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1. Introduction 

One of the most remarkable and fruitful discoveries in modern science was made 
when Max von Laue applied the principles of the wave-theory to find the effect of 
passage of a pencil of X-rays through a crystalline plate and arrived at 
conclusions which were strikingly confirmed by experiment. When the pencil 
after traversing the crystal is received on a photographic plate, we find recorded 
on the plate, as predicted by Laue, numerous spots in geometric array, their 
positions being closely related to the internal atomic architecture of the crystal 
and the direction of passage of the incident X-rays. The location of the spots in the 
Laue pattern is determined by the consideration that the secondary radiations 
from the atoms in the crystal co-operate in the directions indicated by the spots 
by reason of an agreement in phase, such agreement being itself a consequence of 
the arrangement of the atoms in a regular space-lattice. The Laue conditions 
which express this situation are mathematically equivalent to the Bragg formula; 
the latter follows very simply from the consideration that the crystal is a regularly 
stratified medium and should, therefore, selectively reflect the radiations falling 
on its strata at an angle of incidence appropriate to their spacing and to the 
wavelength of the X-rays in accordance with a general principle familiar to 
students of optics. 

Laue's discovery was a vindication of the wave-theory and was naturally 
regarded as finally settling the issue, then being keenly debated, whether X-rays 
were corpuscles or waves, in favour of the latter hypothesis. Actually, however, 
the position is not quite as simple as this. As we know at the present time, there is 
an essential duality in the behaviour of the fundamental physical entities. They 

*The new type of X-ray reflection forming the subject of this paper was first described and an 
explanation of it on the basis of the quantum theory given in a series of papers published earlier this 
year by Raman and Nilakantan in these Proceedings and elsewhere. The present report is intended to 
be a self.contained theoretical exposition of the subject and incorporates the ideas already expounded 
in the papers by Raman and Nilakantan, as also the fuller mathematical treatment by Raman and 
Nath published in these Proceedings for July 1940. Recent experiments by Nilakantan with diamond 
completely establish the quantum theoretical explanation of the phenomenon. 
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have a wave-aspect as well as a particle aspect, and these two characters are 
complementary and not contradictory. To get a complete picture of the 
observable phenomena, therefore, we can ignore neither one aspect nor the other. 
It is thus necessary to bear in mind the particle aspect as well as the wave-aspect of 
the Laue phenomena, and indeed, when we approach the subject from this point 
of view, the possibility of there being two distinct kinds of X-ray reflection 
becomes apparent. From the particle point of view, the X-ray reflections of the 
Laue type are elastic collisions of the photon with the crystal lattice, while from 
the wave-point of view, they arise from the fact that the crystal has a static 
periodicity of structure. This suggests that a second type of X-ray reflection in 
crystals should be possible, that from the particle stand-point is an inelastic 
collision in which the photon gives up a part of its energy during the encounter 
and excites the vibrations of the crystal lattice, while from the wave-standpoint, 
the reflection is due to the dynamic stratifications of density arising from such 
vibrations of the lattice. From either point of view, a change offrequency is seen to 
be a necessary feature of the second type of X-ray reflection; we may, therefore, 
refer to it as the quantum or modified reflection to distinguish it from the classical 
or unmodified reflections. 

2. Theory of modified reflection 

We may now proceed to consider a little more closely the mechanism of the 
modified X-ray reflection and its relation to the structure of the crystal. The 
classical or unmodified X-ray reflections arise from the fact that the electron 
density in the crystal is a periodic function of the co-ordinates in three 
dimensions. The intensity of the reflection by any particular set of crystal planes is 
determined by a quantity known as its structure amplitude which specifies the 
variation of the mean electron density over a plane when such plane is moved 
normally to itself through the crystal. The positions occupied by the atoms in the 
unit cdl of the lattice are the most importint factor in determining the structure 
amplitudes, though other factors such as the number of electrons and the 
distribution of electron density in each atom also enter into it. 

