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for a viable basis-set-free technique of solving the SE and 
generating optimal numerical wave functions. Indeed, 
much of quantum chemistry is dominated by the quality 
of basis sets, independent of whether one is using the 
Hartree–Fock, multiconfiguration Hartree–Fock, configu-
ration interaction or coupled cluster methods. GA-based 
techniques, if proved viable, can change the scenario, for 
accurate numerical wave functions of atoms and few 
electron molecules could pave the way for designing op-
timal basis functions for different chemical environments. 
Secondly, GA is inherently parallelizable and can be 
therefore rather cost-effective. The basic philosophy of 
the method is to recast the energy eigenvalue problem in 
the form of a search for a global maximum on a defined 
fitness landscape. The targetted solution wave functions 
are defined as discrete functions representing the distribu-
tion of probability amplitudes in the coordinate space. A 
population of such wave function strings is created to 
start with and is made to evolve on the fitness landscape 
under the action of appropriately constructed genetic  
operators like selection, crossover, mutation, etc. In our 
formulation, the amplitudes are floating-point numbers 
and the wave functions are strings of floating-point num-
bers. The strings are normalized and obey appropriate 
boundary conditions of the problem. 
 The radial SE for He atom reads, 
 
 Hψn (r1, r2) = Enψn (r1, r2), 

where 
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From a definition of the Hamiltonian, it is evident that we 
are taking into account only radial correlation, leaving 
out the angular correlation altogether. The target is to 
reach the S-limit form of ψ0(r1, r2). 
 We represent ψ on a uniformly discretized two-dimen-
sional coordinate space by n strings (s1,

 s2, s3,
 … ,sk,

 … , sn), 
each string representing a collection of probability ampli-
tudes [s(i, j)] in a two-dimensional array of n1 × n2 grid 
points. The square of s(i, j) denotes the probability of 
finding one electron at r1

i , while the other is at r2
j , irre-

spective of spin. The permutation symmetry of the wave 
function ψ now needs to be considered. Since helium 
ground state is spin-singlet (1s0), the space part of the 
ground-state wave function of He [ψ(r1, r2)] must be 
symmetric with respect to interchange of the coordinates 
of electrons 1 and 2. Therefore, the wave function strings 
are made to obey the following condition: 
 
 Sk(r1

i , r2
j) = Sk(r2

i , r1
j), k = 1, 2, … , n. (2) 

 
The fitness landscape is generated by defining a fitness 
function ( fk) for the kth string as follows: 

 fk = e–σ�k, (3) 

where 
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σ is essentially a scaling parameter that takes care of  
dimensional requirements and prevents exponential  
overflow or underflow. El may be kept fixed, if a good 
estimate of lower bound is available or may be updated 
(El    

i+1 = El
i ± c � i, c = 0.25–0.75). For actual calculation, 

ψk in eq. (4) is replaced by the string Sk and the integra-
tions are replaced by multidimensional quadrature. El is 
an estimated lower bound to the energy of the kth string. 
Fitness values for all the n strings are calculated and each 
string is subjected to a fitness-proportional roulette wheel 
selection procedure2 that allows more copies of the bet-
ter-solution string to pass into the mating pool. The aver-
age fitness of the population increases after selection – but 
no new information is created at this stage. For creating 
new information or new strings, two kinds of genetic  
operators are invoked, viz. crossover and mutation – the 
former occurring with a probability pc and the latter with 
pm. Let the strings sk and sl be randomly selected with 
probability pc for undergoing crossover and let the ith 
row and the jth column of the arrays sk, sl be selected for 
crossover again with probability pc. As a result of this 
operation, a pair of new strings – the children strings sk′ 
and sl′ are created, where  
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for p = 1, 2, … , i; q = 1, j, 

