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Applications of a novel algorithm for the calculation of MCSCF
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Abstract. The efficacy of a method based on the direct inversion in the iterative subspace
(D) in accelerating the approach to self consistency in the calculation of the MCSCF
wavefunction using a novel algorithm developed earlier, is compared with that of a simple
damping technique. Although the ‘damping’ turns out to be ineffective in the ‘quadratic
region’, it accelerates remarkably in the rate of descent on the energy hypersurface in the early
stages of the iterative process which leads to an impressive overall increase in the rate of
approach to self consistency. The puis based procedure turns out to be ineffective when
coupled to the present method and is plagued by ill conditioning problems. Calculations are
done to compute the equilibrium geometrical parameters, charge density on different atoms,
and dipole moment of HNO molecule in the lowest '+ *nn* states at the INDO /2-MCSCF level.
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1. Introduction

The single determinant scr theory and the simple orbital picture emerging from it has
undoubtedly been extremely useful in interpreting and correlating a vast body of
chemical facts. This simplicity and usefulness of the independent particle model
notwithstanding, there are situations when one has to abandon this simple model and
look for a more appropriate one. For example, the single configuration closed shell
wavefunction fails to describe correctly the dissociation of a molecule into open shell
fragments. In fact, whenever one or more configurations are energetically degenerate or
quasi-degenerate with the main one, the single determinant representation for the
wavefunction of the system breaks down. In such a situation we are forced to adopt a
many configuration description of the wavefunction where each configuration
represents a Slater determinant constructed from a set of orthonormal one-electron
functions (orbitals). If we now set out to make energy stationary with respect to
variations in the configuration weight factors as well as in the orbital forms, we arrive at
what is known as the McscF method in quantum chemistry parlance. The pioneering
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use of this method in atomic physics can be traced to the early work of Hartree and
Seirles (1939). A generalized reformulation was later made by McWeeny (1955, 1956,
1960). Successful molecular calculations were made much later (Das and Wahl 1967;
Clementi and Veillard 1967) and since then a lot of activity has been noted in the field of
mescF theory (Olsen and Yeager 1983). The main thrust of this activity has been
towards (i) the development of efficient techniques for solving the “first order’ mMcscr
equation (ii) the development of a higher order mcscr theory e.g. quadratically
convergent McscF algorithms (QcMcscr). Although considerable progress has been
made in the field of QcMescr theory in recent years, the computational involvement in
methods of this category is high enough to discourage large scale practical applications
of the algorithm and even now the bulk of mcscF calculations are based on the first
order variational equation only.

Over the last few years we have developed and successfully applied in our laboratory
a novel technique for solving the first order Mcscr equation (Mukherjee 1978; Adnan
et al 1978; McWeeny and Newbould 1980; Bhattacharyya and Mukherjee 1981). The
one-configuration analogue, too, has been widely tested (Bhattacharyya and
Mukherjee 1979; Bhattacharyya et al 1982; Das et al 1984). The method has many
desirable features e.g. smooth and fast convergence, numerical stability, ease of
programming, etc, Even then, in the course of pursuing our research programme on the
calculation of ground and excited state potential surfaces of small carbonyls and
thiocarbonyls (Das et al 1986) at the INDo /2-McscF level, we felt that we should look
for some means of accelerating the approach to self-consistency within the framework
of our method even though it outperforms many of the currently used techniques of
solving the first order mMcscF equation in its improved rate of approach to self-
consistency. This becomes imperative just for cutting down the total computational
expenses when large scale applications are envisaged. The present paper describes our
experience with two such means of convergence acceleration employed by us. Besides,
we present here the energy-optimized geometrical parameters of the simplest nitrosyl
molecule viz, HNO in the “3nz* state, the final state electron densities and dipole
moment. The outlay of this paper is as follows: §2 discusses the general conditions of
stationarity and in § 3, the algorithm used by us is derived in a slightly different way.
The convergence acceleration schemes are proposed in §4 while § 5 presents the results.

