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Abstract The kinetics of phase separation or domain growth, subsequent to temperature
quenches of binary mixtures from the one-phase region into the miscibility gap, still remains
a challenging problem of nonequilibrium statistical mechanics. We have an incomplete un-
derstanding of many aspects of the growth of concentration inhomogeneities, including the
effect of surfaces on this process, and the interplay with wetting phenomena and finite-size
effects in thin films. In the present paper, an overview of the simulation approaches to this
problem is given, with an emphasis on solutions of a diffusive Ginzburg-Landau model. We
also discuss two recent alternative approaches: a local molecular field approximation to the
Kawasaki spin exchange model on a lattice; and molecular dynamics simulations of a fluid
binary Lennard-Jones mixture. A brief outlook to open questions is also given.

Keywords Domain growth · Ginzburg-Landau theory · Molecular dynamics simulation ·
Thin films · Surface-directed spinodal decomposition

1 Introduction

There has been intense research interest in the kinetics of phase transitions. In this context,
consider a binary (AB) mixture which is homogeneous at high temperatures. This system
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Fig. 1 Schematic phase diagrams (a), (b) and corresponding states (c) of a symmetric AB mixture in a thin
film of thickness D. The film is symmetric, viz., both walls attract the A-particles with the same strength. The
wetting transition only occurs in the limit D → ∞. For finite D, the transition of the walls from nonwet or
partially wet to wet or completely wet is rounded off. This transition is of second order in (a), while (b) refers
to a first-order wetting transition. In (b), a prewetting transition line exists in the one-phase region, with one
end being a prewetting critical point at high temperatures. The other end of this line is at the wetting transition
temperature Tw, at the coexistence curve that separates the two-phase region from the one-phase region. Note
that the critical concentration of a symmetric binary mixture is xcrit

A = 0.5 in the bulk, but is shifted to a
larger value xA in the thin film. Further, the critical temperature of the film is typically lower than in the bulk,
Tc(D) < Tc(∞) = Tc. For the case of first-order wetting and sufficiently large D, a thin-film analog of the
prewetting transition exists, as evidenced by the thin-film critical point at the left side of the phase diagram.
When the thin enrichment layer segregation meets the lateral segregation of the thick film, a thin-film triple
point occurs at a temperature close to Tw. For thin films, this triple point and the left critical point may merge
and annihilate each other, and the corresponding phase diagram is similar to that in (a). In (c), we provide
schematic pictures of the thin-film states in the case of lateral phase separation

becomes thermodynamically unstable if it is rapidly quenched below the coexistence curve
[see Fig. 1(a)]. The subsequent evolution of the system is characterized by the emergence
and growth of domains which are A-rich and B-rich. This evolution is termed domain growth
or coarsening or phase ordering dynamics. Typically, a characteristic length scale L(t) ap-
pears during the late stages of this process. In many cases, there is a power-law increase
of this length scale with the time t after the quench, and associated scaling behavior is ob-
served. The asymptotic state of the system is the equilibrium phase-separated state, which
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reflects the initial composition of the mixture. These kinetic processes are of great scien-
tific and technological importance. There now exists a good understanding of the kinetics of
phase separation in the bulk, and there are several good reviews of these problems [1–5].

Next, let us consider a binary mixture in contact with a surface S. In many physical
applications, the surface has a preferential attraction for one of the components of the mix-
ture, say A. In equilibrium, the AB interface meets the wall at a contact angle θ , which is
determined by Young’s equation [6]:

σ cos θ = γB − γA. (1)

Here, σ is the surface tension between the A-rich and B-rich phases; and γA, γB are the sur-
face tensions between the A-rich and B-rich phases and S, respectively. For σ > γB − γA,
the surface is partially wet (PW) in equilibrium. For σ < γB − γA, (1) has no solution and
the A-rich phase forms a macroscopic layer on the surface in a completely wet (CW) mor-
phology [7–11]. The above picture applies for a semi-infinite geometry—only precursors
of wetting layers are possible in a confined geometry, e.g., thin film with parallel surfaces
separated by a distance D (see Fig. 1).

There also has been a long-standing interest in the problem of phase separation in con-
fined geometries [12–18]. The confining surfaces give rise to surface-directed phase sepa-
ration or surface-directed spinodal decomposition (SDSD), viz., the dynamical interplay of
wetting and phase separation when an unstable binary mixture is placed in contact with a
wetting surface. These processes have important technological applications, including the
fabrication of layered structures and nanoscale patterns. Even in thin films which are several
µm thick, the length scale L(t) mentioned above becomes comparable to the film thickness
in the late stages of domain growth, and the finite size and surface effects become important.

The first study of SDSD is due to Jones et al. [15], who studied the segregation of mix-
tures of poly(ethylenepropylene) (PEP) and perdeuterated-PEP (dPEP). These mixtures had
an open surface, which was preferentially wetted by dPEP. Jones et al. observed the for-
mation of SDSD waves which propagated into the bulk with wave-vectors normal to the
surface, as shown in Fig. 2. Krausch et al. [16] improved on these experiments, studying
a similar system but with better techniques. They focused on the time-dependence of the
first “zero”-crossing of the SDSD profiles (see Fig. 2), viz., the distance from the surface
[say R1(t)] where the composition first assumes its average value. Their results showed
that R1(t) ∼ t1/3, which is analogous to the Lifshitz-Slyozov (LS) law for diffusion-driven
domain growth in the bulk [5].

We will not discuss experimental results further here, but rather refer the reader to the
comprehensive reviews by Krausch [17], and Geoghegan and Krausch [18]. However, these
results provide guidance to the relevant theoretical questions which we address here.

In this paper, we review our studies of phase separation in confined geometries. In Sect. 2,
we briefly discuss phase-separation kinetics in the bulk. This will provide the background
for our discussion of phase separation at surfaces. In Sect. 3, we present our modeling and
results for SDSD in a semi-infinite geometry. In Sect. 4, we discuss the kinetics of phase
separation in thin films. We conclude this paper with a summary and discussion in Sect. 5.

2 Phase Separation in the Bulk

2.1 Correlation Functions and Structure Factors

Let us start with a brief overview of phase-separation kinetics in bulk mixtures. For quenches
below the spinodal curve, the homogeneous system is unstable and decomposes via the
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Fig. 2 SDSD in an unstable
polymer mixture of PEP and
dPEP, in contact with an open
surface which prefers dPEP [15].
The frames show the
depth-dependence of the volume
fraction of dPEP at (a) 19200 s,
(b) 64440 s, and (c) 172800 s
after the quench. The average
composition is denoted by a
dotted line

spontaneous growth of long-wavelength concentration fluctuations (spinodal decomposi-
tion) [1–5]. As a caveat, we mention that the concept of a “spinodal curve” is well-defined
in a mean-field context only [2, 5]. In fact, for systems with short range forces, the nature of
the initial stages of phase separation changes gradually from spinodal decomposition to nu-
cleation and growth when the considered state point moves from the center of the miscibility
gap towards the coexistence curve.

As mentioned earlier, the coarsening domains have a characteristic length scale L(t),
which grows with time t . In pure and isotropic systems, domain growth usually obeys power-
law growth, L(t) ∼ tφ , where φ is the growth exponent. If the system is characterized by a
single length scale, the morphology of the domains does not change with time, apart from
a scale factor. Therefore, the order-parameter correlation function exhibits a dynamical-
scaling property [1–5]:

C(�r, t) ≡ 1

V

∫
d �R[〈ψ( �R, t)ψ( �R + �r, t)〉 − 〈ψ( �R, t)〉〈ψ( �R + �r, t)〉]

= g
( r

L

)
, (2)



Phase Separation in Confined Geometries 55

where V is the system volume, and the angular brackets denote an averaging over inde-
pendent initial conditions and thermal fluctuations. This equal-time correlation function is
a time-dependent quantity as domain growth is a nonequilibrium process. In (2), g(x) is a
scaling function which is independent of time.

Actually, most experiments (e.g., neutron or light scattering) probe the structure factor,
which is the Fourier transform of the correlation function:

S(�k, t) =
∫

d�rei�k·�rC(�r, t), (3)

where �k is the wave-vector of the scattered beam. The corresponding dynamical-scaling
form for S(�k, t) is

S(�k, t) = Ldf (kL), (4)

where d is the dimensionality, and

f (p) =
∫

d �xei �p·�xg(x). (5)

The scaling functions g(x) and f (p) characterize the morphology of the ordering sys-
tem. In experiments or simulations of domain growth, one usually attempts to obtain the
functional forms of g(x) and f (p). Of course, a complete description of the morphology
would require knowledge of all higher-order correlation functions and structure factors also,
but these have limited experimental relevance.

2.2 Domain Growth Laws

Next, let us discuss the domain growth laws which arise in phase ordering systems [19–26].
The evaporation-condensation mechanism of Lifshitz and Slyozov (LS) [19] corresponds to
a situation where droplets of the minority phase (say, A) are in local equilibrium with the
surrounding supersaturated majority phase. The LS mechanism leads to a growth law L(t) ∝
t1/3, valid for d > 1. Huse [27] demonstrated that the same law is applicable to spinodal
decomposition, where there are approximately equal fractions of the two components and
the coarsening structure is bi-continuous. Typically, the chemical potential excess (relative to
the chemical potential at bulk coexistence) on the surface of a domain of size L is μ ∼ σ/L,
where σ is the surface tension. The concentration current is obtained as D| �∇μ| ∼ Dσ/L2,
where D is the diffusion constant. Therefore, the domain size grows as dL/dt ∼ Dσ/L2, or
L(t) ∼ (Dσ t)1/3. The LS law applies to phase separation in multicomponent mixtures [28]
driven by diffusion, as in solid alloys when strain-field effects can be neglected.