With scarcely an exception, the actual crystals with which we are concerned 
contain more than one atom per unit cell, indeed usually several atoms of the 
same or of different kind. These atoms are held together in their places as the 
result of forces acting between each atom and its neighbours. Each individual 
atom is capable of vibrating about its position of equilibrium, but in view of the 
existence of the interatomic forces, it is more appropriate to consider the crystal 
lattice as a whole and to fix our attention on some one or another of its possible 
modes of vibration. These modes fall into two divisions, namely, the vibrations of 
the acoustic type and those of the optical type. The vibrations of the acoustic class 
lie for the greater part in the lower ranges of frequency, while the optical 

I 
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vibrations have frequencies falling in the infra-red region of the spectrum. The 
character of the movements involved in these two classes differs essentially. The 
acoustic vibrations consist chiefly of translatory movements of the unit cells of the 
lattice relative to each other, while in the vibrations of the optical class the atoms 
within each unit cell oscillate relatively to each other about their common centre 
of gravity. The interatomic displacements within the unit cells for the acoustic 
vibrations and the translations of the unit cells for the optical vibrations are in 
each case of relatively minor importance. 

We may now fix our attention on the optical vibrations of the crystal lattice 
and consider their effect on the structure amplitudes responsible for the X-ray 
reflections. In the first instance, we may make the simplifying assumption that the 
oscillation in all the unit cells is of the same frequency, amplitude and phase. It is 
evident that with this restriction, the atomic vibrations do not affect the 
uniformity of the crystal structure; the spacing and orientations of the crystal 
planes remain completely unaltered. The structure amplitudes of the crystal, 
however, alter periodically with time to an extent depending on the magnitudes 
and directions of the atomic displacements of which only the components normal 
to the spacing under consideration are effective. It is evident that the electronic 
density in the crystal would in these circumstances exhibit two different kinds of 
space variation, a static structure amplitude which is not a function of time, and a 
dynamic structure amplitude which varies with time and has the same frequency 
as the optical vibration of the crystal lattice. If the vibration of the lattice is 
sufficiently intense, the existence of a dynamic structure amplitude should 
evidently result in an alteration of the static structure amplitude, in most cases 
making it smaller than what it would be in the absence of such vibration. 

From optical theory, it is evident that a dynamic structure amplitude would 
result in sharply defined monochromatic reflections in the same way as a static 
structure amplitude, except that the reflections would now occur with a change of 
frequency. Since under the assumptions made, the dynamic structure amplitudes 
do not differ from the static ones in respect of their spacings and orientations, the 
geometric conditions necessary for the observation of the static and dynamic 
reflections would also be identical, in other words, these reflections would either 
appear or not appear together in the same circumstances. If, for instance, the 
incident X-radiation be monochromatic, neither the modified nor the unmodified 
reflection would be observable unless the Bragg condition is satisfied. 

3. Geometric law of modified reflection 

We may now remove the restrictive assumption made that the atomic oscillations 
occur in identically the same phase in all the unit cells comprising the crystal. The 
oscillation will be assumed to have the same frequency and amplitude every- 
where, but its phase will be regarded as variable from cell to cell. While this 
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Figure 1 

variation of phase would not affect the static structure amplitudes giving the 
unmodified reflections, it would profoundly influence the dynamic structure 
amplitudes and the effects produced by them. This is very readily seen from the 
accompanying diagram (figure I), in which the thin lines represent a set of crystal 
planes and therefore also the planes among which the time-variations of electron 
density would be the same if the phase of the atomic vibrations were everywhere 
identical. The heavy lines crossing these at an angle represent the planes along 
which the phase of the atomic vibrations is constant. It is then evident that the 
dynamic stratifications of electron density would be along the diagonal planes 
cutting through the crystal spacings and the phase wave-fronts of the atomic 
vibration. These diagonal planes are indicated by the dotted lines in the figure, 
and their spacing and orientation are given by the vectorial formula: 

Here d* is the spacing of the dynamic stratifications of electron density, d is the 
static crystal spacing, and A the spacing of the phase-waves of the atomic 
vibration in the crystal lattice. Equation (1) shows that in the limiting case when A 
is infinite, d* becomes identical with d both in magnitude and direction. The 
classical and quantum reflections then coincide as already remarked. 

