Reaction of hexachloropropene with dihydroxy aryl aldehydes, ketones and acids

AJIT R. DESHPANDE AND J. R. MERCHANT, F.A.Sc.

Department of Chemistry, Institute of Science, Bombay 400032

MS received 29 July 1976; after revision 9 September 1976

ABSTRACT

The reaction of hexachloropropene with dihydroxy aryl aldehydes, ketones and acids has been explored to synthesise substituted 3, 4-dichlorocoumarins. The structures of the latter have been deduced from their spectral-analytical data.

The present paper describes the synthesis of substituted 3, 4-dichlorocoumarins by condensation of hexachloropropene (I) with different dihydroxy aryl aldehydes, ketones and acids. This work was prompted by the fact that Newman and co-workers\(^1\) have observed that the reaction of I with resorcinol is not successful and the latter is recovered unchanged.

Instead of resorcinol, we carried out condensation of I with β-resorcylaldehyde in the presence of anhydrous aluminium chloride, when a dichlorocoumarin (II) with a free hydroxy group was isolated in 25\% yield. The presence of the latter was confirmed by deep brown colouration with alcoholic FeCl\(_3\), which disappeared as soon as its acetyl derivative was prepared. The mass spectrum of II showed molecular ion peaks at m/e 258 and 260, and its analytical data indicated that only one –OH group (in position 4) was involved in the coumarin formation. The OH group in ‘2’ position is strongly chelated and does not take part in the ring formation. The NMR (CF\(_3\)CO\(_2\)H) spectrum of II was fully consistent with its structure as 7-hydroxy-6-formyl-3, 4-dichlorocoumarin. The IR (nujol) of the latter showed bands at 1720 (\(\geq\)C═O coumarin) and 1680 (CHO) cm\(^{-1}\).

Similarly, resacetophenone afforded 7-hydroxy-6-acetyl-3, 4-dichlorocoumarin (III) whose structure was evident from its spectral data. Mass spectrum showed molecular ion peaks at m/e 272 and 274. The NMR
spectrum showed signals at 3.01 (3H, s, CO-CH), 3.7 (1H, s, C₆H) and a 8.6 (1H, s, CH). The IR spectrum showed bands at 1730 (C=O)
group and a 3400 (OH) group. The presence of a free -OH was con-
firmed by deepening the reaction with alcoholic FeCl₃ and preparing the
acetylated derivative which showed carboxylic acid peaks at m/z 314 and 316 in
the mass spectrum. The NMR of a COOH spectrum showed signals at
δ 2.38 (3H, s, CO-CH), δ 6.7 (1H, s, CO=CH), δ 7.1 (1H, s, C₆H) and
δ 8.0 (1H, s, CH).

The above reaction was found to be of general applicability and was
extended to functional derivatives of aldehydes, ketones and acids in which
one of the OH groups was strongly deuterated. Their structures were
established on the basis of spectral data. The yields of the dichloro-
coumarones isolated were 70-80%. We also carried out the reaction of I with
II and III, and the results were identical.