In fluid mixtures, there is a range of mechanisms which drive phase separation. For ex-
ample, the droplet diffusion-coagulation mechanism [25, 26] is based on Stokes law for
the diffusion of droplets, and yields a growth law [25, 26] L(t) ∝ (t/η)1/d , where η is the
fluid viscosity. A faster mechanism was proposed by Siggia [20], who studied the coars-
ening of interconnected domain structures in d = 3 via the deformation and break-up of
tube-like regions. Siggia considered the balance between the surface energy density ∼ σ/L

and the viscous stress ∼ 6πηv/L, where v is the magnitude of the fluid velocity [3]. Thus,
v ∼ dL/dt ∝ σ/η or L(t) ∝ σ t/η in d = 3.

In d = 2, the analog of the Siggia mechanism is controversial. San Miguel et al. [21]
argue that strips (d = 2 analogs of tubes) are stable under small perturbations, in contrast to
the d = 3 case. For critical volume fractions, an interface diffusion mechanism is proposed
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which yields L(t) ∝ t1/2, i.e., the same growth law as the diffusion-coagulation mechanism
of droplets in d = 2 (see above). On the other hand, Furukawa [22, 23] argues for a linear
growth law L(t) ∝ t in d = 2 as well. However, recently there is growing evidence [29–31]
that different characteristic length scales in d = 2 may exhibit different growth exponents,
suggesting that there is no simple dynamical scaling of domain growth in d = 2 fluid mix-
tures.

Finally, we mention that the above growth laws for fluid mixtures do not constitute the
true asymptotic behavior, either in d = 2 or d = 3. Rather, these results only hold for low
Reynolds numbers [3, 5]. For L � η2/(ρσ) (the so-called inertial length [3, 5]), one enters
a regime where the surface-energy density σ/L is balanced by the kinetic-energy density
ρv2. This yields the following growth law for the inertial regime [3, 5, 22, 23]:

L(t) ∝
(

σ t2

ρ

)1/3

, (6)

which is valid for both d = 2 and d = 3. In d = 3, evidence for both L(t) ∝ t and L(t) ∝ t2/3

has been reported, but the conditions under which such power laws hold in d = 2 are still
unclear [29–37].

3 Phase Separation in a Semi-Infinite Geometry

3.1 Free Energy for Binary Mixtures at Surfaces

Consider an AB mixture in contact with a planar surface S, located at z = 0. The mixture
consists of NA atoms of A and NB atoms of B distributed on a lattice, with N = NA + NB.
If a lattice site i is occupied by an A-atom or B-atom, we associate the Ising spin variables
σi = +1 or σi = −1, respectively.

We consider the case with nearest-neighbor interactions. Furthermore, the interactions
are taken to be independent of the sites i and j , except when both of these lie in the surface
layer (labeled by iz = 1). The resultant Ising Hamiltonian for the binary mixture is

H{σi} = −
∑
〈ij 〉

Jijσiσj − H

N∑
i=1

σi − H1

∑
iz=1

σi +
∑
iz>1

V (zi)σi, (7)

where the pair-wise exchange interaction is

Jij = J, iz or jz �= 1,

= Js, iz, jz = 1. (8)

Here, the subscript s denotes the surface layer. The bulk “magnetic field” H is irrelevant in
the fixed-concentration ensemble where

∑
i σi = NA −NB. We distinguish between the sur-

face field −H1 and the “bulk” potential V (z), both of which result from the introduction of a
surface. We can have a non-zero H1 even if V (z) = 0, due to missing neighbors for z < 0 [12,
13]. Here, we will focus on the simplest case where −H1 = V (iz = 1). It is experimentally
relevant to consider both short-ranged potentials [V (z) ∼ δ(z) or V (z) ∼ exp(−z/z0), where
z0 is the characteristic decay length] and long-ranged power-law potentials [V (z) ∼ z−n].
There are significant differences between wetting by short-ranged and long-ranged poten-
tials [11]. The generalization of the Hamiltonian in (7) to an arbitrary geometry is obvious.



Phase Separation in Confined Geometries 57

For example, in a thin film of thickness D, the RHS of (7) contains additional terms arising
from the surface at z = D.

Based on the molecular field approximation of the Hamiltonian in (7), a continuum de-
scription for the binary AB mixture at the surface can be obtained, leading to the formulation
of a free-energy functional F . The expression for F includes the usual entropy of mixing.
We introduce the order parameter 〈σi〉 = ψ(�ri), and Taylor-expand around �ri to obtain

F [ψ] 
∫

d�r
[
−1

2
kB(Tc − T )ψ2 + kBT

12
ψ4 + J

2

( �∇ψ
)2 + V (z)ψ

]

+
∫

d �ρ
{
−1

2

[
(q − 2)Js + J − kBT

]
ψ( �ρ,0)2 − H1ψ( �ρ,0)

+ Js

2

[ �∇‖ψ( �ρ,0)
]2 − J

2
ψ( �ρ,0)

∂ψ

∂z

∣∣∣∣
z=0

}

≡ Fb + Fs. (9)

Here, Fb is the ψ4-form of the bulk free energy supplemented by a surface potential term,
and Fs is the surface contribution. We designate �r = ( �ρ, z), where �ρ are the (d − 1) coordi-
nates parallel to the surface, and z is the coordinate perpendicular to the surface. The critical
temperature is denoted as Tc, and the temperature as T . The quantity q denotes the coordi-
nation number of a lattice site. The term ∂ψ/∂z|z=0 in Fs appears because of the missing
neighbors for z < 0. The expansion which results in (9) is only justifiable near criticality,
where the order-parameter amplitude is small. However, we will also use this free energy
for parameter values far from criticality. This is reasonable if the resultant model adequately
describes experimental phenomenology. The appropriate minimal model for description of
surface critical phenomena has been discussed extensively in the literature [38–45].

3.2 Equilibrium Morphologies for a Mixture at a Surface

We are interested in the equilibrium morphologies for a binary mixture at a surface. These
are the asymptotic states of the thermodynamically unstable mixture which undergoes
SDSD. It is convenient to understand these morphologies in the context of a thin film of
thickness D—the limit D → ∞ corresponds to the semi-infinite case (see Fig. 1).

Recall that a homogeneous binary mixture becomes unstable when it is quenched into
the miscibility gap. For a symmetric mixture, the miscibility gap is symmetric with respect
to the concentration xcrit

A = 1/2. A semi-infinite mixture at a surface may undergo a wetting
transition [10, 11, 38–45]. This transition implies a singular behavior of the surface excess
free energy Fs. This is defined as (for a film between two equivalent walls at distance D)

Ffilm = Fb + 2Fs

D
, D → ∞, (10)

Fb being the bulk free energy per unit volume of the system. Assuming, as done in Fig. 1,
that the wetting transition occurs at the surface of B-rich mixtures (caused by the prefer-
ential attraction of A to the walls), the transition is characterized by a divergence of the
surface excess concentration of A, xsurf

A . This quantity can be obtained from Fs via suitable
derivatives, or by integrating the concentration profile [38–46]

xsurf
A =

∫ D/2

0

[
xA(z) − x

(1)

A,coex

]
dz, D → ∞. (11)
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If the wall is nonwet or partially wet (PW) [38–45], xsurf
A tends to a finite value (xsurf

A,coex)

when xA → x
(1)

A,coex from the one-phase region. On the other hand, for a wet or completely
wet (CW) wall, xsurf

A = ∞—corresponding to an infinitely thick A-rich wetting layer coating
the wall, separated from the B-rich bulk by a flat interface.

At the coexistence curve x
(1)

A,coex, the surface excess free energy is that of an A-rich phase
(F B-rich

s,coex ) if the wall is PW. For a CW wall, we have Fs = F A-rich
S,coex + σ . These quantities also

determine the contact angle θ [cf. (1)] at which an AB interface in the PW region meets the
wall [38–45]

cos θ = (F B-rich
s,coex − F A-rich

s,coex )

σ
, if F B-rich

s,coex − F A-rich
s,coex < σ. (12)

If we increase the temperature along the coexistence curve x
(1)

A,coex, one encounters a wet-
ting transition at temperature Tw (Fig. 1), where the state of the wall changes from PW
(T < Tw) to CW (T > Tw). This transition may be either second order [Fig. 1(a)] or first
order [Fig. 1(b)]. In the second-order case, xsurf

A diverges continuously when T → T −
w . In the

first-order case, there is a discontinuous jump in xsurf
A from a finite value at T −

w to ∞ at T +
w .

In the latter case, there is also a prewetting transition in the one-phase region [Fig. 1(b)].
Here, the thickness of the A-rich surface layer jumps from a smaller value to a larger (but
finite) value. This line of prewetting transitions ends in a prewetting critical point.

3.3 Lattice and Continuum Models for SDSD

A microscopic model for SDSD is obtained by associating Kawasaki spin-exchange kinetics
[47] with the Ising Hamiltonian in (7). In Kawasaki kinetics, randomly-chosen neighboring
spins are interchanged, keeping the overall composition of the mixture fixed.

