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Abstract. It is demonstrated that a generalized version of the orthogonal gradient method
of orbital optimization may sometimes encounter a specific divergence problem which may
be termed intrinsic to the first order method. Instead of switching over to a more sophisticated
second order method one can cure the divergence problem at the first order level itself by
suitably tailoring the MC-SCF operator or the MC-SCF energy matrix. Results of complete
geometry optimization of propynal in **nn* and 3zxn* states (pathological cases) are reported
to demonstrate the usefulness of the method at an INDO-MCSCF level of approximation.
The results of structure calculations are further rationalized from generalized quantum chemical
bond order indices.
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1. Introduction

The occurrence of convergence difficulties has not been uncommon in the context of
SCF calculations by the traditional repeated diagonalization procedure of Roothaan
[1]. In fact, such difficulties have been encountered even in closed-shell SCF
calculation during the pioneering work of Hartree. A host of remedial measures has
been suggested from time to time with varying degrees of success. Of these, mention
may be made of the Aitken’s procedure [2, 3, 3a], level shifting techniques [4],
corresponding orbital methods [5], and the DIIS procedure [6]. The list is by no
means exhaustive.

Recently, attention has been drawn to the existence of what has been called intrinsic
divergence problem in traditional SCF calculations [7,8]. The problem is intrinsic
in the sense that a better choice of the starting wavefunction would not automatically
cure the divergence. Stanton recently used the fixed point iteration theory to clarify
the conditions of convergence in closed-shell SCF calculations, and in the process
demonstrated the existence of intrinsic divergence in a series of SCF problems [9].
The analysis of Stanton, however, has no bearing on the orthogonal gradient method
(OGM) of solving the SCF problem [10, 11, 12, 13]. Intrinsic divergence problems
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in the context of OGM or variants of it were recently analysed by us [14, 15] and
techniques were suggested to circumvent the problem. However, our earlier works
were confined to closed-shell or unrestricted open-shell calculations. We now propose
to extend the analysis to the more general case.

Root of convergence problems in the first order SCF theories can frequently be
traced to either (i) a poor choice of the starting wavefunction (extrinsic problem), or
(i) the existence of strong coupling between the orbital and configuration spaces
which is neglected in the first order theories (intrinsic problem).

Thus, if the observed divergence is independent of the starting wavefunction, one
suspects that the problem must be intrinsic to the first order method itself. Two
alternatives exist at this point: switch over to a second order (MC) SCF procedure
[16, 17, 18, 18a] which is computationally a much more involved problem or look
for a suitable divergence-curing device that can force the first order method to
converge. The layout of the paper is as follows. In§ 2 we briefly describe the orthogonal
gradient method while § 3 describes the proposed schemes for tackling the pathological
cases. Some examples for the efficacy of the methods proposed are included in §§4
and 5. Although the calculations are done at the INDO level of approximation
introduced by Pople, the suggested technique would remain perfectly valid in an
ab-initio framework. ‘ ‘

2. The orthogonal gradient method

In the master equation approach of McWeeny [19] based on the first order variational
procedure, one alternately solves the orbital equation (1) and the linear variational
problem involving the Cl coefficients (equation 2)

hTOP, + Z(P,) = V(T®) = ST 1y

HC=CE )
where h represents the one-electron part of the interaction, P, represents the
one-clectron density matrix in the MO basis and Z is the two-electron part of the
interation in the AO-MO basis [18], T° is an nxm matrix, n representing. the
dimensionality of the AO basis set and m the number of occupied molecular orbitals.
Let T" represent the total coefficient matrix (nxn). Using (1) and its hermitian conjugate
we have

(TH'V =(T)'STC: | ‘ )

V(T =€t (TO) S(T). | ' (4)
The orthonormality condition in the total space demands

(T'S(T) =1 ()
which in turn proves that (if 7* is invertible) -

ST =(T)(T. (6)
Combining equations (3) and (4) and using (6) we have

VIT(TY Y = [TOTSTHT") ST e = cTe. (7

The condition at convergence demands the hermiticity of ¢ which allows us to
write [10]

e=(VIS-1p)2, (8)
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Equation (8) can now be used to eliminate & from (1) which permits us to wrlte
[12, 13, 14, 15].