2. General condition of stationarity

Let us consider a truncated set of n molecular orbitals (Mo) ® = {¢y, ¢5, ...,
¢i, . . . ¢,} which are linear combinations of a set of m-basis functions (m = n), y = (x4,
X2s -+ 5 Xi» - -« Xm) are related by the linear transformation:

®=yT, (1)

where T is an (m x n) matrix of the linear expansion coefficients. The variational trial
function y is given by:

i=3 C | @

where the y,’s are slater determinants (with appropriate spin couplings) constructed
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from the set ® = {¢,, ¢, . . .¢,} and the corresponding energy functional is
E=CY[H /I
3;(Pl)ij<¢ilh|¢j> +f_ZkI(P2)m,ij<k1|if>, 3

where P; and P, are the one- and two-electron density matrices respectively. If we now
proceed to make E stationary with respect to variations in (i) the c1 coefficients {C, }
and (ii) the orbitals, through variations 6 T in the linear expansion coefficients T;;, we get
two sets of coupled equations. Stationary conditions for the first type of variations
leads to the normal ¢1 equation

HC =CE, 4

while the condition for the stationarity with respect to variations of the type (ii) subject
to the orthonormality of the orbitals, is expressed in the form

hTP,+2Z = 8Tt (5)

where ¢ is the matrix of Lagrangian multipliers arising from the orthonormality
constraints, and Z represents the electron-electron repulsion matrix with elements
defined by

Zy=Y 2T/, <{palrs > Tu Ty Prua,yy-

Jki grs

One can easily show that the necessary and sufficient conditions for a given set of
orbitals ¢ ( = x T') to satisfy (5) is that ¢ must be hermitian. A variety of methods has
been suggested for achieving this condition. The method adopted by us for solving (5)
proceeds as follows in the next section.

3. Determination of Mcscr orbitals

Let us start by noting that the equation to be solved is V' = §Ts where

V=hTP, +2Z, (6)
and
Vt=g¢tT18S. )

Multiplying (6) by T ! from the left and (7) by T from the right we have (see Mukherjee
1978):

TW=(T'ST)e=¢; (T'ST=1), | ®)
and -
ViT =g (T1ST)=¢" ‘ ®
Combining (9) with (8) we have (noting that TTT = S~1)

. ele=(VITTV)
= (V1S~'V) (10)
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The stationarity condition demands that
ef =g,
so that at convergence

ele=g2=(V1S~1p), ' (11)
Le.
e=(VISTiy)L2, (12)

Away from the stationary point (12) provides an ‘estimate’ of the ¢ matrix (£, say). At the
nth iterative stage (7) with ¢ replaced by & reads as follows:

Vo =ST,&,
or,

T=8"'We'=8s" 1y (Vis-ty) 1z (13)

At the true stationary point & = gand (13) does not update the coefficient matrix Tany
further—otherwise, the right hand side of (13) provides an updated coefficient matrix.
This leads us to the following iterative sequence for the self consistent determination of

T (or ¢):
T,= Ty =871V, (VIS~ty)~12 (14)

If ¢ = & within a preassigned limit, iterations are terminated (a corresponding check '
can also be made on the electronic energy itself).

4. Convergence acceleration

Any iterative scheme for solving (5) would converge (when it does) at a rate guided by
the structure of the algorithm itself. We may call it the ‘intrinsic convergence
characteristic’ which is found to be very good for the present method. However, the
determination of Mcscr wavefunction requires solution of the cr equation (4) and
equation (5) as coupled tasks and convergence is found to be very slow with many of the
available techniques for solution of (5). Normally, one resorts to sophisticated damping
and interpolation techniques to achieve fast and smooth convergence. One wonders
whether the adoption of a ‘convergence-aid’ of this kind could improve the efficiency of
our algorithm further. In what follows we present our findings in this respect.

4.1 An interpolation scheme

An interpolation method based on direct inversion in the iterative subspace (pms)
(Pulay 1980, 1982; Csazar and Pulay 1984) has been shown to enhance the rate of
approach to self-consistency in one-configuration scr calculation, the enhancement
being particularly noticeable in the quadratic region. Surprisingly, the method, in spite
of the promise it holds out, has never been applied in the context of McscF calculation.
To adapt the pus procedure to the framework of our algorithm for solving the orbital
equation we have to define first a suitable error vector (e;) at the ith stage of the iterative
process. This vector should be a faithful measure of the ‘distance’ of the McscF orbitals



b

A novel orbital optimization technique ' 139

in the ith iteration from the converged solution. The most natural choice would be to
take - ‘

o= 6—el=[TIV=VIT], (15)

Since ¢f=¢; at convergence, ¢;— 0 (null vector) as iterations proceed to self-
consistency. One can safely assume that the changes in the Mcscr orbitals in two
consecutive iterations (i, i + 1) are small in the quadratic region. Therefore, the error
vector e; at the ith iterative stage may be taken to be a linear function of the parameters
{Bpq} characterizing the trial wavefunction. One can then search for a linear
interpolation of the consecutive parameter vectors as follows:

f=Yap (16)