Binder [48] has used the master equation for the Kawasaki-Ising model to derive evo-
lution equations for the order parameter 〈σi〉(t) = m(�r, t). These equations become analyt-
ically and numerically tractable in the mean-field (MF) approximation. Binder and Frisch
[49] have extended this approach to the semi-infinite Kawasaki-Ising model with a short-
ranged surface field confined to the surface layer, i.e., V (z) = 0 in (7). In this case, we
denote the order parameter as 〈σi〉(t) = mn( �ρ, t), where the surface lies at n = 0. Then,
n = 1 denotes the first layer of the Ising system; and n ≥ 2 labels the inner layers. The MF
dynamical model obtained by Binder and Frisch is as follows:

(i) n ≥ 3 (bulk case)

2τs
d

dt
mn( �ρ, t) = −6mn( �ρ, t) + mn−1( �ρ, t) + mn+1( �ρ, t) +

∑
 �ρ

mn( �ρ +  �ρ, t)

+ [1 − mn( �ρ, t)mn−1( �ρ, t)] tanh

{
J

kBT

[
mn+1( �ρ, t) + mn−1( �ρ, t)

+
∑
 �ρ

mn( �ρ +  �ρ, t) − mn( �ρ, t) − mn−2( �ρ, t) −
∑
 �ρ

mn−1( �ρ +  �ρ, t)

]}

+ [1 − mn( �ρ, t)mn+1( �ρ, t)] tanh

{
J

kBT

[
mn+1( �ρ, t)

+ mn−1( �ρ, t) +
∑
 �ρ

mn( �ρ +  �ρ, t) − mn( �ρ, t)
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− mn+2( �ρ, t) −
∑
 �ρ

mn+1( �ρ +  �ρ, t)

]}

+
∑
 �ρ

[1 − mn( �ρ, t)mn( �ρ +  �ρ, t)] tanh

{
J

kBT

[
mn+1( �ρ, t) + mn−1( �ρ, t)

+
∑
 �ρ′

mn( �ρ +  �ρ ′, t) − mn+1( �ρ +  �ρ, t)

− mn−1( �ρ +  �ρ, t) −
∑
 �ρ′

mn( �ρ +  �ρ +  �ρ ′, t)
]}

. (13)

Here, τs is the time-scale of spin-exchanges. In (13), exchanges of a spin at site �ρ in layer n

with spins in layers n−1, n+1, and the same layer n need to be considered. In the arguments

of the tanh functions, the difference of the effective fields acting on the exchanged spins is

found.

The kinetic equations near the wall are similar; one has to consider that a field H1 is

acting in layer 1, and that no spin exchange is possible into the layer n = 0 (the wall).

Hence, for

(ii) n = 2

2τs
d

dt
m2( �ρ, t) = −6m2( �ρ, t) + m1( �ρ, t) + m3( �ρ, t) +

∑
 �ρ

m2( �ρ +  �ρ, t)

+ [1 − m2( �ρ, t)m1( �ρ, t)] tanh

{
J

kBT

[
m3( �ρ, t) + m1( �ρ, t)

+
∑
 �ρ

m2( �ρ +  �ρ, t) − H1

J
− m2( �ρ, t) − Js

J

∑
 �ρ

m1( �ρ +  �ρ, t)

]}

+ [1 − m2( �ρ, t)m3( �ρ, t)] tanh

{
J

kBT

[
m3( �ρ, t) + m1( �ρ, t)

+
∑
 �ρ

m2( �ρ +  �ρ, t) − m4( �ρ, t) − m2( �ρ, t) −
∑
 �ρ

m3( �ρ +  �ρ, t)

]}

+
∑
 �ρ

[1 − m2( �ρ, t)m2( �ρ +  �ρ, t)]

× tanh

{
J

kBT

[
m3( �ρ, t) + m1( �ρ, t) +

∑
 �ρ

m2( �ρ +  �ρ, t)

− m3( �ρ +  �ρ, t) − m1( �ρ +  �ρ, t)

−
∑
 �ρ′

m2( �ρ +  �ρ +  �ρ ′, t)
]}

. (14)
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Finally, for
(iii) n = 1 (now only 5 neighbors are available for an exchange)

2τs
d

dt
m1( �ρ, t) = −5m1( �ρ, t) + m2( �ρ, t) +

∑
 �ρ

m1( �ρ +  �ρ, t)

+ [1 − m1( �ρ, t)m2( �ρ, t)] tanh

{
J

kBT

[
m2( �ρ, t)

+ H1

J
+ Js

J

∑
 �ρ

m1( �ρ +  �ρ, t)

− m3( �ρ, t) − m1( �ρ, t) −
∑
 �ρ

m2( �ρ +  �ρ, t)

]}

+
∑
 �ρ

[1 − m1( �ρ, t)m1( �ρ +  �ρ, t)]

× tanh

{
J

kBT

[
m2( �ρ, t) + Js

J

∑
 �ρ′

m1( �ρ +  �ρ ′, t)

− m2( �ρ +  �ρ, t) − Js

J

∑
 �ρ′

m1( �ρ +  �ρ ′ +  �ρ, t)

]}
. (15)

Binder and Frisch [49] linearized the MF model in (13)–(15) to obtain a linear partial
differential equation model, valid for T > Tc. They used this continuum model to study the
kinetics of surface enrichment, i.e., the growth of surface layers for a stable binary mixture
(at T > Tc), placed in contact with a wetting surface [50, 51].

In general, the continuum counterpart of the kinetic Ising model is expected to be more
amenable to theoretical analysis. The first successful coarse-grained model for SDSD was
proposed by Puri and Binder (PB) [52, 53], following earlier work by Ball and Essery [54].
The PB model can be obtained by suitable coarse-graining of (13)–(15). Here, we derive the
PB model from general considerations. For phase separation driven by diffusion, the bulk
order parameter obeys the Cahn-Hilliard-Cook (CHC) equation or Model B [55]:

∂

∂t
ψ(�r, t) = −�∇ · �J (�r, t)

= �∇ ·
[
D �∇μ(�r, t) + �θ(�r, t)

]

= �∇ ·
[
D �∇

(
δF
δψ

)
+ �θ(�r, t)

]
. (16)

Here, �J (�r, t) is the current; D is the diffusion constant; and μ(�r, t) is the local chemical
potential difference between species A and B. The Gaussian white noise �θ(�r, t) obeys the
relations

�θ(�r, t) = 0,

θi(�r ′, t ′)θj ( �r ′′, t ′′) = 2DkBT δij δ(�r ′ − �r ′′)δ(t ′ − t ′′),
(17)
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where the bars denote an averaging over the noise ensemble.
Replacing the free-energy functional from (9) in (16), we obtain

∂

∂t
ψ(�r, t) = �∇ ·

{
D �∇

[
−kB(Tc − T )ψ + kBT

3
ψ3

− J∇2ψ + V (z)

]
+ �θ

}
, z > 0. (18)

This fourth-order partial differential equation must be supplemented by two boundary con-
ditions wherever a surface is introduced. The boundary conditions are obtained as follows.
At the surface, the order parameter is expected to relax rapidly to its equilibrium value and it
can be treated as a non-conserved quantity. Therefore, we assume a relaxational (or Model A
[55]) kinetics for the order parameter at the surface. This yields (ignoring thermal fluctua-
tions) the boundary condition:

τ
∂

∂t
ψ( �ρ,0, t) = − δF

δψ( �ρ,0, t)

= [(q − 2)Js + J − kBT ]ψ + H1 + J

2

∂ψ

∂z

∣∣∣∣
z=0

+ Js∇2
‖ψ( �ρ,0, t), (19)

where τ sets the time-scale. The second boundary condition is the no-flux or zero-current
condition at z = 0:

0 =
{
D

∂

∂z

[
−kB(Tc − T )ψ + kBT

3
ψ3 − J∇2ψ + V (z)

]
+ θz

}
z=0

. (20)

At first sight, the use of a nonconserved boundary condition (19), for a model with con-
served order parameter may be surprising. However, these boundary conditions are justified
provided that the bulk correlation length ξb � a (with a the lattice spacing). This can be
rationalized in the framework of the linearized theory, reported in Ref. [49].

Let us rescale the model in (18)–(20) (for T < Tc) into dimensionless units. We use the
natural scales for the order parameter, space and time to introduce the following rescaled
quantities:

ψ ′ = ψ

ψ0
, ψ0 =

√
3

(
Tc

T
− 1

)
,

�r ′ = �r
ξb

, ξb =
[

q

2

(
1 − T

Tc

)]−1/2

,

t ′ = t

t0
, t0 = ξ 2

b

DkB(Tc − T )
,

�θ ′ = t0

ξbψ0

�θ,

V ′(z′) = 1

ψ0kB(Tc − T )
V (ξbz

′).

(21)
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Dropping the primes, we obtain the dimensionless CHC equation:

∂

∂t
ψ(�r, t) = �∇ ·

{
�∇

[
−ψ + ψ3 − 1

2
∇2ψ + V (z)

]
+ �θ

}
, z > 0, (22)

where

�θ(�r, t) = 0,

θi(�r ′, t ′)θj ( �r ′′, t ′′) = 2εδij δ(�r ′ − �r ′′)δ(t ′ − t ′′).
(23)

The noise amplitude is

ε = 1

3

(
Tc

T
− 1

)−2

ξ−d
b . (24)

The dimensionless boundary conditions are as follows:

τ0
∂

∂t
ψ( �ρ,0, t) = h1 + gψ( �ρ,0, t) + γ

∂ψ

∂z

∣∣∣∣
z=0

+ γ̃∇2
‖ψ( �ρ,0, t), (25)

0 =
{

∂

∂z

[
−ψ + ψ3 − 1

2
∇2ψ + V (z)

]
+ θz

}
z=0

, (26)

where τ0 = τD/ξ 2
b . The other parameters in the boundary conditions are

h1 = H1

ψ0kB(Tc − T )
, (27)

g = (q − 2)Js + J − kBT

kB(Tc − T )
, (28)

γ = J

2ξbkB(Tc − T )
, (29)

γ̃ = Js

ξ 2
b kB(Tc − T )

. (30)

Equation (25) rapidly relaxes ψ( �ρ,0, t) to its equilibrium value. If the equilibrium mor-
phology is CW, we can drop the lateral diffusion term in (25) because the order parameter
is uniform at the surface—in that case, we also set τ0 = 0. The surface potential and the
parameters h1, g, γ, γ̃ , ε determine the equilibrium phase diagram of the surface [12, 13,
56, 57].