YV =STO(VIS~1y)t/2 %)

Equation (9) at once leads to the following iterative scheme for the optimization of
orbitals

T’ =T, , =S~V (Vis~1y,) "1/ ' (10)
n+1 n

One can arrive at (10) from a slightly different line of reasoning. Away from the
stationary point, the lagrangian multiplier matrix is not hermitian. Let ¢, be the
slightly non-hermitian lagrangian multiplier matrix at the nth step. One can, then
define a unitary transformation matrix U, (mxm) and use it to transform the
coefficient matrix for the occupied orbitals T as T°+ ,=>T2U,. If we now postulate
that this transforms ¢, = UI &n. We immediately arrive at the conclusion that the form
of the unitary transformation matrix U, is U, = g,(el¢,) " '/2. This is equivalent to
the content of equation (10).

Usually, iterations based on (10) converge fast. This has been verified in ab-initio
as well as semiempirical calculations [12, 20]. Nevertheless one may occasionally
encounter convergence problem in some cases. In a previous communication [15]
we dealt with the problem of convergence in closed-shell SCF calculations within the
framework of the orthogonal gradient method (OGM). It was shown there that the
OGM could encounter pathological cases of divergence even in closed-shell SCF
calculations if the magnitude of eigenvalue of even one orbital in the unoccupied
subspace happened to be larger than the eigenvalue of largest modulus in the occupied
subspace. Similar problems may crop up in a general open shell calculation as well.

3. Pathological cases of divergence

Let us consider a particular example where iterations based on equation (10) fall to
converge for any reasonable choice of the starting wavefunction. In the course of our
recent investigations on the structural features of a series of carbonyl and thiocarbonyl
molecules in low-lying excited states by using the orthogonal gradient method of
orbital optimization in an INDO/MCSCF framework [21,22] we found that
(CN),CO is a pathological case. Table 1 displays convergence profiles obtained in
the course of orbital optimization in the *nn* state of (CN),CO. Divergence was
encountered for all the different types of input vectors tried. Hartree type damping
was found to be ineffective.

Several other interpolation techniques were tried without success (results not

included in table 1). We may, therefore, categorize this as a truly pathological case

within the realm of the orthogonal gradient method. Recalling the analysis made

earlier [14, 13, 15] one may conjecture that the energy matrix V for this particular

problem (cf eqn. 10) has the particular kind of eigenvalue spectrum which was shown
to be responsible for the onset of intrinsic divergence in a number of closed-shell
SCF problems [15]. If this conjecture were correct, the remedy would. be to replace
V in equation (9) by an appropriately root-shifted or level-shifted ¥ matrix (say, 7)

at every iteration. The dressed V'is forced to have the eigenvalue structure which

ensures convergence. One must note, however, that the shifting requlres additional
labour in the present context. This is because the V matrix in (9) is in the mixed
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Table1. Convergence profiles for the 3nn* state orbital optimization of (CN),CO
for different input orbitals.

Electronic energy at the nth iteration (E,) in a.u. for different types of inputs (I-V)

Iteration S
No. (n) I IT 111 v \Y P
0 — 138728207 —138719567 —138:745881 —138-839461 — 138728207

1 — 138760006 — 138:642760 — 138768359 —138-841348 — 138760006
2 — 138770608 — 138350082 — 138783678 —138-842674 — 138770608
3 — 138765135 — 137633612 — 138796290 — 138843603 — 138-765135
4 — 138-724518 —138-805712 — 138-844254 —138-695375
5 — 138:600376 diverges 138809856 — 138-844708 — 138:022183
6 — 138204329 —138-803453 —138-845019 —133-335322
o1 — 137-266025 — 138771857 —138:845217

8 — 138-845301
9 diverges diverges — 138845217 diverges

10 — 138-844792

11 — 138:843566

12 diverges

Notes: I. Closed-shell ground state vectors as input; II. Eigenvectors of h_ asinput; IIL V,, _, e

potential orbitals as input; IV. Partially optimized orbitals as input; V. Input as in I and two
point (Hartree) damping {3a].