The linear interpolation in (16) should be such that the corresponding linear
interpolation of the consecutive error vectors (ey, €3, . . . , €, . . .) approach the null
vector as closely as possible ie.,

é=2a,—e,~*—=0 (17)

Obviously, (17) can be satisfied only in the least squares sense. Thus minimizing the
norm of & with a suitable defined metric subject to the constraint

Ya=1, | (18)

we arrive at the following set of linear simultaneous equations to be solved for the
determination of the interpolation coefficients {a;}

b11 b12 e bln 1 a, 0
by baz ... by 1 ay 0
: : (19)
byy by2 ... by 1 a, 0
1 1 R | 0 A 1

where 4is the Lagrangian multiplier that takes care of the constraint (18), b, ;= Tr(ee J-T ).
Once the coefficients {a; } are known we can determine the interpolated orbitals T' (or
any other parameter vector suitably chosen) as follows:

n

Thvy = Z aT;.
i=1 -
In practice, however, such an interpolation is not entirely suitable as it does not preserve
the orthonormality of T. Instead, it is better to perform the interpolation on the McscF
operator (matrix) ¥ itself as follows

n

I;n+1 = Z aV;.

i=1

A similar scheme has been successfully adopted in one-configuration work (Pulay
1980).
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4.2 A damping technique

Since its introduction by Hartree, the use of damping of some kind or the other has
been quite common in scF or Mcscr calculations. What we have adopted in the course
of our calculations is essentially a kind of Hartree damping applied to the Mcscr
operator V directly. Let ¥;_; and ¥, be the McscF operator (matrix) in any two
consecutive iterations. The updating of the orbitals (coefficient matrix 7°) is then done
after replacing ¥; by V; where

V=V (1= 44V, (0<i<)).

The conventional undamped iteration scheme corresponds to the choice 4 = 1 which
should be restored as soon as the iterations move into the quadratic region. Otherwise,
the descent rate becomes too slow. To judge whether damping should be withdrawn or
continued, one should ideally calculate (62E; /642) at that particular iterative stage. If
(0%E;/93%) > 0 damping is continued, and otherwise withdrawn.

5. Results and discussion

5.1 Relative performance of the convergence acceleration scheme (damping versus pirs)

The analysis has been carried out with H,CO and HNO molecules in the !3nn* states.
The trial wavefunction () is of the form

&=—\1[2—u¢1$1 BB BB LIS e ]

so that only the orbital forms are to be varied, c1 coefficients being symmetry
determined. The molecules are taken in their respective ground state equilibrium
geometries as calculated under the standard mNpo /2 approximations. The McscF
calculations, too, are carried out at the same level of approximation (viz INDO/2).
Table 1 displays convergence profiles for H,CO in the 'nn* states for (i) unaided
iterations (i) damped iterations (iii) iterations with interpolation done under the pus
procedure. In each case, the iterations were started with the ground state vectors and the
convergence criterion was set equal to 105 a.u in energy. The damping factor A was
chosen to be equal to 0-75 and was introduced right at the beginning. The damping was
withdrawn when AE = |E, . , —E,| < 00002 a.u, subject to at least 10 iterations being
carried out. These parameters were determined through a number of exploratory
calculations and were later found to be more or less optimal for different systems. This
saved additional computational labour required to compute (9%E;/04%) to determine
the point of withdrawal of damping, The pus procedure was switched on only after 10
iterations. A perusal of table 1 clearly indicates that although convergence could be
achieved in all the cases, the fastest convergence was achieved with damped iterations.
The pus procedure is found to be ineffective so far as acceleration of convergence is
concerned. Moreover, the piis procedure suffers from a severe ill-conditionin g problem
and could not be implemented without special measures being adopted to eliminate
the ‘ill conditioning’ of the b-matrix in (19) (viz the error vector of the largest norm was
eliminated, if unsuccessful with that, the next one was eliminated, and so on till the ill
conditioning disappeared). This result is a little curious in view of the reported efficacy
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Table 1. McscrF convergence profiles in (i) unaided (i) damped (iii) interpolated (by pus)
iterations (convergence criterion & = 10~ % a.u). The system is H,CO in !nn* state.

Electronic energy (a.u.)