while for p > i, q > j, however, 
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The mixing coefficient f is randomly chosen from a range 
(0 < f <1). We may point out that the specific form of 
crossover operation used here is dictated by the physics 
of the problem. Since the region near the nucleus is ener-
getically important, it is necessary to ensure that ampli-
tudes for small values of r (r = 0 ↔ ∞) are frequently 
sampled by the crossover operator (CO). The redefinition 
of the CO used here has been found to be beneficial6. After 
crossover, each of the children strings is subjected to a 
process of mutation with probability pm. The site for mu-
tation is chosen by comparing a random number r[0, 1] 
with pm for each pair of column and row indices (i, j). If 
for the kth string r < pm for i = p, j = q, the corresponding 
amplitude is mutated as follows: 
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Figure 1. a, Evolution of energy of ground state of He atom during GA run. Energy refers to the string of the highest fitness in the population.  
b, Fitness profile during GA run for He atom in the ground state. Fitness corresponds to the string of the highest fitness in any generation. 

 

 
 
 Sk 0  (p, q) = Sk9 (p, q) + (–1)lr.∆m, (7) 

 
where r is a random number (0 ≤ r ≤ 1), l is a random in-
teger and ∆m is the intensity of mutation. It may vary with 
generation or remain static6. 
 The last operator to act on the post-crossover and post-
mutation strings is the symmetrization operator, the action 
of which is defined as follows: 
 

 S k,(q, p) = Sk 0(p, q), for k = 1, 2, … , npop, (8) 

 
for p = 1, 2, … , n1; q = 1, 2, … , n2; where ‘npop’ is the 
number of strings in the population. 
 With symmetrization, one generation is said to have 
elapsed. From the post-symmetrization population, we 
choose 80% of the strings in order of fitness and the  
remaining 20% are randomly created. The sequence of 
operations outlined is repeated till the average fitness of 
the population does not improve any more. 
 We report here the results of application of the method 
to the ground state of He atom. For this case ψ has been 
represented as amplitude distribution function on a two-
dimensional grid of 20 a.u. of length in each dimension, 
each dimension having 500 uniformly distributed grid 
points. A string sk thus carries 500 × 500 grid-point am-
plitudes which are allowed to evolve explicitly under the 
action of genetic operators, while the quadratures are per-
formed over 1500 × 1500 grid-point amplitudes for more 
accurate evaluation of the integrals in eq. (4) for calculat-
ing the fitness of a string. The additional amplitudes are 
generated by two-dimensional bicubic interpolation. We 
have used a population size of ten throughout. The ampli-
tude distributions on the 2D grid representing the strings 
were chosen from functions of the type 

 ψ = Ne–β(r1+r2)χ(r12), (9) 

 
with χ(r12) = 1 + γr12 + δr12

2  + … , with randomly chosen 
values of β, γ, δ, … . After the selection phase of evalua-
tion is executed, a pair of strings is chosen randomly with 
crossover probability pc = 0.75, for crossover. The muta-
tion operation is then carried out on the post-crossover 
strings, followed by spatial symmetrization. Figure 1 a 
and b shows the energy and fitness profiles during the 
evolution of the strings representing the ground state 
wave function of helium atom. The major lowering of en-
ergy takes place in the first 15 generations. The rapid im-
provement of energy and therefore fitness in the early 
stages of evolution is dominated by the crossover operator. 
Towards the end of the evolution, improvement in fitness 
is dominated by mutation which accounts for slow im-
provement of the fitness values. The two-dimensional 
contour plot of the converged ground-state radial wave 
function of He atom obtained by GA is shown in Figure 
2. Since this is an S-state and only radial correlation is 
present, the probability density is high in the near nucleus 
region. The energy corresponding to the best string is  
–2.87505 a.u. (1 a.u. of energy = 27.209 eV), which matches 
with ground state s-limit energy of He atom10. The energy 
obtained by GA is a bit lower than the Hartree–Fock en-
ergy of the He atom in the ground state. Results obtained 
so far indicate that the quality of results does not deterio-
rate with the increase of nuclear charge (z). The GA-based 
recipe described here is computationally at least as viable 
as numerical Hartree–Fock method for two-electron at-
oms. When the number of electrons (n) rises, the problem 
of performing multidimensional quadratures may prove to 
be a bottleneck. For n > 2, therefore, we must explore 
Monte Carlo methods for evaluating multidimensional in-
tegrals along with parallelization. 




