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Abstract. The quality of wavefunctions obtained by the Fourier grid Hamiltonian (FGH)
method is analyzed. The criteria used for judging the quality are the extent to which virial,
hypervirial and Hellmann-Feynman theorems are satisfied by the numerically computed
FGH-wavefunction. The quality of the FGH-wavefunction is also examined from the point
of view of local error in the wavefunction. It is shown that high quality wavefunctions can be
obtained from the FGH recipe if the grid length (L) and grid spacings are chosen after properly
examining the range of the potential-and its nature. :
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1. Introduction

The Fourier transform method [1-2] has emerged as a very powerful tool in solving
both time-dependent and-time-independent quantum mechanical problems. The idea
has been to use different representations to treat the kinetic and potential energy
terms in evaluating the quantity Hy which is central to the time propagation, and
use fast Fourier transform technique to move back and forth from one representation
to the other. In a couple of recent papers, Marston and Balint-Kurti [3—-4] have
beautifully demonstrated that the matrix representation of the Hamiltonian (H) in
the vector space generated by the values of ¥ and Hy on a grid of points in the
coordinate space is extremely simple, requiring only the evaluation of the potential
at the grid points and applications of forward and inverse Fourier transforms which
analytically reduce to a finite sum over cosine functions. Once the H matrix is formed
in this space, straightforward diagonalization of the Hamiltonian matrix (H matrix
is symmetric in this representation as dpposed to the unsymmetric H matrix
encountered in the collocation method [5]), provides the bound state eigenvalues,
the eigenvectors directly providing the amplitudes of the eigenfunctions of H on
the grid points chosen. It may be noted that the Fourier grid Hamiltonian (FGH)
method as Marston and Balint-Kurti calls it, is variational in the same sense as most
other methods for calculating eigenvalues and eigenfunctions of Hamiltonian
operator. In fact the FGH method is a special case of the socalled discrete variable
representation (DVR) method extensively developed by Light et al [6-7], following
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the earlier work of Harris ez al [8]. DVR has been shown to be related to the gaussian
quadrature method by Dickinson and Certain [9]. Viewed from a variational point
of view, the FGH method works with two crucial parameters, the grid length (L) and
grid density (N/L). It is therefore important to understand how the choice of these
parameters affect the accuracy of the FGH eigenfunctions and eigenvalues. Marston
and Balint-Kurti [3] showed that the FGH-wavefunction for a Morse oscillator nicely
coincides with the corresponding analytical solution at the grid points and that the
convergence of eigenvalues with respect to the number of grid points is fast. The level
of accuracy of FGH wavefunctions is of paramount importance since energy eigenvalues
are always estimated one order better than the corresponding eigenfunctions. How
does one check the accuracy of the computed eigenfunctions which directly affects
values of other non-commuting observables? One obvious solution is to compare the
FGH-wavefunction with the corresponding exact wavefunction, if known. But the
FGH method is expected to be of value in cases where analytical solutions are not
easily obtained or are unavailable. An alternative strategy therefore would be to check
whether FGH wavefunctions obey certain theorems which the exact wavefunctions
would satisfy; for example, we may think of virial and hypervirial theorems, Hellmann-
Feynman theorem, Frost’s local energy criterion, etc.

- It may be noted in this context that the DVR is isomorphic with an approximate
finite basis set representation in which some matrix elements of the Hamiltonian are
determined by numerical quadrature over the DVR points. Light et al [6] have shown
that in one dimensional problems DVR may be truncated just as in the finite basis
set representation with comparable loss of accuracy in the eigenvalues. However,
impact of truncation on the quality of the eigenfunctions and other non-commuting
observables was not analyzed. The present paper focuses on this central question; ,
how does the truncation affect the quality of the FGH wavefunctions? The yardstick E
for quality of  employed by us is conformability of FGH-wavefunction with certain E
theorems obeyed by exact wavefunctions. The analysis has special significance in the
context of many dimensional extension of the FGH method [10] which leads to a rapid
escalation of the dimensionality of the space in which the Hamiltonian has to be
diagonalized. Alternatively, some mean-field approximations must be used. Truncation
is thus inevitable in multidimensional problems. One must therefore know in advance
the impact of truncation on. the FGH-wavefunction at least in one-dimensional
problems where the parameters of crucial importance as noted already, are the grid
length and grid spacing. In what follows we attempt to achieve this objective.

2. Results and discussion

1) FGH-wavefunction and virial theorem

Although satisfaction of the virial theorem does not guarantee the exactness of the
wave function, it is a necessary condition that accurate wavefunctions obey the virial
theorem [11]. To investigate the extent to which the FGH-wavefunction conforms
to this necessary condition we have solved the one-dimensional Schrédinger equation
for i) harmonic and ii) quartic anharmonic oscillators by the FGH method. The wave-
functions thus obtained for different bound states have been used to calculateé the
expectation values required to compute the virial ratio. The vth eigenstate of the
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oscillator |y, > obtained by FGH method is represented as follows:
N
b= Y o7Axlx) o

where, N is the number of grid points, w;s are the values of the vth bound state
wavefunction at the grid points. The expectation value of a quantum mechanical
operator A corresponding to the normalized state function |y is

Wy = WA =T oto,A, / N 2)

where .
Ai.= <xi!A|x.>.