We finally note that the boundary conditions in (25), (26) have also been derived by Diehl
and Janssen [38] from symmetry arguments as natural boundary conditions for Model B near
criticality. These arguments do not make any connections to parameters of a microscopic
lattice model, as done in (27)–(30). The model described above is appropriate for a semi-
infinite geometry. The extension to a thin-film (or any other) geometry is straightforward—
the boundary conditions in (19)–(20) have to be implemented on all surfaces with appropri-
ate parameters. In Sect. 4, we will present results for SDSD in a thin film.

The modeling described above has been in the context of diffusive dynamics, which is
appropriate for solid mixtures. However, many of the experiments on SDSD involve fluid
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mixtures, where hydrodynamic effects play an important role in the intermediate and late
stages of phase separation—as discussed in Sect. 2.2 [1–5]. Again, one could consider mi-
croscopic models, e.g., molecular dynamics (MD) simulations of mixtures near surfaces.
On a coarse-grained level, the interplay between phase separation and hydrodynamic effects
can be studied in the framework of Model H [55] at a surface. Model H consists of the
coupled dynamics of the order-parameter field and the fluid velocity field (which obeys the
Navier-Stokes equation). The boundary conditions on the order-parameter field are analo-
gous to those described above. However, these must now be supplemented with boundary
conditions on the velocity field, e.g., the velocity vanishes at the surface. There have been a
number of experimental and theoretical studies of SDSD in fluid mixtures, and these have
been reviewed by Tanaka [58] and Puri and Frisch [12, 13].

3.4 Interplay of Wetting and Phase Separation

Let us next discuss the kinetics of wetting-layer growth, and phase separation near the wet-
ting layer, for a semi-infinite geometry. At present, we use the continuum model in (22)–
(26). A comparison between lattice and continuum models will be presented in Sect. 3.5.
We consider power-law potentials:

V (z) = −V0, z ≤ 1,

= −V0

zn
, z > 1. (31)

The lower cut-off in the potential is chosen to avoid the singularity at z = 0. Power-law
potentials are common in the context of surface-molecule interactions, e.g., n = κ − d with
κ = 6 and 7 corresponds to cases with non-retarded and retarded van der Waals’ interac-
tions, respectively [59]. The short-ranged case is recovered in the limit n → ∞. The dimen-
sionless surface field is h1 = −V (0) = V0.

In Fig. 3, we show snapshots (frames on left) of a segregating binary mixture in d = 2
with average order parameter ψ0. The case with ψ0 = 0 [see Fig. 3(a)] corresponds to a mix-
ture with 50% A and 50% B, i.e., a critical quench. The simulation details are provided in
the figure caption. The surface at z = 0 is completely wetted by the component A (marked
in black), and shows a multi-layered morphology, i.e., wetting layer followed by depletion
layer, etc. This morphology is time-dependent and propagates into the bulk, as seen from the
laterally averaged profiles ψav(z, t) vs. z (frames on right). These are obtained by averaging
ψ(x, z, t) along the x-direction for a typical evolution, and further averaging over 200 in-
dependent runs. (This procedure is the numerical counterpart of the lateral-averaging which
yielded the density-depth profiles in Fig. 2.) The averaging procedure gives ψav(z, t)  ψ0

in the bulk, where the phase-separation profiles are randomly oriented. The wetting profiles
are characterized by the zero-crossings of ψav(z, t) − ψ0, and R1(t) and R2(t) denote the
first and second zeros, respectively.

Figure 3(b) shows the evolution for an off-critical quench with ψ0 = −0.4, corresponding
to a mixture with 30% A (the preferred component) and 70% B. Notice that the bulk (large z)
is characterized by a droplet morphology, which is standard for phase separation in an off-
critical system [60–63]. As in Fig. 3(a), there is a wetting layer of the preferred component at
the surface, followed by a depletion layer. At comparable times, the thickness of the wetting
and depletion layers is larger than in the case with ψ0 = 0.

Figure 3(c) shows SDSD in an extremely off-critical mixture, with ψ0 = −0.8 or 10%
A and 90% B. In this case, the thermal fluctuations are not sufficient to nucleate an A-rich
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Fig. 3 SDSD in an unstable AB mixture, evolving from a disordered initial condition. This consists of
random fluctuations about an average order parameter ψ0. The snapshots (frames on the left) are obtained
from an Euler-discretized version of (22)–(26) on a d = 2 square lattice of size Lx × Lz (with Lx = 400 and
Lz = 300). The mesh sizes in space and time are x = 1 and t = 0.03. Periodic boundary conditions are
applied at x = 0,Lx ; and flat boundary conditions are applied at z = Lz . The surface is located at z = 0 and
attracts A (ψ > 0, marked in black) through a power-law potential with n = 4 and V0 = h1 = 0.8. The other
parameter values are g = −0.4 and γ = 0.4, corresponding to complete wetting in equilibrium. The noise
amplitude is ε = 0.041, which corresponds to a deep quench with T  0.22Tc from (24). The frames on the
right show the corresponding laterally averaged profiles at dimensionless times t = 240,2400,24000. A solid
line is drawn at ψav = ψ0, the average value of the order parameter. Notice the two-step wetting profile at the
surface

droplet on the time-scale of the simulation. Thus, there is no bulk phase separation, but
there is still a rapid growth of the surface wetting layer. However, the behavior is qualita-
tively different from that for ψ0 = 0,−0.4, due to the absence of bulk phase separation. The
corresponding depth profiles show that the A-rich wetting layer is followed by a thick layer
which is moderately depleted in A.

Figure 3(d) shows the evolution for the case with ψ0 = 0.4, i.e., 70% A and 30% B. We
will discuss this case shortly, but let us first discuss the evolution of the wetting profiles in
Figs. 3(a)–(b), where the bulk undergoes phase separation. The depletion-layer thickness is
h(t) = R2(t) − R1(t). The growth of the wetting layer is driven by two factors:

(1) The gradient of the surface potential drives A to the wetting layer with a current
−V ′(R1).
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(2) The chemical potential is higher on the curved surface of bulk A-rich domains (of
size L) than on the flat wetting layer (of size ∞). This difference is estimated as σ/L,
and the corresponding current at the wetting layer is −σ/(Lh).

Thus the A-current in the z-direction is obtained as

Jz  −V ′(R1) − σ

Lh
. (32)

To estimate h(t), we assume that the wetting and depletion layers have an overall com-
position of ψ0 [64, 65]. Then

R2(t)  2

1 + ψ0
R1(t), h(t)  1 − ψ0

1 + ψ0
R1(t). (33)

Using the power-law potential in (31), and h(t) from (33), (32) yields [64, 65]

dR1

dt
= −Jz  nh1

R1
n+1 + σ

LR1

(
1 + ψ0

1 − ψ0

)
. (34)

The bulk length scale obeys the LS growth law L(t) = f (ψ0)(σ t)1/3, where the function
f (ψ0) is known analytically for |ψ0| → 1 [1], but only numerically for other values of ψ0

[60–62]. For n > 1, the first term on the RHS of (34) is dominant at early times, and the
second term is dominant at late times. Then, the growth regimes are

R1(t) ∼ (h1t)
1/(n+2), t � tc,

∼
√

(1 + ψ0)

f (ψ0)(1 − ψ0)
(σ t)1/3, t � tc. (35)

The crossover time tc is estimated by matching the early-time and late-time length scales as
(for n > 1)

tc ∼ h
3/(n−1)

1 σ−(n+2)/(n−1)

[
f (ψ0)(1 − ψ0)

(1 + ψ0)

]3(n+2)/[2(n−1)]
. (36)

The crossover between the potential-dependent regime and the universal LS regime
(R1 ∼ t1/3) can be extremely delayed, depending on the system parameters and mix-
ture composition. This explains the diverse growth exponents reported by various ex-
periments and numerical simulations [12, 13]. Figure 4(a) plots ln[R1(t)] vs. ln t for
ψ0 = 0,−0.2,−0.4,−0.6 and illustrates this crossover behavior.

Let us briefly remark on two other cases: (a) the power-law potential with n = 1, and
(b) the short-ranged potential V (z) = −V0 exp(−z/z0). For V (z) ∼ −z−1, both terms on the
RHS of (34) are comparable resulting in the LS growth law, R1(t) ∼ t1/3. On the other hand,
the short-ranged potential yields a logarithmic early-time growth, R1(t) ∼ z0 ln(h1t/z

2
0),

which rapidly crosses over to the LS law.
Next, consider very off-critical quenches (ψ0 � 0), where there is no bulk phase sepa-

ration [see Fig. 3(c)]. In this case, there are no bulk droplets which feed the wetting layer.
Thus, the chemical potential in the bulk is the uniform value μ0  ψ0

3 − ψ0. The current
to the wetting layer is −μ0/h, where h(t) is the scale on which the order parameter expo-
nentially saturates to its bulk value [see the depth profiles in Fig. 3(c)]. We assume a simple
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Fig. 4 (a) Plot of ln R1 vs. ln t for mixtures with ψ0 = 0,−0.2,−0.4,−0.6. The simulation details are
provided in the caption of Fig. 3. The straight lines have slopes 1/6 and 1/3, respectively. The exponent
φ = 1/6 arises for potential-dependent growth in the case of non-retarded van der Waals’ interactions with
n = 4 in d = 2 [see (35)]. (b) Plot of ln R1 vs. ln t for an extremely off-critical mixture with ψ0 = −0.8. The
straight line has a slope of 1/2, corresponding to diffusive growth

form for ψ(z, t) as follows [64, 65]:

ψ(z, t)  1, z < R1(t),

 ψ0 − B0e
−(z−R1)/h, z > R1(t), (37)

where B0 is a parameter. The composition constraint yields

h(t)  (1 − ψ0)

B0
R1(t). (38)

Then, (34) becomes

dR1

dt
 nh1

R1
n+1 + μ0B0

1 − ψ0

1

R1

= nh1

R1
n+1 + |ψ0|(1 + ψ0)B0

R1
. (39)

The corresponding growth regimes in this case are (for any value of n)

R1(t) ∼ (h1t)
1/(n+2), t � tc,

∼ [|ψ0|(1 + ψ0)B0

]1/2
t1/2, t � tc. (40)

The crossover from a potential-dependent growth law to a universal diffusive growth law
occurs at

tc ∼ h
2/n

1

[|ψ0|(1 + ψ0)B0
]−(n+2)/n

. (41)

In Fig. 4(b), we plot ln[R1(t)] vs. ln t for ψ0 = −0.8, showing the diffusive growth of the
wetting layer. For a short-ranged surface potential, the initial growth regime is logarithmic,
as before.

