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Abstract. An energy-dependent partitioning scheme is explored for extracting a small
number of eigenvalues of a real symmetric matrix with the help of genetic algorithm. The
proposed method is tested with matrices of different sizes (30 × 30 to 1000 × 1000). Com-
parison is made with Löwdin’s strategy for solving the problem. The relative advantages
and disadvantages of the GA-based method are analyzed.
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1. Introduction

Exact solution of the energy eigenvalue equation Hψn = Enψn is feasible only for
a handful of problems while for a vast majority of the systems, one is compelled to
make use of a finite basis {φi}, preferably an orthonormal one, in terms of which the
unknown stationary state wave functions (ψ) are expanded, viz. ψ =

∑N
i=1 ciφi.

A variational ansatz then converts the Schrödinger equation (SE) into a matrix
eigenvalue equation HC = EC, for ψ = φC. Since Ĥ is Hermitian, and the basis
used is generally real, the matrix H is a real symmetric one and the task of solving
SE boils down to finding the eigenvalues and vectors of the real symmetric matrix H.
There are a variety of algorithms available for solving the matrix eigenvalue problem
[1]. Genetic algorithm [2,3] has recently been used in this context with some success
[4,5]. We thought it would be worthwhile to explore the feasibility of applying
GA to the partitioned matrix eigenvalue problem [6,7]. Traditional deterministic
means of solving the energy-dependent partitioning problem have recently been
reviewed by Killingbeck and Jolicard [8]. They have concluded that the necessity
of inverting large matrices repeatedly undermines the practical usefulness of the
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energy-dependent partitioning method. In what follows, we suggest a GA-based
approach for handling the problem and compare it’s performance with the standard
recipe of Loẅdin [6].

2. The method (energy-dependent partitioning)

We start by partitioning the total eigenvector space (N -dimensional) into two sub-
spaces of dimensions na and nb (N = na + nb), respectively (na ¿ nb) where na is
the number of eigenvalues to be extracted. The Hamiltonian matrix is also similarly
partitioned [6–8]:

C =
(

Ca

Cb

)
, H ≡

(
Haa Hab

Hba Hbb

)
. (1)

The original eigenvalue equation HC = E1C is therefore split into a pair of
equations:

HaaCa + HabCb = E1aCa, (2)

HbaCa + HbbCb = E1bCb. (3)

Elimination of Cb from eq. (2) by using eq. (3) leads to the partitioned eigenvalue
equation for the a-subspace:

Ha
eff(E)Ca = {Haa + Hab(E1b −Hbb)−1Hba}Ca = E1aCa. (4)

An iterative recipe suggested by Löwdin [6,7] for solving the partitioned equation
starts by setting Ca = 1 (na = 1, nb = n− 1) with an assumed value of E = E0.

In the present approach we focus on eq. (4) and solve the non-linear problem
by a stochastic global optimizer like the GA. We start with an assumed value
E(0) of E (just as in Löwdin’s method), construct the inverse (E(0) · 1b −Hbb)−1,
form Ha

eff(E(0)), and then refine the targeted eigenvalue of Heff(E(0)) by suitably
invoking genetic algorithm. The refined eigenvalue E(1) is then used as the next
input for E to reconstruct Ha

eff(E) and the process is repeated, till no further
improvement in E is possible. GA is used to extract the eigenvalues of Ha

eff(E)
sequentially by first forming the relevant Rayleigh quotient (RQ) ρ(E) [9–11] for the
ground state and then maximizing a fitness function constructed with the gradient
of ρ(E).

Let ψi be the ith member of the evolving population of m trial a-subspace eigen-
vectors where

ψi =
na∑

p=1

cpiφp, i = 1, 2, . . . , na, 〈φp|φq〉 = δpq. (5)

ψi can be represented as a string Si of amplitudes cpi:

Si = (c0i, c1i, . . . , cki, . . . , cnai) = Ci. (6)
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ρi, the RQ for ith wave function string (Ci), its gradient ∇ρi and the fitness fi are
given by

ρi =
C†

iH
a
eff(E)Ci

C†
iCi

, (7)

∇ρi =
2[Ha

eff(E)− ρi1]Ci

C†
iCi

, (8)

fi = e−λ(∇ρi)
†(∇ρi), (9)

λ being a user-defined scalar that takes care of exponential overflow or underflow.
Clearly, as defined, fi scales between 0 and 1, and fi → 1 as ∇ρi → 0, signalling
that the wave function string Si = Ci has self-consistently evolved into the ground
eigenfunction of Ha

eff(E). The evolution is brought about by the sequence of genetic
operations carried out on the starting population. The operations are (i) selection,
(ii) cross-over with a probability pc and (iii) mutation with a probability pm. The
selection is fitness proportional and carried out by the standard roulette-wheel
procedure [2,3]. Since we are using floating point strings, an arithmetic cross-over
operation is used for information exchange. Accordingly, a pair of strings Si and Sk

are selected randomly and the cross-over site l is chosen randomly with a probability
pc. Two new strings S′i and S′k (the children strings) are then created by an
arithmetic scheme of cross-over [4,5] with probability pc and are allowed to undergo
an arithmetic mutation operation with probability ρm [4,5].

An additional operation called diversification of the population was carried out
after every ten generations to maintain enough variability in the population.