So far as the optics of the cases is concerned, the classical and quantum 
reflection are on a similar footing. For the former to occur, the Bragg condition, 
namely, 

I 2d sin 8 = nrl, (2) ~ must be satisfied, while for the quantum reflections it is similarly necessary that 

2d* sin $ = nA, (3) 
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8 and $ being the glancing angles of the incident beam on the static and dynamic 
stratifications measured in the respective planes d incidence. Denoting by 9 and 
E, the angles which the crystal planes make respectively with the phase-waves and 
with the dynamic stratifications, we have from equation (1) and figure 1, 

d*sin9 = dsin(9 + e) = Asine. 

Substituting the first of these relations in (3), we obtain, . 

2d sin sin (8 + e) = n2 sin 9. (5) 

From equation (4), we see that if the wavelength A is large compared with the 
crystal spacing d or the dynamic stratification d*, the angle e would be small 
compared with 9 or (9 + 8). Hence, provided 9 is not nearly equal to 0 or n, we 
may write (5) in the approximate form 

2d sin $ = n2, (6) 

which, it will be seen, is merely (3) with d written for d*, that is to say, with the 
spacing of the dynamic stratifications put equal to that of the crystal planes from 
which they arp derived. Equation (6) is the same as equation (2) with $ written for 8 
and is thus the geometric lawfor quantum reflections analogous to the Bragg lawfor 
the classical reflections. Since the angular separation betwqen the incident beam 
and the quantum reflection is 2$, equation (6) indicates that within the limits of 
its validity, the angular separation of the quantum reflection and the incident beam 
is independent of the setting of the crystal and is equal to the angular separation of 
the classical reflectionfrom the incident beam at the Bragg setting of the crystal. 

If A is infinite, it follows from (4) that e = 0 and the approximate equation (6) 
becomes identical with the rigorous equation (5). How nearly this continues to be 
true when e is finite depends on the angle 9. If 9 = n/2, sin 9 = 1 and differs little 
from sin (9 + e) even when e is as much as zt 10". Hence, for the particular case in 
which the phase wave-fronts are transverse to the crystal planes, the simple formula 
(6) may be regarded as practically the rigorous geometric law of quantum reflection. 
If, however, the inclination 9 of the phase wave-fronts to the crystal planes is 
much less than 42, it is not permissible to write sin 9 = sin (9 + e) except for very 
small values of E, and hence in such a case, the rigorous formula (5) should be 
employed. It is evident that the angular separation 2$ of the quantum reflection 
from the incident beam would not then be independent of the crystal setting, but 
would be greater or less than the fixed value given by equation (6) according as e is 
negative or positive, that is to say, according as the tilt of the dynamic 
stratifications with respect to the crystal planes is one way or the other. 

The static and dynamic reflecting planes are coincident when A is infinite and E 

6 therefore zero. The planes of incidence for both reflections are, therefore, 
identical in this particular case. If this result be true generally, it would follow that 
the quantum refection by  any particular crystal spacing appears in the same plane 
of incidence as the usual Laue reflection. We may then write 2$ = (8 + 4) and 
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26 = (4  - 8), 4 being the glancing angle of the quantum reflection measured with 
reference to the crystal planes. Equation (5) then becomes 

4 + 6 
2 

sin 9 + - = nlsin9, 2dsin- ( 'i6) 
while equation (6) takes the form 

2d sin &4 + 8) = nrl. (8) 
It is easily seen that the rigorous formula (7) would in every case give values of 4 
closer to 8 than the approximate formula (8), the difference being least when 
9 = 4 2 .  In general, therefore, when 9 is less than d2,  the quantum reflection is 
nearer the Laue reflection than the j x e d  position indicated by the approximate 
formula; it moves in the same direction as the Laue spot, though much more slowly, 
as the crystal is rotated; it coincides with and is overtaken by the Laue spot at the 
Bragg setting and continues to follow its further movement as the crystdl is turned 
awayfiom that setting. In the limiting case when 9 = 0, equation 7 indicates that 
4 = 8, in other words, the quantum reflection appears superposed on the Laue 
spot. 