Finally, we consider off-critical compositions with ψ0 > 0, so that the majority compo-
nent wets the surface. Figure 3(d) shows a snapshot for the case with ψ0 = 0.4—now the
droplets are of the non-wetting component. A thin wetting layer is formed which barely
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grows, as seen in Fig. 3(d). This is because the bulk droplets now compete with (rather
than feed) the wetting layer, as the chemical potential for A is lower on the surface of the
drops. Thus, only the first term on the RHS of (34) is relevant, which gives R1(t) ∼ t1/(n+2).
Actually, the wetting-layer growth is even slower because the chemical-potential gradient
actually drives A into the bulk. Similar considerations apply for other values of ψ0 > 0,
when the bulk undergoes phase separation.

The extremely off-critical case (with ψ0 � 0) is similar to enrichment kinetics seen for
T > Tc [50, 51], provided no droplets are nucleated. If droplets are nucleated, the scenario
described for ψ0 = 0.4 applies again.

The discussion so far has followed the work of Puri, Binder et al. [52, 53, 64–66]. Let us
briefly discuss other important theoretical studies of this problem. Brown and Chakrabarti
[67] undertook a Langevin simulation of SDSD in d = 2 with both short-ranged and long-
ranged surface potentials. Their model was similar to the PB model described in Sect. 3.3,
but the parameter values correspond to a PW surface morphology. Brown and Chakrabarti
found that the wetting layer obeyed the LS growth law, R1(t) ∼ t1/3.

A comprehensive cell dynamical system [60–62] study of SDSD in d = 2,3 was reported
by Marko [68], who studied cases with both short-ranged and long-ranged surface potentials.
Marko studied domain morphologies and the laterally averaged profiles in both PW and
CW cases. For the PW morphology, he found results consistent with those of Brown and
Chakrabarti [67]. In the CW case, he found a drastic slowing down of wetting layer growth,
which is consistent with the potential-dependent growth regime in (35).

There have also been Langevin simulations of SDSD on patterned substrates by Karim
et al. [69], in conjunction with experiments on polymer blends. These studies suggested
ways of controlling the phase-separation morphology near the surface. Lee et al. [70] have
also adapted the PB model described in Sect. 3.3 to study the effect of fixed obstacles with
non-rectangular shapes (e.g., spheres or cylinders) on spinodal decomposition. In recent
work, Jaiswal and Puri [71] have studied SDSD at both chemically patterned and physically
patterned surfaces. They focused upon the interplay between the pattern length scale (which
is fixed) and the divergent length scales of wetting and phase separation.

Finally, Yan et al. [72, 73] have studied the formation of lamellar structures in two-step
SDSD in polymer blends. For polymer mixtures, various authors including Yan et al. have
used the Flory-Huggins-de Gennes free energy (rather than the ψ4 free energy) to model
phase separation. Yan et al. study SDSD subsequent to two-step quenches in both critical
and off-critical mixtures.

3.5 Comparison of Lattice and Continuum Models

In (13)–(15), we have presented MF dynamical equations for the Kawasaki-Ising model as
a lattice analog of Model B amended by free surfaces. The stationary solutions of these
equations correspond to the inhomogeneous molecular-field equations in equilibrium [49]:

mn( �ρ) = tanh

[
H eff

n ( �ρ)

kBT

]
, n = 1,2, . . . . (42)

Here H eff
n ( �ρ) is the “effective field” acting on the spin in layer n and site �ρ in this layer:

H eff
n ( �ρ) = J

⎡
⎣mn+1( �ρ) + mn−1( �ρ) +

∑
 �ρ

mn( �ρ +  �ρ)

⎤
⎦ + H, n ≥ 2. (43)
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For the surface layer (n = 1), one has an analogous equation, but H eff
1 ( �ρ) now accounts

for the missing neighbor (no spin exists for n = 0); the surface magnetic field H1; and the
change of interactions (Js �= J ) in the surface layer:

H eff
1 ( �ρ) = Jm2( �ρ) + Js

∑
 �ρ

m1( �ρ +  �ρ) + H + H1. (44)

It is also straightforward to obtain the associated free energy, which can be decomposed
into layer energies E(n) and layer entropies S(n) [49, 74]

F =
∑

n

[E(n) − T S(n)] . (45)

Here,
∑

n E(n) is found from (7) by replacing σi by its average 〈σi〉 = mn( �ρ) in the Hamil-
tonian. The entropy S(n) can be rewritten in terms of the familiar entropy of mixing:

S(n)

kBT
=

∑
�ρ

{
1 + mn( �ρ)

2
ln

[
1 + mn( �ρ)

2

]
+ 1 − mn( �ρ)

2
ln

[
1 − mn( �ρ)

2

]}
. (46)

Equations (42)–(44) can also be derived by minimizing the free energy, considering it as a
functional of the local magnetizations, δF/δmn( �ρ)|T ,H,H1 = 0. The free energy in (9) is just
the continuum approximation to (45).

This lattice theory is quantitatively equivalent to the continuum approximation only if the
bulk correlation length ξb is much larger than the lattice spacing a. This consideration carries
over to the dynamics: Equations (18)–(20) in the absence of noise (ε = 0) are equivalent
to (13)–(15) if ξb � a [49, 74]. Of course, molecular field theory for a nearest neighbor
Ising model, as described by (13)–(15) and (42)–(46) can be only accurate if one is not
considering the vicinity of the bulk critical temperature Tc.

In view of this situation, two ways out of this problem are conceivable. We could con-
sider (22)–(26) as a phenomenological model, treating the strength ε of thermal noise
in (23) as a variable parameter. Then, we treat the constants h1, g, γ, γ̃ as free parameters
of the problem, rather than giving them the values resulting from the Ising model Hamil-
tonian. Since the boundary condition in (25), resulting from the surface free energy term∫

dzδ(z)Fs{ψ( �ρ, z)}, contains a delta function under the integral in (9), particular care is
needed for the numerical treatment of this boundary condition. The discretization of (22)
can lead to inconsistent results, if one disregards the conditions for which (25) was derived.
This point has been emphasized by Henderson and Clarke [75, 76] and Fukuda et al. [75,
76]. These authors consider alternative methods of setting up the boundary conditions in
the Ginzburg-Landau (GL) model. These approaches capture the early-time dynamics accu-
rately, but would give similar results to ours at late times and divergent length scales.

Given the fact that fluctuations are irrelevant in the late stages of coarsening [1], one can
alternatively resort to the direct numerical solution of (13)–(15). In some cases, this is more
convenient than approximating this set of discrete equations by a continuum theory, which is
again discretized on a lattice for numerical solution. Of course, if we worked in the regime
very close to Tc where ξb � a, the continuum approach may save numerical effort, since
the extreme choice for the spatial discretization length x is x  ξb [52, 53]. Then, the
number of grid points of the discretized continuum model is much smaller than the number
of lattice points of the original lattice model, considering the same volume. However, as
argued above, for the present problem we are not really interested in the vicinity of Tc, and if
ξb  a, the direct numerical solution of (13)–(15) does not require more effort than a solution
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based on the CHC equation (22) [74]. The advantage of (13)–(15) is that the conservation
law for the concentration is treated exactly in all layers, and there is no ambiguity about the
physical meaning of the parameters (J, Js,H1) of the model [74, 77].

At the end of this section, we emphasize that it is also of interest to directly simulate
the full Kawasaki-Ising model with Monte Carlo methods. Unlike (13)–(15), then thermal
fluctuation effects would be fully included, and such a treatment would be preferable to
describe the initial stages of phase separation correctly, even though the numerical effort is
much larger than what is needed to solve (13)–(15). Since Monte Carlo studies have proven
to be most valuable for bulk Ising systems without surface effects to clarify the behavior of
spinodal decomposition from the early to the late stages [78–80], recently Majumder and
Das [81] have undertaken such study of the model in (7).

Another useful extension concerns a proper description of the processes on the atomistic
scale. Equations (13)–(15) are based on a direct exchange A ↔ B of particles at nearest
neighbor sites [47]. However, in real solid binary alloys such a direct exchange of atoms does
not occur, rather one expects vacancy-mediated exchange. Thus, there is a small fraction of
vacant sites on the lattice, and A or B particles can jump to nearest (or next nearest) vacant
sites only. Monte Carlo simulations have shown that spinodal decomposition effected by
this vacancy mechanism is qualitatively very similar to spinodal decomposition based on the
direct exchange mechanism [82]. The local molecular-field approach as described by (13)
has also been generalized to this more realistic, vacancy-mediated phase separation [83–85].
Since such models have not yet extended to treat the effect of surfaces, we shall not consider
them further here. Of course, at the coarse-grained continuum level of description (16), such
microscopic details do not make a difference.

