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1. Introduction

A large number of time-dependent quantum mechanical methods are currently avail-
able in literature for handling a wide variety of dynamical problems [1,2]. One of
these methods is the time-dependent Fourier grid Hamiltonian (TDFGH) method
which evolved naturally as the time-dependent generalization [3,4] of the time-
independent one-dimensional Fourier grid Hamiltonian (FGH) method developed
by Marston and Balint-Kurti [5,6]. The multi-dimensional variant of FGH, both in
the time-dependent and time independent moulds were subsequently developed and
used in a wide variety of problems [7-9]. Very recently, the scope of its applicability
was further enhanced to cover the dynamics on coupled potential energy surfaces
[10].

For quite sometime, we have been trying to generalize our TDFGH recipe further
to include the time-dependent multi-configuration Hartree (TDMCH) method in
its framework. The most popular version of the TDMCH methods has been due
to Mayer et al [11,12]. A TDMCH with built-in multilayered time-dependence
has also been proposed very recently [13]. We demonstrate, in what follows, that
TDFGH method can handle the multi-configuration Hartree problem quite easily
and elegantly and has some advantages over other realizations of TDMCH.
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2. The method

Let us consider a coupled two-dimensional system represented by the Hamiltonian
H where

1 1
H=—5Vi+V(@) =5 vy +V(y) + \V(z,y)
=H) + H,) + \V(z,y). (1)

The eigenstates of H? and HZ[} are supposed to be known through separate FGH
calculations:

H,|¢i(x)) = €iz|di(x)),
Hy|x;(y)) = €jylx;(v))- (2)

In the FGH method, the eigenfunctions are represented on uniformly discretized
coordinate grids z; = 1Az, y; = jAy as follows [5,6]:

|¢l prz|mp

|XJ qu]|yp (3)

The orthonormality conditions on the grids are
(plzr) Az = Opp,
(yq|ys>Ay = Oys» (4)

and the grid-point amplitudes (wgi, wé’j) are obtained variationally. In a time-
dependent problem, the grid-point amplitudes are implicit functions of time and
that imparts great flexibility to the single-particle basis.

The time-dependent Schrédinger equation for |¥) is

O¥(x,y))
ot

In the multiconfiguration time-dependent Hartree method in a time-dependent
Fourier grid Hamiltonian framework, the general form of |¥(z,y)) is ¥(z,y,t)) =

Z” Cij®)|gi(z,t)x;(y, 1)) = El] Cl]( )E Eq L Wy i )wg]Et)|mpyq>A$Ay and

the most general form of variation allowed is

|6 (z,y, 1)) = Y_[6C; (1) iz, 1)x; (4, 1))
ij
+Cij @) [[06i (2, t)x; (y, 1)) + |¢4(x, £)dx; (y, D], (6)
where [0¢;(x,t)) = Y02, dwp;(t)|ap) Az and [x;(y, 1)) = 3,25 dwy; (6)lyg) Ay.
That means, we now have two types of variational parameters — the conﬁgura—
tion interaction coefficients (Cj;s) and the grid-point amplitudes (wj;s, wy;s). The

ih = H|¥(z,y)). ()
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advantages of introducing the FGH formulation in developing MCTDH are two-
fold. First, the single-particle basis now becomes completely and comprehensively
time-dependent through the time-dependence of the grid-point amplitudes so that
a small number of configurations could represent the dynamics of evolution accu-
rately and effectively. The evolution of wy;s or wé’js, are coupled with evolution of
Cjjs, and the overall changes in wave function during evolution are partly due to
changes in the configuration mixing coefficients and partly due to the changes in the
grid-point amplitudes. In other realizations of MCTDH, one relies heavily on the
configuration mixing coefficients for introducing major changes in the wave function
and only minor changes are allowed in the single-particle basis. Most often, the
single-particle basis functions are expanded in a harmonic oscillator basis and the
linear expansion coefficients are allowed to vary, thereby making the single-particle
basis time-dependent. This is in sharp contrast to our recipe. Secondly, though the
grid-point amplitudes in the present realization vary for all the single-particle basis
functions, even the kinetic energy operators are to be constructed only once for
each mode (in the coordinate basis) through the analytical fast Fourier transform
of the FGH method while time displacement, in case of time-dependent potentials
needs to be effected only for the diagonal terms of V', V' being a diagonal matrix in
the coordinate representation used in the FGH formulation.

