent and 5 per cent critical values under the model
(X, , o’I) are used.

Acknowledgment. The authors wish to thank P. Dasgupta of the Computer
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out on IBM 1401 Computer.



TABLE 1

Table showing the actual level attained by the variance ratio test by using the tabulated critical
value for 1%, level of stgnificance
ny = df for numerator; n, = df for denominator

71 A=1 A=2 A=3 A=4 A=35 A=6

a = 1%,n2= 10

1 .0076 .0058 .0045 .0034 .0026 .0020
2 .0074 .0055 .0041 .0030 .0022 .0016
3 0073 .0053 .0038 .0028 .0020 .0015
4 .0072 .0052 .0037 .0027 .0019 .0014
5 .0071 .0051 .0036 .0026 .0018 .0013

a = 1%, ny = 20

1 .0085 .0073 .0062 .0053 .0046 .0039
2 .0083 .0069 .0058 .0048 .0040 .0033
3 .0082 .0067 .0055 .0045 .0037 .0030
4 .0081 .0065 .0053 .0043 .0034 .0028
5 .0080 .0064 .0051 .0041 .0033 .0026
« = 1%, ny = 30
1 .0089 .0080 .0072 .0064 .0058 00562
2 .0088 .0077 .0067 .0059 .0052 .0045
3 .0086 .0075 .0065 .0056 .0048 .0042
4 .0086 .0073 .0063 .0053 .0046 .0039
5 .0085 .0072 .0061 .0052 .0044 .0037
a = 1%, Ny = 40
1 .0092 .0084 .0077 .0071 .0065 .0060
2 .0090 .0081 .0073 .0066 .0060 .0054
3 .0089 .0080 .0071 .0063 .0056 .0050
4 .0088 .0078 .0069 .0061 .0054 .0048
5 .0088 .0077 .0068 .0059 .0052 .0046
a = 5%,ny = 10
1 .0414 .0343 .0285 .0236 .0196 .0163
2 .0399 .0319 .0254 .0203 .0162 .0129
3 .0391 .0305 .0239 .0186 .0145 .0113
4 .0385 .0297 .0228 .0176 .0135 .0104
5 .0381 .0291 .0221 .0168 .0128 .0097
« = 5%, ny = 20
1 .0451 .0406 .0367 .0331 .0299 .0270
2 .0439 .0386 .0339 .0298 .0262 .0230
3 .0432 .0374 .0323 .0279 .0241 .0208
4 .0427 .0365 .0311 .0265 .0226 .0193
5 .0423 .0358 .0302 .0255 .0215 .0182
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TABLE 1—Continued

n1 A=1 A=2 A=3 A=4 A=35 A=6

a = 5%, n: = 30

1 .0466 .0433 .0404 .0376 .0350 .0327
2 .0457 .0417 .0381 .0348 .0318 .0291
3 .0451 .0407 .0367 .0331 .0298 .0269
4 .0447 .0399 .0356 .0318 .0284 .0253
5 .0443 .0393 .0348 .0308 .0273 .0241
a = 5%, n: = 40
1 .0473 .0448 .0425 .0402 .0381 .0361
2 .0466 .0435 .0406 .0379 .0353 .0329
3 .0462 .0426 .0394 .0363 .0335 .0309
4 .0458 .0420 .0384 .0352 .0322 .0295
5 .0455 .0414 .0377 .0343 .0311 .0283
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