4 Phase Separation in a Confined Geometry

Next, let us focus on the kinetics of phase separation in a confined geometry. As stated
earlier, the modeling of phase separation in confined geometries is a straightforward gener-
alization of the semi-infinite case [86]. The phase-separation dynamics of confined mixtures
is more complex due to the interaction of SDSD waves originating from different surfaces.
Inspite of the rich phenomenology, there have been relatively few theoretical investigations
of these problems [86–90], though there continue to be many experimental studies [91].

4.1 Equilibrium Morphologies in Thin Films

In Sect. 3.2, we gave a brief review of wetting phenomena at surfaces. This provides the
basis to understand the equilibrium behavior of binary mixtures in thin films [92–102]. If
the walls are neutral (i.e., they have the same attractive interactions with both A and B),
the critical concentration remains xcrit

A = 1/2. However, the critical temperature Tc(D) is
lowered [92, 93, 98, 99] relative to the bulk:

Tc − Tc(D) ∝ D−1/ν, (47)

where ν  0.629 [103, 104] is the critical exponent of the correlation length ξb of con-
centration fluctuations (in the universality class of the d = 3 Ising model). Clearly, critical
correlations at finite D can become arbitrarily large only in the lateral direction parallel
to the film. Thus, the transition at Tc(D) belongs to the class of the d = 2 Ising model.
The states below the coexistence curve of the thin film correspond to two-phase equilibria
characterized by lateral phase separation.
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When there is a preferential attraction of A to the walls, the phase diagram of the thin
film is no longer symmetric with respect to xA = 1/2. The shift of xcrit

A and the resulting
change of the coexistence curve, is the analog of capillary condensation of gases [96, 105]
for binary mixtures.

The coexisting phases in the region below the coexistence curve of the thin film are
inhomogeneous in the direction perpendicular to the walls [see Fig. 1(c)]. In the A-rich
phase, we expect only a slight enhancement of the order parameter ψ(z), which is defined
in terms of the densities nA(z), nB(z) as

ψ(z) = nA(z) − nB(z)

nA(z) + nB(z)
. (48)

In the B-rich phase, we expect pronounced enrichment layers. As D → ∞, their thickness
diverges for T > Tw but stays finite for T < Tw. In a film of finite thickness, the width of
A-rich surface layers also stays finite, e.g., for T > Tw, xsurf

A ∝ lnD for short-range surface
forces, while xsurf

A ∝ D1/3 for non-retarded van der Waals’ forces [98, 106]. Thus, the wetting
transition is always rounded off in a thin film. The prewetting line [Fig. 1(b)] does have an
analog in films of finite thickness D, for sufficiently large D. This transition splits into a two-
phase region at small xA, between the thin-film triple point and the thin-film critical point on
the B-rich side. This two-phase region corresponds to a coexistence between B-rich phases
with A-rich surface layers, both of which have finite (but different) thickness. As D → ∞,
the thin-film critical point on the B-rich side moves into the prewetting critical point, while
the thin-film triple point merges with the first-order wetting transition. On the other hand,
when D becomes small, the thin-film critical point and the thin-film triple point may merge
and annihilate each other. For still smaller D, the thin-film phase diagram has the shape
shown in Fig. 1(a), although one has first-order wetting in the semi-infinite bulk [Fig. 1(b)].

Finally, we comment on the state encountered below the bulk coexistence curve, but
above the coexistence curve of the thin film. When one crosses the bulk coexistence curve,
there is a rounded transition towards a layered (stratified) structure with two A-rich layers
at the walls and a B-rich layer in the middle. The temperature range over which this rounded
transition is smeared is also of order T ∝ D−1/ν around Tc. Hence, for large D, this seg-
regation in the direction normal to the walls may easily be mistaken (in experiments or sim-
ulations) as a true (sharp) phase transition. We stress that this is not a true transition—one
is still in the one-phase region of the thin film, although the structure is strongly inhomo-
geneous! The situation qualitatively looks like the concentration profile shown in the upper
part of Fig. 1(c). The difference is that, for D → ∞, the thickness of true wetting layers
scales sub-linearly with D, as noted above. However, for phase separation in the normal
direction which gradually sets in when one crosses the bulk coexistence curve, one simply
has A-rich domains of macroscopic dimensions (proportional to D) adjacent to both walls.
Unfortunately, the layers resulting in this stratified structure are often referred to as “wet-
ting layers” in the literature, although this is completely misleading. We reiterate that A-rich
wetting layers only form when a B-rich domain extends to the surface, which is not the case
here.

We also caution the reader that a picture in terms of A-rich layers at the walls and a B-rich
domain in the inside of the film is an over-simplification because the thickness of the domain
walls cannot really be neglected in the region Tc(D) < T < Tc, where a stratified structure
occurs in equilibrium. This is seen from the relation ξb ∝ (1 − T/Tc)

−ν , in conjunction
with (47), which shows that ξb ∼ O(D) at Tc(D). Thus, domains and domain walls are not
well-distinguished in the region under consideration, since the interfacial width is O(ξb)

[45, 46].
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When the interface between A-rich and B-rich domains is treated as a sharp kink (this
approximation is popular in theoretical treatments of wetting [38–45]), one might think that
a sharp wetting transition could still be described in terms of the vanishing of the contact
angle θ as T → T −

w [Fig. 1(c)]. However, it is clear that for a correct treatment the finite
width of the interface needs to be taken into account. Thus, for finite D, the contact angle
in Fig. 1(c) is ill-defined, and the transition between the two states depicted in Fig. 1(c) is
smooth, because a B-rich nonwet domain may also have a thin A-rich layer at its surface
(xsurf

A , in general, is nonzero). One should also note that the contact “line” is distorted by
line tension effects when it hits the wall, and the line tension of the interface at the wall
would also modify (12) [107–110]. The difficulty of estimating the contact angle in finite
geometries is well-known from studies of nanoscopic droplets [111–114].

The central conclusion in this subsection is that in the final equilibrium to which, for
times t → ∞ and for small D, the thin film evolves, there is no fundamental difference
whether or not we are above or below the wetting transition temperature, but it matters
whether T < Tc(D) or T > Tc(D).

4.2 SDSD in Thin Films

In recent work, Das et al. have undertaken Langevin [115] and MD [116, 117] studies of
phase separation of AB mixtures in thin films with two parallel surfaces at z = 0,D. Exper-
imental interest in this problem has focused on two cases:

(a) symmetric films, where the walls attract the same component of the mixture; and
(b) antisymmetric films, where the walls attract different components.

Here, we will focus on the case of symmetric films with identical surfaces. For this case, an
appropriate potential is

V (z) = −V0

[
1

(z + 1)n
+ 1

(D + 1 − z)n

]
. (49)

Here, we have removed the power-law singularity at z = 0,D by assuming that the potential
originates behind the surfaces.

In this subsection, we focus on continuum and molecular-field models of phase separa-
tion in thin films. The appropriate continuum model consists of (22), (25)–(26) in conjunc-
tion with the boundary conditions at z = D. For completeness, we present these boundary
conditions here:

τ0
∂

∂t
ψ( �ρ,D, t) = h1 + gψ( �ρ,D, t) − γ

∂ψ

∂z

∣∣∣∣
z=D

+ γ̃∇2
‖ψ( �ρ,D, t), (50)

0 =
{

∂

∂z

[
−ψ + ψ3 − 1

2
∇2ψ + V (z)

]
+ θz

}
z=D

. (51)

We use this model to study SDSD in a film with the power-law potential in (49) with
n = 3. In Fig. 5, we show evolution snapshots and (xz)-cross-sections for films with D = 5
(frames on left) and D = 10 (frames on right). We consider the case of a critical quench
with ψ0 = 0. The potentials were chosen with V0 = 0.325 for D = 5 and V0 = 0.11 for
D = 10, which correspond to the PW state in equilibrium. (Though there is no sharp wetting
transition in the thin film, we use the terms partially wet or PW and completely wet or CW in
analogy with the semi-infinite system.) A metastable layered structure forms at early times,
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Fig. 5 SDSD in a symmetric
thin film. These results were
obtained from an
Euler-discretized version
of (22)–(23) on a lattice of size
L2 × D with L = 256. The
discretization mesh sizes were
x = 1.0 and t = 0.02. The
boundary conditions in (25)–(26)
(with τ0 = 0) were implemented
at z = 0,D. Periodic boundary
conditions were imposed in the
x- and y-directions. The
parameter values were g = −0.4
and γ = 0.4. The surface
potential was of the form in (49)
with n = 3, and V0 = 0.325 (for
D = 5) and V0 = 0.11 (for
D = 10). The noise amplitude
was ε = 0.327, which
corresponds to a quench with
T  0.38Tc from (24). These
parameter values correspond to a
PW equilibrium morphology. (a)
Evolution snapshots for a critical
binary mixture with D = 5
(frames on left) and D = 10
(frames on right). The A-rich
regions (ψ > 0) are marked
black, and the B-rich regions
(ψ < 0) are unmarked.
(b) Perpendicular cross-sections
of the snapshots in (a) at y = L/2
in the (xz)-plane

since the kinetics of surface enrichment [50, 51] is much faster than the kinetics of phase
separation. This layered structure is broken by spinodal fluctuations on longer time-scales,
and the system forms domains which coarsen in directions parallel to the surface. We stress
that the layered state can be very long-lived, and may be misinterpreted as evidence for the
formation of wetting layers in experiments.