The Dirac—Frenkel time-dependent variational principle can now be invoked to
demand that

(6W (e, OH — i 92,y 0) =, )

for arbitrary variation |§¥), subject to auxilary conditions

; (8)

for all times. In order to make the subsequent manipulations transparent we restrict
the expansion in (6) to the minimal set of configurations so that we have a four-
configuration wave function

|¥(x,y,t)) = Coolo(x,t)x0(y,t)) + Cotldo(x,t)x1(y, 1))
+C10l91 (2, t)x0(y, 1)) + Cr1l1 (2, 1) X1 (Y, 1))- 9)

In this four-dimensional subspace,
|6¥) = (|Cooxo) + |Co1x1))|6¢0) + (|Croxo0) + [Cr1x1))|61)
+(1Co0%0) + [Cro61))10x0) + (|Cord0) + |C1101))[0x1)
+ 8Ci;1ix;)- (10)
ij

Using eqs (6) and (10) in eq. (7) and invoking the arbitrariness and independence of
variations dC;j, d¢; and dx;, we have the following sets of equations for describing
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the evolution of the expansion coefficients (C;;(t)), and the single-particle basis
functions (¢o, ¢1) and (xo0, x1):

(610,00, )| — i 1) =0, = 0,15 § = 0,1, (1)
(CgoXo-I-CloxﬂH—i%hIl) =0, (12a)
(Cngo-I-CnxﬂH—i%hIl) =0, (12b)
(Coogpo + Corn |H — z%ﬂl) =0, (12c¢)
(Ciogo + Crin |H — z%ﬂl) =0. (12d)

We now impose the orthonormality conditions summarized in eqs (8) on each of
the equations in (11) and (12). From eq. (11), this leads to the evolution equations
for the expansion coefficients

iCij(t) = > (ixj|H|¢rd1)Cri(t) for all i, j. (13)
kl

These equations can be integrated, once C;(0) are specified. The construction of H
matrix is very simple in the FGH mode so that equations in (13) can be integrated
easily, even if H has explicit time-dependence. From (12a) and (12b), on the other
hand, we get

Coo(XoH|®) + Cfy (xa |H|T) — i{ Cio(x0| ¥) + Co (xa | ¥)} = 0
and

Co1(xo[H|®) + CFy (aa|H|®) — i{CF (xo|¥) + Cfy (xa[#)} =0, (14)
while egs (12c) and (12d) yield

Cooldo | H|W) + Cgy (1 [H|¥) — i{C(bo|¥) + Cy (d1¥)} =0
and

Cioldo | H|®) + CFy (@1 [H|T) — i{CHy(do|¥) + CF (1| ¥)} =0.  (15)

The orthonormality conditions can now be brought in to simplify the preceding
four equations in (14) and (15). Thus,

Coo(xol¥) + Co (xa [¥) = Cgy{Coo(xolx0)|P0)
+ero(xolx0)|61) + Coolo) + Ciole1)}
+C7o{Cor{{x1Ix1)1d0) + Cr1 {x1|x1)|¢1)
+Corldo) + Craldr)}
= (C3yCoo + C1yCo1) o) + (C3yCro + C1oCh1) 1)
+(C5yCo0 + C1yCo) o) + (C3oCho + CHoCha)ld1) (16)
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and

C (x| ) + CF (1 [¥) = C1{Coo(x0lx0)|b0) + c10{x0lX0)|é1)
+Cooldo) + Crold1)}
+CT{Cor {{x1Ix1)1P0) + Cr1{x1|x1)|¢1)
+Co1|do) + Ci1ld1)}
= (C5,Co0 + CT1Co0)|¢0) + (Cp,Cro + C11C11)| 1)
+(C51Coo + CF1Co1)l¢o) + (Cg1Cro + C11C11)|1). (17)
Similarly, we also have
Coolbo|T) + C31 (d1|¥) = (CgoCoo + C31Cro)X0) + (CyCor + C§1C11)IX1)
+(CgoCoo + C1C10)lx0) + (C3pCo1 + Cg1Cr1)|xa) (18)
and
Co(dolT) + CFy (61]T) = (CfoCoo + Cf1C10)[X0) + (CoCor + CFy C1o)[X1)
+(CToCoo + C71Coo)lx0) + (CTyCo1 + C11Cro)lx1). (19)
Let us now define a matrix C(2 x 2) and D where
_ Coo Co1 t_ Cgo Cfo I — 1
c_<010 Cﬂ), C_<Cg1 cr ) D= (C'0). (20)

Using these three matrices, equation can be given a condensed representation:
D11 Dy»
D=
<D21 Dy

i |€Z:50> _ (X0|H|‘I’>_i(¢00|¢0>+C10|¢1>)
D<|¢1>) ¢ (<X1|H|\If>—i<001|¢0>+cu|¢1>>)’ (1)

which leads to the resolved time evolution equations for the single-particle functions
associated with the X-mode:

|0) 1 (xo[H|¥) — i(Coo|do) + Cro|é1))
<|¢1>> e (<X1|H|‘I’>—1(001|¢0>+C'11|¢1>)) (22)

We note here that both (xo|H|¥) and (x1|H|¥) are operators acting in the space
spanned by basis functions of mode . A similar resolution occurs for |xo) and
|X1) also in terms of matrices Dy, C and C’I, the definitions of which follow easily
from eqs (18) and (19). Noting now that in the TDFGH representation the time-
dependence of the single-particle basis function {¢;, x;} comes through the time-

dependence of grid amplitudes wy; and ng

|60) Zw |z Az, |d1) =Yg, |z,) A, (23)
g=1
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Xo) = D) Ay,  [X1) =D WY |ys) Ay, (24)
s=1

r=1

we proceed to resolve eq. (22) into their grid amplitude counterparts by projecting
each row of egs (22) on the fixed coordinate vectors {(z;[},_, ,, . The process leads
to required resolved evolution equations for each grid-point amplitude along the
X-mode for the single-particle states |@o) and |¢1):