(AO-MO) basis and therefore, requires to be transformed into purely AO or MO

basis before resorting to eigenvalue shifting technique. After introducing the required .
degree of level-shifting, V is to be transformed back into its original representation

and used in (9) for updating the orbitals. We indicate below the sequence of
transformations for root-shifted (case a) and level-shifted (case b) iteration:

Case a: root-shifted iterations

step 1: construction of the V matrix
Vi=hT,P\ + Z, B

step 2: transformation of V; into the AO basis

Fi=T]
step 3: formation of the root-shifted V(= V5)
(Vg)pq = (V})Pq + quépq

step 4: transformation of V3 back to the mixed AO-MO basis

Vi=WiT,
step 5: updation of T;=T;,, as ‘
T =87 Papils 172 5
@

and return to step 1.
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Case b: level-shifted iterations
In this scheme the steps to be executed are as follows:

step 1: construction of the V matrix
Vi=hT,P| + Z,,

step 2: transformation of V; into the AO basis
vi=V.T},

step 3: generation of the level-shifted ¥ matrix in the AO basis
Vh=V"+ AP,

where P is the matrix representation of the projector into the occupied space
(P=2°|;>(¢;]) in AO basis. If 4 is a sufficiently large negative quantity the
shifting in step 3 ensures that there are no unoccupied orbitals having eigenvalues
large (in absolute sense) than their orbital conuterparts.

step 4: transformation of V? back in AO-MO basis
Vi=veTh
step 5: update T;= T, ,as follows

T,,, =S ' VYVis -1yl

4

and return to the step 1.

4. Examples of curing divergence problem

In all the cases of intrinsic divergence encountered so far, the shifted iterations based
on scheme a or b smoothly converged irrespective of the choice of starting orbitals.
In table 2 we have summarized root-shifted convergence profiles for the pathological
case where unaided iterations failed to converge (see table 1). It is clearly demonstrated
that root-shifting eliminates the divergence problem and iterations now smoothly
converge to the desired level of self-consistency with any reasonable choice of the
starting wavefunction. In a pathological case as the one described in the previous
section even a small error in the wavefunction tends to get magnified at every iteration
unless one resorts to shifting. That this conclusion is inescapable is amply
demonstrated by the convergence profile in figure 1. The shifting procedure was
invoked right from the first iteration and was allowed to continue until the computed
energy monotonically converged to within 10™# a.u. (the point (a) in figure 1). Shifting
was withdrawn at this point. After a few iterations in which the energy decreases,
the point (b) is reached where divergence sets in again. However, if shifted iterations
and allowed to continue beyond the point (a) energy decreases monotonically and
convergence (¢ < 10~¢ a.u.) is ultimately achieved (branch a—c of figure 1). To test
the stability of the solution, shifting was again withdrawn at the point (c) and iterations
were allowed to continue. No divergence was encountered. Thus we may start with
any reasonable choice of the wavefunction and invoke the shifting procedure instead
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Table 2. Conve.rgence‘proﬁles for a pathologically divergent SCF calculation
when root-shifting is used with different types of input (¢ < 10™* a.u.).