As before, laterally averaged profiles are obtained by averaging ψ(x, y, z, t) along the
x- and y-directions, and then further averaging over 5 independent runs. In Fig. 6, we show
the depth profiles corresponding to the evolution for the D = 10 case in Fig. 5. The profile at
time t = 10 shows the formation of two symmetric SDSD waves, which propagate towards
the center of the film. The t = 100 profile shows the metastable layered state that has origi-
nated from these waves [see Fig. 5(a)]. This structure persists till t  1000. Finally, spinodal
fluctuations break this structure and the averaged profile at t = 20000 is almost flat. Since
a weak surface field amplitude (V0 = 0.11) was chosen in this case, there is only a slightly
A-rich region [ψav(z, t) > 0] near the walls and, therefore, only a slightly A-poor region
[ψav(z, t) < 0] at the center.

It is also interesting to study (xy)-cross-sections of the evolution snapshots in Fig. 5. In
Fig. 7, we show the cross-sections at z = 5 for D = 10. For early times (t = 100) the central
region is strongly depleted in A due to the formation of the layered structure. The resultant
morphology corresponds to a highly off-critical composition with droplets of A in a matrix
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Fig. 6 Laterally averaged
profiles for the evolution of the
D = 10 film depicted in Fig. 5.
We show profiles at the
dimensionless times
t = 10,100,1000,20000

Fig. 7 Cross-sections of the
snapshots for the D = 10 film in
Fig. 5(a). The cross-sections are
taken parallel to the surfaces at
z = 5

of B. At later times (t = 20000), the central region has almost equal amounts of A and B.
However, there is still a small depletion in A (see Fig. 6), and hence the growth morphology
still contains droplets of A.

Let us next focus on the layer-wise correlation function, which is defined as [86]

C‖( �ρ, z, t) = L−2
∫

d �σ [〈ψ(�σ , z, t)ψ(�σ + �ρ, z, t)〉 − 〈ψ(�σ , z, t)〉〈ψ(�σ + �ρ, z, t)〉], (52)

where the angular brackets denote an averaging over independent runs. As the system is
isotropic in the (xy)-plane, C‖ does not depend on the direction of �ρ. The z-dependent
lateral length scale L‖(z, t) ≡ L(z, t) is defined as C‖(ρ = L,z, t) = C‖(0, z, t)/2. For con-
venience, we denote C‖(ρ, z, t) as C(ρ, t) in the following discussion. In Fig. 8, we plot the
scaled correlation functions C(ρ, t)/C(0, t) vs. ρ/L for D = 10. Notice that these correla-
tion functions do not exhibit dynamical scaling as they correspond to qualitatively different
morphologies (see Fig. 5). Thus, for t = 1000, the layered structure has not yet broken
up, while lateral phase separation has occurred by t = 20000. Of course, dynamical scal-
ing is recovered subsequent to the formation of well-formed laterally segregated domains
(t ≥ 10000 in this case).

We have also studied the time-dependence of the lateral domain size for the films with
D = 5,10 [115]. While the asymptotic growth is consistent with the expected LS growth law
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Fig. 8 Layer-wise correlation
functions for the D = 10
evolution depicted in Fig. 5. We
plot data for C(ρ, t)/C(0, t) vs.
ρ/L for z = 0 (wall) and z = 5
(center) at t = 100,1000,20000.
The layer-wise length-scale
L(z, t) is defined as the distance
over which C(ρ, t) has decayed
to 1/2 its maximum value (which
arises at ρ = 0)

L(t) ∼ t1/3, which describes bulk domain growth, the early-time dynamics is complicated.
The early-time data corresponds to the growth of bulk-like domains before the layered struc-
ture has formed. The spinodal fluctuations originate in the central region (z  D/2) where
the surface field is not felt, and propagate to the surface (z = 0). The break-up of the layered
structure is characterized by the non-monotonic behavior of L(z, t) vs. t .

Next, we consider the case where the surfaces have a CW morphology in equilibrium.
In Fig. 9, we show evolution snapshots and (xz)-cross-sections for the CW case. The corre-
sponding potential strengths were V0 = 0.45 for D = 5, and V0 = 0.275 for D = 10. Again,
the system forms a metastable layered structure at early times, which is broken up by spin-
odal fluctuations. (For very strong surface fields, the layered structure actually corresponds
to an equilibrium state.) However, in this case, the B-rich regions are encapsulated by A.
The asymptotic dynamics is characterized by the lateral coarsening of these encapsulated
domains. The laterally averaged profiles (Fig. 10) again show that the system exhibits strong
layering at early times (compare with Fig. 6). The depth profiles become softer at later times,
but there remains a strong surface enrichment in A.

Figure 11 is a scaling plot of C(ρ, t)/C(0, t) vs. ρ/L for D = 10, and is analogous to
Fig. 8. (We do not show data for the z = 0 case here as the surface is always A-rich and does
not exhibit interesting pattern dynamics.) The behavior in the film center (z = 5) is similar
to the PW case, i.e., there is no dynamical scaling for the time-window shown. This can
be understood in the context of the evolution dynamics shown in Fig. 9(b). For the D = 10
case, the morphologies exhibit a crossover behavior from the layered state to the asymptotic
CW state for t = 100,1000,20000. For t ≥ 20000, we expect to recover dynamical scaling.

In this case also, the behavior of L(z, t) vs. t was found to exhibit a non-monotonic
behavior [115]. The non-monotonic behavior again reflects the formation and break-up of
a long-lived layered structure. The break-up of the layered structure leads to the growth of
laterally segregated domains. This regime is expected to show LS growth in the late stages.

Finally, we compare the above continuum approach (based on a GL free-energy func-
tional) with the molecular field theory [based on the appropriate generalization of (13)–(15)].
Since the continuum model is expected to reproduce the lattice theory if ξb � a, we present
here the comparison for the borderline case ξb/a = 1. For the Ising model defined in (7),
this means a choice of temperature kBT /J = 5.57 [74]. Figure 12(a) shows the evolution of
the averaged order parameter profiles across the film, comparing the continuum and lattice
models for a choice of parameters where the models should agree precisely. Indeed one finds
that the time evolution of the profiles according to both methods displays a great similarity.
In fact, at ξb/a = 2 (reached for kBT /J = 5.875) the curves according to both methods are
already barely distinguishable [74]. However, at somewhat lower temperatures than shown
here (e.g., ξb/a = 1/2 which is reached for kBT /J = 4.75), there are already significant
differences between the lattice approach and the continuum approach [see Fig. 12(b)].
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Fig. 9 Analogous to Fig. 5, but
for a symmetric film with a CW
morphology. The potential
strengths were V0 = 0.45
(for D = 5) and V0 = 0.275
(for D = 10)

Fig. 10 Analogous to Fig. 6, but
for the CW evolution depicted in
Fig. 9

Of course, the advantage of the lattice approach is that it allows a study of SDSD for
the Ising films at temperatures such as kBT /J = 4.0 (Figs. 13–15), where the GL approach
would no longer have any quantitative connection to the parameters of the Ising model. Fig-
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Fig. 11 Analogous to Fig. 8, but
for the CW evolution depicted in
Fig. 9. In this case, the z = 0
layer is always A-rich

Fig. 12 (a) Plot of ψav(n) vs. n for an Ising thin film with 30 layers (labeled by n). The parameter values
are Js = J, kBT/J = 5.57,H1 = HD = 0.1J . The open symbols correspond to the lattice model, while the
closed symbols denote the Ginzburg-Landau model. The initial configuration was a random spin configuration
in both cases. Three times after the quench are shown, as indicated (b) same as (a), but for kBT/J = 4.75.
(From Das et al. [74])

ure 13 shows that one still sees the hallmarks of SDSD with the lattice model. From the ini-
tial state (broken horizontal line showing ψav(n, t = 0) = 0) the system develops “damped
concentration waves”, driven by the growth of the order parameter at the surfaces, but the
two waves interact in the center of the film. The profile finally resembles that of a layered
structure. However, a glance at cross-sectional snapshots (Fig. 14) shows that the system
exhibits lateral phase separation, with domains that steadily coarsen as the time increases,
and Figs. 13(a), (b) only reflect the average surface enrichment (and adjacent depletion) ef-
fects when one averages over all these domains. For the thinnest film that has been studied
(the distance D = 9 lattice spacings between the first and last layer means there are only
10 planes n = 1, . . . ,10), it was possible to reach the very late stages. Here, the character-
istic length scale of phase separation L(n, t), defined in terms of the first zero crossing of
Cn(ρ, t)/Cn(0, t) in Fig. 15(a), exceeds D already. On this length scale, the order-parameter
variation in the direction perpendicular to the walls is no longer important, and basically
Figs. 14, 15 show spinodal decomposition in d = 2. One also finds that the length scale
L(n, t) for times t < 103 increases with time only rather slowly, and the behavior is not de-
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Fig. 13 (a) Layer-wise averaged order parameter profiles, ψav(n) vs. n, for four different times in the
cases (a) D = 19,L = 128, and (b) D = 9,L = 128. The parameter values are kBT/J = 4.0, Js/J = 1,
H1 = HD = 0.1J . These results were obtained by solving (13)–(15) numerically with time unit τs = 1, time
step t = 0.1. We averaged over 5 independent runs. (From Das et al. [74])

Fig. 14 Cross-sectional snapshots of the system with D = 9 (i.e., 10 layers), L = 128,H1/J = HD/J = 0.1,
Js/J = 1, kBT /J = 4.0 for (a) the (xz)-plane and (b) the (xy)-plane in the center of the thin film (n = 5).
(From Das et al. [74])

scribed by power law growth yet. Only for t > 103 does one find [74] a behavior of L(n, t)

roughly consistent with the LS law, expected to hold for the present model [1, 2].