(wlai) ) _ lDflCT ( (zixolH|¥) — i(000<~75l|¢0> + C'10($z|¢1>) )
W, i (@ | HI®) = i(Cor (zildo) + Crr(mildn)) )
1=1,2,...,n, (25)

and a similar set of equations for wY and wY are obtained by projecting on
{(ys|}s=1,n,- We note here that the structure of FGH representation enables us

to evaluate the right-hand side of equation easily and efficiently. The iC’ij terms
in eqgs (25) can be replaced by the corresponding right-hand side in eq. (13) and
the evolution equations integrated by predictor—corrector method. Adam-Moulton
or Adam Bashforth methods can be conveniently used. Equations (13) on the
other hand can be integrated by the sixth order Runge-Kutta method (instead of
a predictor—corrector method). In other realization of the TDMCH method, eqs
(22) would have to be converted into evolution equations for the parameters in ¢;
or x; (linear or non-linear or both) but a comprehensive time-dependent variation
would have been difficult to implement. This has been sought to be achieved by
the multilayered time-dependent method of [13]. In the TDFGH-based realization
described here the comprehensive time-dependence of single-particle basis appears
naturally. However, that comes with a cost in the sense that the number of equa-
tions to be integrated increases. Even then, the method enjoys an edge over others
because of the structure of the FGH method.

3. Results and discussion

We consider a coupled oscillator problem defined by the Hamiltonian [14]

e e S B 21, Lo o, o
H—§(Pz+Py+a: +y° )+ A vy’ — 3w +1—6)\(m +y°)

with A=0.2. The starting single-particle functions were generated by preliminary
Hartree mean-field calculations and the initial wave packet was constructed from
the Hartree product of the mean-field eigenfunctions for each mode. For example,
the initial wave packet could be chosen as follows: |¥(xz,y,0)) = |¢1(x,0)x1(y, 0)).
The initial coefficient matrix for this choice of ¥(z,y,0) is singular, viz.

CE<8(1)> (26)

To start the calculations C' was replaced by C' where
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Figure 1. The ‘quantum phase space’ accessed by the particle when the
initial wave packet is constructed from lowest mean-field eigenfunctions ¢ x:.
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2. The ‘quantum phase space’ accessed by the particle when

the initial wave packet is constructed from mean-field eigenfunctions as

Z3(l¢o(z,0)x0(y, 0)) + [¢1(z, 0)x1(y, 0))].

Pramana — J. Phys., Vol. 62, No. 4, April 2004

L989



Kaushik Maji and S P Bhattacharyya

FROE

il i)
10025
ooz
QoS
0o
2.DI05

i

[ iy ]
[ ]
IR
00z
Qi)

Pl )

(b) ol FL‘_‘—:E-L\_\_“ 2

Figure 3. (a) The form of the wave function at ¢ = 0 corresponding to the
initial conditions used for figure 2. (b) The form of the wave function after
time propagation for 20 fs with 10~2 fs time steps. It evolves no further.

C= ( g (1] > , 6~10"'2-10"15. (27)

Figure 1 shows the evolution of the ‘quantum phase space’ dynamics obtained by
plotting (p,) vs. (z) and (p,) vs. (y) at different times. It is clearly seen that
as the system relaxes, one mode gains energy at the expense of the other till an
equilibrium is reached. The dynamics of the approach to equilibrium depends
strongly on the initial state. Thus figure 2 shows the ‘phase space’ dynamics when
|¥(z,y,0)) is chosen in the following form: % [l6o(x,0)x0(y, 0))+|p1(x, 0)x1(y, 0))].
The relaxation path here turns out to be quite different from what was seen in
figure 1. We have also computed the fully relaxed wave function corresponding to
the second choice of |¥(z,y,t)). In figure 3a we have displayed the converged wave
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function obtained after a time propagation of 20 fs while in figure 3b we have shown
the initial form of the wave function. Like all other realizations of MCTDH, the
evolution conserves norm. The orthonormality of the single-particle functions is
conserved during the propagation (Smax < 107%). The relaxation or reorganization
seems to be over in 20 fs as no further evolution of ¥ seems to take place.

4. Conclusion

It appears that the TDFGH-based realization of time-dependent MCH method can
be profitably utilized to probe a wide variety of dynamical phenomena. It is easy
to implement the recipe. The fully time-dependent grid-point amplitudes make the
wave function flexible so that one can use fewer configurations (¢;x;) to represent
¥. The diagonality of the potential part of H and the need to fast Fourier transform
only once for each mode to construct the kinetic energy operators in the TDFGH
formulation make it rather straightforward to use it for time-propagation. However,
one needs to have accurate and stable integrators for long-time propagation. We
are in the process of making much larger scale applications of the methodology
proposed. We hope to return to these applications in the near future.
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