As a point of interest, the reaction of I with 5, 7 dihydroxy-2, 2-dimethyl-
chalcone 4 was studied in which the OH group in position 5' is
hydrogen bonded with the carbonyl group. In this case, a crystalline
compound was isolated whose mass spectrum and analysis showed it to be
a benzoquinone derivative (M+).
<table>
<thead>
<tr>
<th>No.</th>
<th>Phenolic Compound**</th>
<th>Substituted 3, 4-dichloro-coumarin</th>
<th>Nature of crystals</th>
<th>M.P.</th>
<th>Analysis</th>
<th>Spectral data</th>
</tr>
</thead>
</table>
| II | β-Resorcylic aldehyde^a | 7-Hydroxy-6-formyl | Yellow needles | 218–19° | Calcd. for C₁₆H₁₄O₄Cl₂
C, 46·3; H, 1·54;
Found C, 46·7; H, 2·0%. | I.R. (nujol) 1680, 1720 cm^{–1}.
M⁺ 258 and 260.
NMR δ 7·15 (1H, s, C₆H),
δ 8·6 (1H, s, C₆H). |
| III | Resaceto-phenone^a | 7-Hydroxy-6-acetyl | Yellow needles | 218° | Calcd. for C₁₁H₁₀O₄Cl₂
C, 48·3; H, 2·2;
Found: C, 48·6; H, 2·6%. | I.R. (nujol) 1670, 1740 cm^{–1}.
M⁺ 272 and 274, NMR δ 2·9 (3H, s, COCH₃),
δ 7·1 (1H, s, C₆H),
δ 8·6 (1H, s, C₆H). |
| IV | 2, 4-Dihydroxy-3-methyl-acetophenone^a | 7-Hydroxy-6-acetyl | Colourless needles | 223–24° | Calcd. for C₁₂H₁₂O₄Cl₂
C, 50·2; H, 2·8;
Found: C, 49·8; H, 2·9%. | I.R. (nujol) 1680, 1740 cm^{–1}.
NMR δ 2·4 (3H, s, Ar–CH₃); 2·95 (3H, s, COCH₃); M⁺ 286 and 288,
δ 8·6 (1H, s, C₆H). |
| V | Respropio-phenone^a | 7-Hydroxy-6-propionyl | Yellow needles | 148–49° | Calcd. for C₁₂H₁₂O₄Cl₂
C, 50·2; H, 2·8;
Found C, 49·8; H, 2·9%. | I.R. (nujol) 1680, 1740 cm^{–1}.
M⁺ 286 and 288.
NMR δ 1·4 (3H, t−CH₃),
δ 3·4 (2H, q, −CH₂),
δ 7·1 (1H, s, C₆H),
δ 8·6 (1H, s, C₆H). |
| VI | 2, 4-Dihydroxy 3-methyl 7-Hydroxy- 6-propionyl- 8-methyl propiophenone^a | Colourless plates | 191–92° | Calcd. for C₁₃H₁₆O₄C₂
C, 51.8; H, 3.3;
Found: C, 52.2; H, 3.7%. | I.R. (nujol) 1680, 1740 cm⁻¹.
M⁺ 300 and 302.
NMR δ 1.4 (3H, t, −CH₃),
δ 2.4 (3H, s, Ar−CH₃),
δ 3.3 (2H, q, −CH₂),
δ 8.6 (1H, s, C₆H). |
| VII | Orcin aldehyde^{7,8} 7-Hydroxy- 5-methyl- 6-formyl | Yellow needles | 245–46° | Calcd. for C₁₂H₈O₄Cl₂
C, 48.3; H, 2.2;
Found: C, 48.1; H, 2.5%. | I.R. (nujol) 1680, 1740 cm⁻¹.
M⁺ 272 and 274, |
| VIII | Orcacetophenone⁹ 7-Hydroxy- 5-methyl- 6-acetyl | Yellow needles | 198–99° | Calcd. for C₁₅H₁₀O₄Cl₂
C, 50.2; H, 2.8;
Found: C, 49.8; 2.5%. | I.R. (nujol) 1670, 1740 cm⁻¹.
M⁺ 286 and 288. NMR δ
2.7 (3H, s, Ar−CH₃),
δ 2.85 (3H, s, CO−CH₃),
δ 6.95 (1H, s, C₆H). |
| IX | 2-Acetylresorcinol^{10,11} 7-Hydroxy- 8-acetyl | Yellow needles | 201–2° | Calcd. for C₁₄H₁₀O₄Cl₂
C, 48.3; H, 2.2;
Found: C, 48.8; H, 2.6 | I.R. (nujol), 1680, 174 cm⁻¹ |
| X | β-Resorcylic acid¹² 7-Hydroxy- 6-carboxy | Colourless needles | 267–68° | Calcd. for C₁₇H₁₂O₄Cl₂
C, 43.6; H, 1.5;
Found: C, 43.1; H, 1.7% | I.R. (KBr) broad band
around 3000 (OH of CO₂H) 1745 (C=O;
Coumarin) cm⁻¹ |
| XI | 2, 4-Dihydroxy 3-methyl- 7-Hydroxy- 6-carboxy- 8-methyl benzoic acid¹³ | Colourless needles | 270° | Calcd. for C₁₅H₁₄O₄Cl₂
C, 45.7; H, 2.1;
Found: C, 45.2; H, 2.0%. | |

* NMR spectra of all the compounds were taken in CF₃COOH.
** The numbers in superscript relate to reference.
It thus appears that in the chroman-4-one the OH group in '5' position is not as strongly chelated as in case of resacetophenone and other compounds.

Mechanism

The phenol (a) reacts with aluminium chloride to yield the salt (b). The position '5' is considerably electron rich, since it is ortho to free-OH and para to hydrogen bonded -OH group. So a nucleophilic displacement of chlorine of the trichloromethyl group on hexachloropropene by the anion of salt (b) (reacting at position '5') yields the cyclohexadienone intermediate (c). The latter by an attack of the Lewis acid (AlCl₃) on the benzylic chlorine affords (d). Hydrolysis of (d) with water furnishes the final product (e).

Experimental

General Procedure: The dihydroxy aryl aldehyde, ketone or acid (0·02 mole) in dry dichloromethane (25 ml) was slowly allowed to react with a stirred slurry of anhydrous aluminium chloride (0·06 moles) in the same solvent (25 ml). The stirring was continued till the evolution of HCl gas ceased or slowed down considerably (3 hr). Then hexachloropropene (0·02 moles) was added dropwise during 10 minutes and the reaction mixture was stirred for 3 more hours. The solvent was removed on the steam bath and the dark tarry mass was decomposed by ice and dilute sulphuric acid. The solid obtained was washed with water and then with a little alcohol and crystallised from acetone in shining needles.

Preparation of Benzo-tripyran Derivative (xii)

5, 7-Dihydroxy-2, 2-dimethylchroman-4-one (2·08 g, 0·01 moles) in dry dichloromethane (25 ml) was slowly allowed to react with a stirred slurry of anhydrous aluminium chloride (7·98 g, 0·03 moles) in the same solvent (25 ml). After stirring the reaction mixture for 3 hr hexachloropropene (2·5 g, 0·01 moles) was added slowly during 10 minutes. The reaction mixture was stirred for 3 more hours and worked up as described above. The solid obtained was crystallised from acetone in shining brownish needles (1 g), m.p. 269–70° (Found: C, 45·8; H, 1·9; C₁₇H₈O₆Cl₄ requires C, 45·4; H, 1·8%).

Acknowledgements

The authors are grateful to Dr. K. Nagarajan and Dr. S. Selvavinayakam, Ciba-Geigy Research Centre, Bombay, for IR, NMR and
mass spectra and the CSIR for the award of a Junior Research Fellowship to A. R. Deshpande.

REFERENCES

2. Gattermann, L. and Berchelmann, W., Ber. 31 1768 (1898).

7. Gattermann, L. and Berchelmann, W., Ber. 31 1765 (1898).