4.3 Molecular Dynamics Simulation Results for a Confined Binary Lennard-Jones Mixture

As discussed in Sect. 2.2, hydrodynamic flows can drastically affect phase-separation kinet-
ics. We have used MD techniques to study phase separation in a fluid mixture confined to a
thin film geometry [116, 117]. The static behavior of this model is very similar to the behav-
ior of a confined Ising system, but we expect the dynamical properties to be very different.
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Fig. 15 (a) Correlation function Cn(ρ, t)/Cn(0, t) for the spins in layer n = 5 for the same system as in
Fig. 14, and four times as indicated. (b) Fourier transform Sn(k, t) of Cn(ρ, t) plotted vs. k, resolved with
respect to individual layers for the same system as shown in Fig. 14, and the time t = 10000 after the quench.
The dashed line corresponds to the d = 2 Porod law, Sn(k, t) ∝ k−3. (From Das et al. [74])

Hence it is of interest to compare what is still similar to the behavior of Ising models and GL
models, as considered above, and elucidate the consequences of hydrodynamics for phase
separation in thin films. Recall that many of the experiments mentioned in the introduction
[12, 13, 15–18] have been carried out for thin fluid polymer films.

We consider [116, 117] NA A-atoms and NB B-atoms (NA = NB = N/2) in a L×L×D

box with periodic boundary conditions in x- and y-directions. There are pairwise interac-
tions between the particles given by standard Lennard-Jones potential:

u(rij ) = 4εαβ

[(
σ

rij

)12

−
(

σ

rij

)6

+ C

]
, rij ≤ rc = 2.5σ. (53)

Here, rij = |�ri −�rj | is the distance between the (point-like) particles i, j , α = A or B, and the
constant C is chosen such that the potential is continuous for rij = rc. The interaction energy
scales are chosen as εAA = εBB = ε while εAB = ε/2, so the energy controlling unmixing is
ε = (εAA + εBB)/2 − εAB = ε/2. The particle density is chosen as n = N/(L2D) = 1,
choosing σ = 1 as the unit of length in this subsection. The walls at z = 0 and z = D are
characterized by the potential:

uw(z) = 2πnσ 3

3
εw

[
2

15

(
σ

z′

)9

− δα

(
σ

z′

)3
]

, (54)

with εw = 0.005ε and δA = 1, δB = 0 (attractive forces act on A-particles only). The coordi-
nate z′ = z + σ/2 corresponds to the left wall at z = 0, and z′ = D − z + σ/2 to the right
wall at z = D. Standard velocity Verlet algorithms are used to integrate Newton’s equa-
tion of motion, and temperature is kept constant by using a Nosé-Hoover thermostat [118].
For bulk phase behavior and dynamical properties of this symmetric binary model, without
surfaces, see [119–121].

At the critical concentration x = NA/N = 1/2, quenches from T0 = 5 (choosing units
such that ε/kB = 1) to T = 1.1 are performed (in the bulk, Tc = 1.638 for this model).
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Fig. 16 Laterally averaged order parameter profiles, ψav(z, t) vs. z for (a) D = 10,L = 64, and
(b) D = 5,L = 128. The times shown are t = 80,800,4000 and 8000, choosing standard MD time units
τ = (mσ 2/48a)1/2 = 1/

√
48. (From Das et al. [116, 117])

At T0, attractive parts of both u(rij ) and uw(z) have little effect, so the initial distribution
in the dense fluid corresponds to a random mixture. Figure 16 shows the evolution of the
profiles of the local order parameter:

ψav(z, t) = nA(z, t) − nB(z, t)

nA(z, t) + nB(z, t)
, (55)

defined in terms of the local densities nA(z, t), nB(z, t) of A, B particles averaged in slices
of width z = 0.2 in layers L × L × z parallel to the walls. Clearly, the MD results
are qualitatively similar to both the Ginzburg-Landau counterparts (Figs. 6, 10) and the
lattice model (Fig. 13). Of course, a quantitative mapping cannot be expected, since the
local packing of particles in a fluid clearly differs from the arrangement of a simple cubic
Ising model. Further, the quench depths and wall potentials are also somewhat different.
In spite of differences in detail, both the average profiles and the configuration snapshots
(compare Fig. 17 with Fig. 14) are similar.

We again study the layer-wise order-parameter correlation function, and the correspond-
ing length scale L(z, t). For the times available in the simulation, no dynamic scaling was
found. This lack of dynamical scaling correlates with the fact that the length L(z, t) did not
exhibit a simple power law behavior. For t ≤ 500 MD time units, L(z, t) is rather small, of
the order of a few Lennard-Jones diameters only. At later times a crossover to a behavior
compatible with L(z, t) ∝ t2/3 occurs. A theoretical explanation for this exponent in this
regime of scales for length and times is lacking, however.

Although binary liquid mixtures that undergo phase separation in thin film geometry can
exhibit growth of large scale structures with a characteristic length L(z, t) � D only in two
directions (x, y) parallel to the walls, one should not expect that the growth kinetics is iden-
tical to that of a strictly two-dimensional system. As we have discussed in Sect. 2.2, in d = 3
dimensions the coarsening of interconnected domain structures can proceed by a mechanism
where an inhomogeneous velocity field is formed. In thin films, however, any velocity field
must satisfy hydrodynamic boundary conditions at the walls. As is well-known, a standard
formulation of such boundary conditions in thin fluid films between parallel solid walls
(usually considered for the case of laterally uniform Poisseuille flow) uses the concept of a



80 K. Binder et al.

Fig. 17 (a) Snapshots of the concentration distribution in cross-sectional slices of linear dimensions
σ × L × D through the films for D = 5, centered at x = D/2. The A-particles are marked black, while
the B-particles are not shown. The times of the snapshots are indicated. (b) Same as (a), but for a L × L × 5
cross-sectional slice centered at the mid-plane (z = D/2) of the film. (From Das et al. [116, 117])

“slip length”, which in turn strongly depends on the wettability conditions of the walls for
the binary fluid mixture. Depending on the film thickness, hydrodynamic mechanisms of
coarsening hence are expected to be modified. In view of these speculative considerations,
Das et al. [116, 117] made a comparative study of L(z, t) for three choices of film thickness.
Indeed it was found that the onset of power law growth (with an effective exponent near 2/3)
occurs for D = 20 much faster (at about t = 500 MD time units) than for D = 5 (where
it occurs only at about t = 3000 MD time units), in the central region of these films (near
z = D/2). This observation indicates a gradual speed-up of the coarsening as D increases.
Clearly, it would be very interesting to actually study the statistical properties of the fluc-
tuating velocity filed during phase separation in the film, resolved as function of z and t .
However, due to the very significant statistical effort needed for such a study this must be
left to future work.

5 Summary and Discussion

In this paper, we reviewed the state of the art of simulations of surface-directed spinodal
decomposition (SDSD) in binary mixtures. There has been extensive use of a phenomeno-
logical Ginzburg-Landau (GL) model, which corresponds to the Cahn-Hilliard-Cook (CHC)
equation in the bulk, amended by suitable boundary conditions at the surface(s) [52, 53].
These boundary conditions are motivated by justifying the model as the continuum limit for
the Kawasaki spin exchange Ising model on the simple cubic lattice, treating the latter in a
local molecular field approximation. While in the latter the order parameter is a strictly con-
served quantity, and apart from the molecular-field approximation no further approximations
are made, the GL model is based on a simplified treatment of the boundary condition [(25),
or even its static limit]. However, at least for the case of thin films confined symmetrically
between equivalent walls, the GL treatment is found to be rather accurate if the correlation
length exceeds the lattice spacing of the model.
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A fairly general finding is that, near the surface of a semi-infinite system (as well as
near both surfaces of a thin film), the growth of enrichment and depletion layers of the
preferred phase shows a complicated interplay with the domain growth in the regions fur-
ther away from the walls. As a consequence, the length scale L(z, t), characterizing the
linear dimension of A-rich domains a distance z from the surface, does not show a sim-
ple power-law behavior at the times accessible to our numerical simulations. The standard
Lifshitz-Slyozov-like growth [L(z, t) ∝ t1/3] seems to take over only at very late times. Very
interesting behavior also occurs for strongly off-critical quenches, where no phase separa-
tion occurs in the bulk, while wetting layers grow at the surfaces [see Fig. 3(c)]. The details
of this behavior differ for long-range surface forces from the logarithmic growth law that
is found for short-range surface forces. However, even now the behavior is well-understood
only for the cases where either the surface is in the complete wetting regime, so layers can
grow at the walls without the need of overcoming a nucleation barrier, or for the case where
the system is brought into a state where the system is unstable in the bulk, so that bulk
spinodal decomposition occurs and is affected by the surface effects.

Only recently the case where phase separation at walls and in thin films starts by the
formation of critical nuclei has received attention, but this work has focused on free energy
barriers rather than on the kinetics of phase separation [113, 114, 122]. A study of segrega-
tion kinetics in confined geometries triggered by heterogeneous nucleation of wall-attached
droplets remains to be done in future work. Also the consequences of the gradual transition
from spinodal decomposition to nucleation in the bulk, when the state to which the quench
leads is located close to the spinodal curve, remains to be elucidated for SDSD.

This review has described the analytical arguments on the subject, and has also men-
tioned experiments very briefly. The reason for the lack of detailed discussion of exper-
iments is simply that the molecular field kinetic Ising model, as well as the GL model,
are only idealized caricatures of experiments, where normally thin fluid films of two kinds
of (entangled) polymers on a substrate were considered [15–18]. These systems are (often
rather asymmetric) fluid binary mixtures, and also the two surfaces (the bottom surface be-
ing a solid substrate, the top surface being a smooth interface against air) are non-equivalent.
First steps to simulate fluid binary mixtures confined by symmetrical walls already showed
that hydrodynamic effects change the behavior substantially, but the studied system (binary
Lennard-Jones mixture with a strictly symmetric phase diagram in the bulk) is not a realistic
model for such a polymer mixture. Clearly, many further refinements of the studied mod-
els will be necessary, before a serious attempt to compare the simulations to experiment is
warranted.
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