Electronic energy at nth root-shifted iteration (E,) for different
types of input (a.u)

Iteration

No. (n) . I II 11 v
0 — 138728207 —138719567 — 138753343 —138-745881
1 — 138753330 — 138789092 —138-814765 — 138760590
2 — 138764409 —138-807970 —138-824312 —138:768933
3 — 138773143 —138-816671 —138-828846 —138:776317
4 — 138780849 —138-822229 —138-831749 —138-783231
5 — 138787901 —138-826389 —138-833875 — 138:789763
6 — 138794423 —138-929723 —138-835560 — 138:795905
7 —138-800447 — 138832453 —138-836951 — 138801632
8 —138-805976 —138-834712 —138-838128 — 138806918
9 — 138811011 —138-836584 —138-839135 —138-811748

10 —138-811556 —138-838140 —138-840006 — 138816121

15 — 138831601 —138-842741 —138-842920 — 138:831656

24 —138:845186

25 —138-842994 —138-845285 —138-845115 —138:843333

30 — 138-844547 — 138-845237

34 —138-845141

35 —138-845239 — 138:845217

For details of the inputs I-IV see the footnotes to table 1.

-0.80

Energy (a.u.) —=

=0.83

-0.86 | 1 | | ! | | | |
0 6 12- 18 24 30 36 42 48 54
Number of lteration —=

Figgre: 1.' Er}ergy convergence profile in a typical pathological case of orbital
optimization in OGM when shifting is used (a—c) and when shifting is withdrawn
after a few iterations (a—b).

of looking for a better starting point or switching over to the more laborious second
order MCSCF methods even when a pathological problem is encountered [23]. Now
the question is: how good are the energies computed this way? To show that they
are indeed reliable we report here the results of complete geometry optimization
carried out on a pathologically diverging case by our orthogonal gradient method.
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5. Geometry optimization in a pathologically divergent case

At the particular level of approximation the propynal in the nn* state is a pathological
case just like the (CN),CO molecule. The reason for focussing our attention on
propynal instead of (CN),CO is the lack of availability of experimental data for the
latter. The near-uv spectrum of propynal has received considerable attention of
spectroscopists [24]. Since the molecule fluoresces as well as phosphoresces it has
naturally become an important subject of laser photochemical or photophysical
studies. Molecular dimensions in the ground state have been determined by microwave
spectroscopy which confirmed planar ground state structure. Partial analysis of the
many banded absorption spectrum ranging from 3000 A to 4000 A was made by
Howe and Goldstein [25] who identified the band system associated with nr*
transition typical of a )C=O chromophore. Brand et al [26] (BCW) made detailed
ro-vibronic studies of the A’ —'4” band system having the origin at 3820 A and
were able to assign with a fair degree of certainty eleven of the twelve fundamental
modes of the upper electronic state (*4”). From the anharmonic nature of the Vig
the out-of-plane wagging mode of the aldehydic hydrogen, BCW concluded that
propynal is non-planar in this coordinate by at most 3°. They attributed this
quasi-planarity of propynal in the 'A” state to m conjugation effects arising from the
ethyne group.

Since our OGM based INDO/MC-SCF method [21, 22] has been found to furnish
fairly reliable structural parameters of small carbonyl systems in the low-lying excited
states we have carried out geometry optimization for propynal in "*an* and *zz*
states by using the proposed root shifted or level shifted OGM in a MC-SCF
framework. These results are summarized in table 3. The molecule is predicted to be
planar in the nn* states in conformity with the experimental findings of Brand et al

Table 3. Computed structural parameters of propynal in the '*nn* and *nn*

states. The pathological divergence was cured by resorting to the use of a
root-shifted version of the orthogonal gradient method of orbital optimization. A
constant value of 1-0 a.u. was used for shifting at all the points on the energy surface.

Lyp* 3pm* Spn*
Geometrical state state state Available experimental
parameters’ (t4") (34" (34" data (34") [26]
r(C,-H,)A 1-095 1-092 1-095
r(C,-C3) A 1:215 1210 1-220 1-23 _
r(Cs—C,) A 1396 1-400 1374 1-445 + 0-046
r(C,—05)A 1-340 1320 1-385 1-31
r(C,—Hg) A 1130 1-110 1-114
C, 4004 deg 117-0 119-0 1203 123 +2
HZC3-C, deg 1280 1280 1258
H,LC>C,deg 1764 180-0 1800 180+ 3
C,2C-C, deg 180-0 180-0 - 1800 178 + 10
¢ (out of plane ~00 ~00 ~0-0 00
angle at C,)
Hg