4. Intensity of modified reflection 

The modified reflection is the result of the crystal taking up a quantum of energy 
hv* and the photon going off with the remainder of the energy h(v - v*), v and 
v* being the frequency of the incident radiation and of the lattice vibrations 
respectively. The energy hv* being shared by all the lattice cells in the crystal, the 
amplitude of vibration and the resulting dynamic structure amplitude would be 
exceedingly small. It might, therefore, seem at first sight that the probability of the 
process occurring would be negligible. Actually, however, the small probability of 
the individual process is set off by the fact that the number of lattice cells N in the 
crystal is enormously large, and the system therefore possesses N discrete 
frequencies of vibration ranging around the value v*. The fraction d N / N  of this 
large number which becomes effective in any particular circumstances determines 
the observed intensity of the quantum reflection. This fraction should clearly be a 
function of the magnitude and direction of the phase vector 1/A which we shall 
denote for convenience by the symbol 6. We may, therefore, write 

dN/N = IG(s, X, 9) sin 9d 9d x d6. 
4n 

In this equation, 9 is the angle already introduced, namely the inclination of the 
phase wave-fronts to the crystal strata. is the azimuth of a plane normal both to 
the crystal strata and to the phase wave-fronts, the reference plane for which x = 0 
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being the plane of incidence on the crystal strata. Sin 9 d 9 d x  is, therefore, the 
elementary solid angle within which the vector 6 lies. . 

The dependence of the G-function upon the value of 6 should evidently be very 
pronounced. Since the characteristic frequency v* corresponds to a zero value of 
6, we may expect the possible degrees of freedom to cluster densely around small 
values of 6 and to thin out for large values of 6. In other words, the G-function 
would have a strongly marked maximum when 6 = 0 and diminish rapidly as 6 
increases. If, therefore we regard the other variables in the function as having 
fixed values, e.g., x = 0 and 9 = 42 ,  the variation of intensity of the quantum 
reflection would depend solely on the value of 6 determined by the angles of 
incidence and reflection. It would then follow from equation (1) that the intensity 
of the quantum reflection would be a maximum at the Bragg setting of the crystal for 
which 4 = 0 and would fall ograpidly as the crystal is moved away from this setting 
in either direction. 

It will be noticed that we have written the G-function with the angles x and 9 
appearing explicitly in it, thereby indicating that the number of degrees of freedom 
lying between given limits of 6 depends on the inclination of the wave-fronts to the 
crystal planes and also on the azimuth of the plane which is normal to both the 
static and dynamic stratifications of density. Such a dependence is to be expected 
on dynamical grounds. It is well known that in a crystal, the relation between 
wavelength and frequency for vibrations of the acoustic class is a function both of 
the direction of vibration and the direction of propagation, the wave-front 
splitting up into a surface of three sheets even in a cubic crystal. There would, 
therefore, be no justification for assuming that for vibrations of the optical class, 
the distribution of the degrees of freedom would be independent of either the 
orientation of the wave-fronts in the crystal, or of the directions of the atomic 
vibration in them. In our present problem, we are concerned with the modes of 
vibration in which the displacements of the atoms are predominantly normal to 
the particular crystal planes under study, since displacements parallel to the 
planes have no effect on their structure amplitudes. We may, therefore, 
reasonably anticipate that the G-function should show a strongly marked 
dependence on the angles 9 and x which enter in our problem. 