The na eigenvalues are searched sequentially. First we find out the lowest eigen-
value ρ0(E0) and the eigenvector Ca

0 of Hs
eff(E0), by applying GA-based Rayleigh

quotient search [5]. Our experience so far indicates that only two or three inversions
are initially needed to force convergence on the search for the eigenvalue. Once ρ0

and Ca
0 have been obtained, we find the b-subspace projection of C0 by evaluating

C0
b = (ρ01b −Hbb)−1HbaC0

a which leads to the full ground eigenvector C0.
For the next higher eigenvalue ρ1 of H, we start by forming the projected Hamil-

tonian H1 where

H1 = (1−P0)†H(1−P0), (10)

where P0 = C0C
†
0 is the projector for the ground state. H1 is partitioned in the

same way and the GA-based search is carried out similarly. The starting eigenvec-
tors are chosen to be orthogonal to C0. With successive projections the procedure
can be extended to compute all the na number of eigenvalues and eigenvectors.

3. Result and discussion

3.1 General performance pattern

The algorithm proposed in the previous section has been put to test with a model
matrix H [12] of varying dimensions N (30, 50, 300, 500, 1000) defined as follows:
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H(i, i) = 2i− 1; H(i, j) = 1, i = 1, 2, . . . , N ; j = 1, 2, . . . , N.

For the search of the ground eigenvalue, the initial population of ten trial vectors
was chosen by selecting a unit vector [1, 0, 0, . . . , 0]t and randomly perturbed unit
vectors generated from it. The initial value of E = E(0) was chosen randomly
from the range [−5000, 5000]. We have used a two-point cross-over scheme with
a cross-over probability pc = 0.8 (fixed). The mixing parameter was chosen as
fc = 0.75 + 0.2r where r is a random number in the range (0, 1). Mutation and
diversification probabilities (pm and pd) were kept fixed at 0.8 and 0.3 respectively.

Figures 1a–e display the evolution of the fitness of the best string in the popu-
lation as functions of generations when the ground eigenvalue was being searched
for different partition sizes. The growth of fitness was nearly exponential with
saturation in about 30 generations.

When the dimension of the a-subspace was increased to 10, the evolution profiles
of the fitness function was dramatically different for N = 1000 (figure 2e). For
all other dimensionalities of the H matrices (N = 30, 50, 300, 500), the behaviour
noted was more or less similar to what was observed for na = 5 (figure 2a–d). For
N = 1000, the fitness profile of the best evolving string shows rapid initial growth
to f > 0.9 followed by a large scale decrease in the fitness which is overtaken by
steep growth to f = 1.0. We note, however, that this fluctuation in fitness profile
occurs near the saturation point when an explicit inversion of (E(n−1).1b −Hbb) is
carried out to check if the convergence is stable.

The performance of the method when it comes to computing higher eigenvalues
is illustrated graphically in figures 3a–c for the 15 × 985 partition, as a test case.
The overall performance scenario has been captured in table 1.

Figure 1. Fitness evolution of the best

string during the search for the ground

eigenvalue of Coope–Sabo matrix for a par-

tition size of 5× (N −5): 5×25 (a), 5×45

(b), 5 × 295 (c), 5 × 495 (d) and 5 × 995

(e).

Figure 2. Fitness evolution of the best

string during the search for the ground

eigenvalue of Coope–Sabo matrix for a par-

tition size of 10 × (N − 10): 10 × 20 (a),

10× 40 (b), 10× 290 (c), 10× 490 (d) and

10× 990 (e).
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Figure 3. Fitness evolution of the best string

during the search for the ground (a), first (b) and

second (c) excited state eigenvalue of Coope–Sabo

matrix for a partition size of 15× (1000− 15).

3.2 Comparison with Löwdin’s strategy

Table 2 displays the computational time required to compute one eigenvalue of a
500 × 500 and a 1000 × 1000 Coope’s Hamiltonian matrix by (a) the GA-driven
partitioned eigenvalue method and (b) the iterative Löwdin’s partitioning method.
A relatively small population size of 10 has been used in all the GA-based calcu-
lations reported. One can easily see that the GA-driven method performs signifi-
cantly better in terms of total CPU time consumed in computing one eigenvalue.
The relative performance pattern of the two methods is independent of whether the
ground or excited eigenvalues are being computed. Parallelization can enhance the
performance of the proposed method significantly.

Table 1. Number of generations required to compute the ground, first and
the second excited state eigenvalues for the Coope–Sabo matrix of five different
dimensions, and for three separate partitions in each case.

Matrix dimension No. of generations spent for obtaining
na + nb = N the ground eigenvalue and vector

Dimension of
a-subspace (na) State 30 50 300 500 1000

g.s. 83 84 76 72 82
5 1st e.s. 70 94 80 75 77

2nd e.s. 75 69 58 60 71

g.s. 414 421 423 322 300
10 1st e.s. 441 471 431 365 474

2nd e.s. 283 426 289 369 370

g.s. 986 941 927 987 781
15 1st e.s. 943 1142 1064 843 991

2nd e.s. 905 834 981 1000 1033
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Table 2. Comparison of the performance of the GA-driven method and the
iterative Löwdin’s method for computing one eigenvalue using an energy-
dependent partitioning scheme.

Dimension of
a-subspace
(used in GA)

Time required (in s) to compute the

1st eigenvalue 2nd eigenvalue
(ground state) (1st excited state)

GAa Löwdinb GAa Löwdinb

Dimension of the Hamiltonian matrix H is 500× 500

2 10.63 56.4 10.34 56.6
10 10.55 10.41
20 8.20 9.03

Dimension of the Hamiltonian matrix H is 1000× 1000

2 82.46 460.29 83.10 460.14
10 81.69 81.11
20 84.31 84.31

aIn Löwdin’s method a fixed partition size with na =1, nb =N−1 is used throughout.
bPopulation size used in the GA-based scheme is 10.
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