t The numbering of the atoms is: H— C=C3—C;
. o
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[26] and Lin and Moule [27]. The C-C=C group is found to retain its linear
configuration upon excitation. This finding also agrees with the experimental finding
of Brand et al [26]. The other notable features of the computed excited state
geometrical parameters include lengthening of the C=0O bond, decrease in the C-C
length and an increase of the C=C bond distance all of which nicely mirror
experimental findings [26]. The *znn* state is also predicted to be planar. The C=0O
bond is, however, much more elongated in the 3zn* state compared to nn* state.
The C-C bond on the other hand is predicted to be shortened considerably following
the nn* excitation.

The pattern of changes in bond lengths observed upon excitation can be rationalized .

in terms of changes in quantum chemical bond order (BO) between different pairs
of atoms following excitation and classical idea of resonance among canonical
structures. The BOs are derived from the one electron density (OED) matrix P (in
MO basis) which can be partitioned into P? and P§ where P? denotes the one electron
density component due to the doubly occupied orbitals (core) and P$ that due to
the singly (or less) occupied orbltals (valence). The OED in MO basis is then converted
into OED in the AO basis

PP = TPPTH,
PS=TPST",
The bond order between a pair of atoms A and B is then defined as follows [28]

‘BAB= z Z (vaplv)u)-}- Z Z Pivpfu
ueA veB neA veB
Table 4 summarises computed bond orders between different pairs of atoms of
propynal and charge densities in different atoms in the ground and three excited
states of propynal. The computed C= C BO in the ground (*4’) state of propynal
is a bit less than what would be expected for a carbon—carbon triple bond while the
C=0 BO is somewhat smaller than that expected for a carbon—oxygen double bond.
On the other hand, the computed C-C BO in the ground state is about 10% larger

Tabled. Computed bond orders between different atoms and net charge densities
on each atom in the ground and excited states of propynal®.

Bond orders Net charges on atoms
: CI—HG '
State Cl_CZ CZ—C3 C3—O4 (Cg“Hs) Cl C2 Cs‘ 04 HS(G)
ground 284 1111 188 098 —-002 -005 034 —028 —005
(*4') (0:92) : (0-06)
'ng* 270 1-19 1-10 098 ~0-08 001 011 —-012 002
(4" (0-90) : (0-06)
ng* 278 116 1112 097 —0-09 001 008 —010 004
(4" (0-90) ‘ (0-06)
Sin* 2:60 1-34 097 098 —0-04 001 015 —016 —003
(A" (0-94) 0-07
‘ "

§ Hg— C=C;—C3=0,
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than that expected for a C-C single bond. One can rationalize the observed ground
state BOs of propynal in terms of mi>‘cing of the following canonical structures
(I and II).

H H
H—C=C—C=0 == H—(=C=—=c7—¢

1 If

From table 4 we can see further that nn* excitation causes a further decrease in
the C=C BO, an increase in C-C BO, and about 40% decrease in the C=0 BO.

- These changes are much more pronounced in the *nn* state. We can again invoke

the classical valence concept of chemistry to interpret the observed changes in the
BOs caused by n—n* excitation in terms of mixing among canonical structures
(ITT & IV).

0 o}
H-— CEC~——é/ -~ H—C== c=c/
\H & \H
i v
The allene structure (IV) which results from electronic charge transfer will have
the effect of decreasing the C — C BO and increasing the C = C BO significantly. In
the *nzn* state, canonical sructure (IV) is expected to have higher weightage. These
expectations are in conformity with the structural data given in table 3.

6. Conclusion

The shifted orthogonal gradient method of orbital optimization has been found to
be quite efficacious in handling pathologically divergent cases occasionally
encountered in the excited state calculations of SCF or MCSCF wavefunctions.
Instead of requiring one to go over to computationally more involved techniques,
the method allows one to work at the first order level but at the same time circumvent
the divergence problem. Further improvement is established by invoking the
Padé-MCSCF strategy [23].
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