It is evident that if the angles 9 ,  x defining the orientation of the phase-waves 
are regarded as entirely arbitrary, the optical conditions necessary for a reflection 
of the X-rays would be insufficient to indicate a unique direction for such 
reflection for any given setting of the crystal. It is, however, easily shown 

, analytically or geometrically that they suffice to indicate a direction which would 
correspond to a minimum value of 6 and therefore also to a maximum observable 
intensity of reflection, the values of x and 9 corresponding to such direction being 
0 and (7112 - 4) respectively. The zero value of x indicates that the reflection 
would be in the plane of incidence, while the value ( 4 2  - 4) on substitution for 9 
in (7) yields the formula 

dsin(4 + 8)= ndcos4, (10) 
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which may also be written as 

d(sin 8 + cos 8 tan 4) = nr2, (1 1) 

both reducing to the Bragg formula when 8 = 4. 
The considerations on which equation (1 1) is based would, however, be invalid and 

the results given by this formula would be contradicted by experiment, if the angles 9 
and x appear explicitly in the distribution function G(6, X ,  9) as assumed in our 
equation (9). For, when this is the case, the maximum of this function would be 
determined, not solely by the variations of 6, but also by the independent 
variations of x and 9, and the preferred values' of these angles which make the 
G-function a maximum must, therefore, influence both the intensity of the 
modified reflection as well as the plane and direction in which it is observed. The 
value of x determines the plane of reflection, while that of 9 notably influences the 
direction of reflection in that plane. Hence the more precisely these angles can be 
specified, the more sharply defined would the direction of reflection be. The 
dependence of the distribution function on the angle variables thus plays an 
important part in determining all the observable features of the quantum 
reflection, namely, the plane and the direction in which it is to be found, its 
sharpness and its intensity. The preferred value of 9 is in particular of special 
importance and may be expected to depend on the substance chosen for 
investigation and possibly even on the particular set of crystal planes from which 
the reflections are observed. It may be evaluated by observing the quantum 
reflections over a sufficiently wide range of settings of the crystal and comparing 
the experimental results with the general formula (5) or its near equivalent (7). 

5. Effect of acoustic vibrations 

We may now briefly discuss the phenomena resulting from the excitation of those 
crystal vibrations which lie in the acoustic range of frequency. When the number 
of atoms in the unit cell of the lattice is fairly large, the proportion of the aggregate 
number of degrees of freedom appearing as acoustic vibrations is small and the 
effects due to them are of small importance compared with those arising from the 
optical vibrations. Nevertheless, they deserve some consideration. The distin- 
guishing feature of the acoustic vibrations is that they involve translatory 
movements of the unit cells, in other words a disordering of the crystal lattice, 
while the optical vibrations involve such movements to a negligible extent and 
may, therefore, be excited without distorting the crystal lattice. We have already 
noticed the latter as the special feature which enables the crystal to give modified 
or quantum reflections. We shall presently see that no such reflections would 
result from crystal vibrations of the acoustic class, and that on the contrary these 
vibrations would give rise only to a diffuse scattering of the X-rays. 

A longitudinal sound-wave causes the mean electronic density in a crystal to 
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vary periodically, and if its wavelength is sufficiently large in relation to the 
spacing of the lattice planes, we may ignore the latter and regard the wave itself as 
a time-periodic stratification of electronic density. Accordingly, the X-ray photon 
impinging on the crystal should excite such sound waves by inelastic collision and 
itself be reflected in the process, provided that the length A of the sound-wave, the 
glancing angle 8 on its wave-fronts and the X-ray wavelength 1 satisfy the relation 

2A sin 8 = 1. (12) 

Accordingly, since both A and 8 are arbitrary, the effect here contemplated would 
give rise to a diffuse scattering in directions surrounding the incident beam and 
lying within a cone of semi-vertical angle 28 determined by the limiting value of 8 
at which the argument fails, namely, when A is of the same order of magnitude as 
the lattice spacings in the crystal. 