Number of

iterations Without damping With damping With pis*
0 —42-885845 —42-885845 —42-885845
1 —42-899554 —42-899554 —42-899554
2 —42-908499 —42-908499 —42-908499
3 —42-915320 —42917523 ~42:915326
4 —42-920630 —42:925188 —42:920630
5 —42-924665 —42929959 —42:924665
6 —42:927694 —42:932496 —~42:927694
7 —42:929915 —42-933646 —42:929915
8 —42-931517 —42:934046 —42:931517
9 —42-932653 —42:934246 —42:932653

10 —42-933447 —42:934809 —42-933447

11 —~42-933996 —42:935008 —42:933996

12 —42-934372 —42-935111 —42:934372

13 —42-934628 converges at 14th —42:934519

iteration
14 —42-934800 —42-934665
15 —42-934916 —42-934777
converges at 21st converges at 21st
iteration ‘ iteration

* ps procedure switched on after 10 iterations.

of the pus procedure (Pulay 1980) in scr calculations with the traditional repeated
diagonalization scheme. It may be that a different choice error vector would be more
appropriate for our method. The same conclusion could also be drawn from the
calculation on the 3nn* state of H,CO.

In table 2 convergence parameters for the damped and undamped iterations in MCSCF
calculations performed on the !*nn* states of H-N-O are displayed. The damping
parameters are just the same as used in the case of H,CO. The case of HNO is
particularly interesting as it provides us with a typical example of a slowly converging

Table 2. Convergence parameters obtained in MESCF calculations on the !3nn* states of
HNO with and without damping.

Number of iterations re-
quired for convergence

Electronic ~ With Without |

Molecule state damping damping |
HNO s 29 44 |
3nn* 28 38 ;

Damping parameter A = (+75 and convergence criterion
in energy ¢ = 10™° a.u. ~
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MCSCF iterations within the framework of our method. A perusal of table 2 clearly
indicates the efficacy of the simple Hartree type of damping in Mcscr calculations. It
also proves that the damping parameters chosen by us are system independent and are
more or less optimal although minor variations from system to system can not be ruled
out.

5.2 Properties of HNO in "*nz* states

In table 3 we present the fully optimized geometrical parameters of HNO in the ground
and ' 3n7* states. Experimental or ab initio theoretical data have been included in the
table wherever such data are available. Our computed results are in fairly good
agreement with these results. One interesting point is the predicted opening of the
H-N-O angle in the 3nn* state and the narrowing of it in the 'nn* state with respect to
the corresponding angle in the ground state. Similarly, increase in the computed N—O
bond length is slightly larger in the 'na* state than in the corresponding triplet.

In table 4 the computed net charges on different atoms of HNO in the ground and
13nn* states at the respective equilibrium geometry are displayed. The calculated net
dipole moments are also given. There appears to be a significant increase in the dipole
moment following n — n* transition. Experimental data, however, is not available for
confirming this prediction. Studies in photochemical reactions of this molecule and
related species at the INpDo/2-McscF level are under way.

Table 3. Equilibrium geometrical parameters in the ground and !3nn* states of HNO as
computed by MCSCF-INDO/2 calculations.

Computed geometrical parameters

Electronic
Molecule state rN-H(4) rN-O(A) H-R-O (Degrees)
HNO ! 4 (Ground) 1:090[1-063]° 1-190[1-212]° 111-2[108-6]*
LA (1nn¥) 1-075[1-06]* 1-218[1-21° 1071[108:5]°
34" (3nn*) 1:072[1-03) 1:205[1-24]* 1153[1167]

Bracketted quantities refer to experimental or ab initio theoretical results.
¢ Experimental results (Dalbey 1958); * Theoretical results (Bruna and Marian 1979; Momura
1980).

Table 4. Computed net charges on different atoms in the ground and ' 3nz* states of
HNO. Calculated dipole moments in these states are also included (calculations refer to
equilibrium geometry in each state).

Computed net charges on different atoms Dipole

moment

Molecule State H N (o] (Debye)
HNO 14 0-0169 0-0970 ~0-1138 1-487
1q" 0-1147 —0-0496 —0-0651 1-823

34" 0-1124 —0-0323 —0-0801 1-806
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6. Conclusions

The mNDo/2-Mcscr calculations appear to be quite useful for studying molecular
geometry in excited electronic states. The algorithm used by us for solving the Mcscr
equation is fast. The speed of convergence can, moreover, be significantly improved by
using a simple damping technique. The pus procedure when coupled to our algorithm
proved to be ineffective.
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