To find the phenomena in directions lying outside this cone, the procedure to 
be followed would be formally analogous to that indicated earlier for the optical 
vibrations, namely, to analyse thestructure amplitudes of the crystal into a static 
part and a dynamic part having the frequency of the acoustic vibration, and to 
consider the effect of the latter separately. The detailed results would, however, be 
quite different from those obtained for the optical vibrations. While an infinite 
wavelength A for the optical vibrations corresponds to one or other of the 
characteristic frequencies at which there is a maximum concentration of the 
degrees of freedom of the system, we have exactly the opposite situation in the 
acoustic case, the infinite wavelength 'then corresponding to zero frequency and a 
minimum concentration of the degrees of freedom. Hence the arguments which 
indicate that in the optical case the reflected beam is limited to particular 
directions in the plane of incidence are wholly inapplicable for the acoustic 
vibrations: 

We conclude that the acoustic vibrations of the crystal lattice, though they may 
be excited by an inelastic collision of the photon, give rise to  a diffuse scattering 
without any pronounced directional eflects. 

6. Analogy with light suattering 

As is well known, when monochromatic light traverses a crystal and the light 
diffused by it is spectroscopically examined, the scattered radiations exhibit 
diminished and in some cases also enhanced frequencies. The frequency shifts fall 
into two classes. Some of them are very small and require for their observation the 
use of a Lummer-Gehrcke plate or a Fabry-Perot etalon; the shifts are found to 
depend on the direction of observation and evidently arise from the acoustic 
vibrations of the crystal lattice. The second group of frequency shifts may be 
observed with an ordinary spectroscope and correspond to those optical 
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vibrations of the crystal lattice which are active in light scattering. In the latter 
case, no variations with the direction of observation have been reported, though 
no very careful investigations appear to have been made on this question. 

It is rewgnised that the scattering of light with change of frequency is a 
quantum effect, though it has a classical analogue which fails to represent the 
observed facts in essential particulars. There is thus a clear analogy between the 
modified scattering of light and the quantum reflection of X-rays, both 
phenomena arising from the inelastic collisions of photons with crystals. The 
wavelength of the incident radiation is widely different in the two cases, and this is 
largely responsible for the difference in the character of the resulting effects. 
Despite the obvious differences, the fundamental similarity in the processes 
involved and the phenomena observed should be useful as a guide to research in 
both fields of investigation, In particular, it is desirable to emphasise that, as in the 
case of X-rays, the change of frequency observed in light-scattering should be 
regarded as the co-operative effort of extended domains in the crystal and not the 
effect of the individual ions or molecules in it. 

In the literature of light-scattering, we are familiar with the idea that certain 
optical modes are active while others are inactive, the distinction being largely 
determined by the symmetry characters of the vibration. In the X-ray problem, 
the question whether an optical vibration is 'active' in giving a modified reflection 
depends on whether it modifies the structure amplitude of the particular crystal 
spacing under study. It is evident, however, that in the X-ray problem we are 
dealing with the superposed effect of all the characteristic optical modes, and 
cannot isolate the effect of any one of them in particular. On the other hand, we 
can observe the modified reflection from numerous individual crystal planes and 
the geometric relation of such planes to the various optical modes of vibration of 
the lattice cells would naturally be different. The X-ray method is also capable of 
application to crystals with which optical study is difficult or impossible. Hence a 
study of the phenomena of the modified X-ray reflection may be expected to lead 
us to a deeper understanding of the problem of crystal physics, and to supplement 
in important respects the results of spectroscopic studies. 

7. Influence of temperature 

The analogy with light scattering is particularly useful in considering how the 
intensity of modified X-ray reflection would be influenced by varying the 
temperature of the crystal. As is well known, the character of the phenomena 
observed in light scattering differs essentially in the two cases in which hv* >>KT 
and hv* <<KT respectively. In the first case, the thermal agitation of the system 
plays an insignificant role, and the scattering is due to its transitions from the 
lowest to higher energy-levels induced by the incident radiation. Hence, the 
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scattering is with diminished frequency only, and its intensity is independent of 
temperature, being much greater than that indicated by classical considerations 
for a vibration with energy KT. In the second case in which hv* << KT, the 
observed effects are practically describable in terms of the classical theory: the 
intensity of the scattering increases in proportion to the absolute temperature 
and appears to an equal extent with diminished and with increased frequencies. 
In the intermediate cases when hv* and KTare of comparable magnitudes, the 
scattering with diminished frequency is of greater intensity than that with 
increased frequency. The ratio of the two tends to approach unity as the 
temperature is raised, and the absolute intensities of both types of scattering also 
become larger. This is because the transition probabilities from a thermally 
excited state are greater than from the ground state of the system. 

We may naturally expect very similar results in the case of modified X-ray 
reflection, except that as it is not possible to separate the reflections with 
diminished and increased frequencies, we are only concerned with the result of 
their summation. As indicated by the theory, the nature of the results would 
depend on the characteristic optical frequencies of the crystal. At sufficiently low 
temperatures, the indications of the classical theory should in every case fail 
completely, and the quantum reflections, instead of vanishing, should continue to 
be observable. Further,, for crystals with high characteristic frequencies, the 
intensity of reflection should be much greater than that indicated by the classical 
considerations, and its increase with rise of temperature should also be slower. 
On the other hand, for crystals with relatively low characteristic frequencies, the 
increase of intensity with temperature should be very marked. Further, since this 
increase ihdicates a larger population of thermally excited states and therefore 
also a diminution of the static structure amplitudes, the increase of intensity of the 
modified X-ray reflections with rise of temperature would be accompanied by  a 
falling off in the intensity of the unmodified refections. 

It follows from the foregoing remarks that theories of the temperature effect in 
X-ray diffraction based on classical considerations cannot be expected to be in 
full accord with the facts either at low or high temperatures. This is indeed evident 
from the published literature of the subject. In the treatments usually given, 
however, the classical considerations are modified by taking into account the 
zero-point energy of the vibrations of the crystal and assuming that these have an 
optical effect analogous to that of thermal agitation. The static structure 
amplitudes of the crystal at low temperatures are thereby brought into better 
accord with the observed facts. It is evident, however, that except in regard to the 
classical or unmodified reflections, the effects produced by the crystal on the 
incident radiation depend on the change in the energy-state of the crystal and not 
upon its initial energy. The zero-point energy is therefore not really relevant to 
the discussion of such effects. 
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8. Summary 

The X-ray reflections of the Laue type are elastic collisions of the photons with 
the crystal considered as a structure with static space periodicities. The modified 
or quantum reflections are inelastic collisions in which the photon excites the 
vibration of thexrystal lattice and is itself reflected by the dynamic stratifications 
of electron density arising from such vibrations. The quantum reflections obey 
the Bragg principle with respect to the dynamic spacings, these however, in 
general, differing from the static spacings, besides being differently oriented, 
except when the incidence on the static spacings iS at the Bragg angle for the given 
monochromatic radiation, in which case they are identical. The general geometric 
formula for the quantum reflection is 

2 
sin 9 + - = nlsin9, 2 d s i n e  ( 'i8) 

where 8 and 4 are the glancing angles of incidence and reflection, and 9 is the 
inclination of the phase-waves to the crystal spacings. If 9 does not differ greatly 
from 42 ,  this reduces approximately to the symmetric formula 2d sini(8 + 4) 
= nl. All the observable features of the quantum reflection are determined by the 
properties of the G-function which gives the distribution of the degrees offreedom 
of optical vibration as determined by the reciprocal of the length of the phase- 
waves of the optical vibration of the lattice and the angle variables 9, x defining 
their orientation. The dependence on temperature of the intensity of quantum 
reflection is very different in the two cases where hv* >> KT and hv* << K T  where 
v* is the optical frequency of the lattice vibration. The increase of intensity of the 
modified X-ray reflections with rise of temperature is accompanied by a falling off 
in the intensity of the unmodified reflections from the same spacings. 
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