Virial theorem for a potential ¥ which is homogeneous in coordinate x; and of degree
n leads to the equation :

2{T) ={Zx;0V/0x;» =nlV) (3)

where {T) and (V') are the expectation values corresponding to kinetic and potential
energy operators, respectively. The virial equation for a harmonic oscillator potential
[V(x) = (1/2)kx?*] therefore takes the form

2{THy=2{V), or (T),/KV),—1=0. 4

For an anharmonic quartic potential [V (x) = (1/2)kx? + Ax*] the corresponding virial
equation is as follows:

2(TY ={xdV/)ox) = 2{V) +24{x*> e
(T, =<y, + Ax*D,. ' . ()

Table 1. Required expectation values have been calculated using
the FGH wavefunctions for the first few vibrational states of a
harmonic and quartic oscillator to demonstrate that the FGH
wavefunctions satisfy virial theorem.

Harmonic oscillator* Quartic oscillator®

v [KTOKV> =11, (T, [V + 44T,
0 0-000 000 00 0-253 656 42 0253 65642
1 0-000 000 00 0-768 03206 076803206
2 0000 000 00 1129614324 1296 143 24
3 0-000 000 00 1-83725676 1:837256 76
4 0-000 000 00 239072530 239072530
5 0-000 00000 295597288 295597288
6 0-000 000 00 353248348  3-53248348
7 0-000 000 00 411979193 411979193
8 0-000 000 00 4717476 60 4717476 60

*see text, eq. (4)

#see text, eq. (5)
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The angular brackets denote expectation values of the operators in the FGH repre-
sentation enclosed within [equation 2]. These expectation values [{T), (V> and
{x*>] for different bound states have been calculated with the FGH-wavefunction
obtained by solving the corresponding Schrédinger equation by the FGH method.
The grid length (L =13 a.u) and the number of grid points (N = 69) used in our
calculations for both the cases were found to be adequate (the appropriate choices
of these parameters are discussed in detail in §3). The results corresponding to (4)
and (5) [ = 0-005] are displayed in table 1 which confirm that the FGH-wavefunction
fulfils the necessary condition of complying with the virial theorem when a sufficient
number of grid points (N) are taken. The point to note is that N is not large at all.
Since the representation used is discrete, scale-optimization and virial satisfaction
need not be explored in the present context, as the effect of coordinate scaling can
be effectively mimicked by making Ax small enough.

ii) FGH-wavefunction and Hellmann—Feynman theorem

The variational version of the Hellmann-Feynman (H-F) theorem [12] is often
written as

8E/do = (0H/dc (6)

where, ¢ is a real parameter in the Hamiltonian (H) of the system under study. Here,
we have dealt with three different types of one-dimensional oscillators.

a) Harmonic oscillator: The system of harmonic oscillator is represented by the

Hamiltonian H which is a function of the force constant (k) of the oscillator as
follows:

H(K) = T+ (1/2)kx2.
Differentiation of H with respect to k gives,
COH[OkY = (1/2){x?>. - (7

Since the analytical values of energy (E) as well as (OE/0k) as functions of k are
available for the harmonic oscillator, one can measure what may be called the
“deviation from the HF theorem” (8y ) by comparing the analytical 0E/0k value with
that on the right hand side of (7) computed with the FGH-wavefunction for a specific

vibrational state. The comparison is made in table 2 for a grid of 69 points. Compliance
with HF theorem is easily noticeable.

b) Quartic oscillator: The Hamiltonian H representing the anharmonic quartic
oscillator is of the form:

Cpsusenes

H()=T+(1/2)x* + ix*. (8)
Differentiating both sides of (8) with respect to 4 we get

COHOAY = {x*). &)

T'he quantity {x*> in (9) has been calculated using the FGH wavefunctions for
different bound states obtained by solving the Schrédinger equation for the quartic

112 Pramana — J. Phys., Vol. 44, No. 2, February 1995




Wavefunctions by Fourier grid-Hamiltonian method

Table 2. Results computed with the FGH wavefunctions have been reported
to demonstrate the compatibility of the FGH wavefunctions with the Hellmann-
Feynman theorem.

Harmonic* Quartic¥# Morse®
v Oy.F OH[OA), (OE[d>, {0H/[apB>, {BE[oB,
0 0-000 00000 0-664 281 0-664 282 0-007 693 0-007 693
1 0-000 00000 3-131412 3131410 0022 048 0022048
2 0-000 00000 7-637511 7-637 502 0-035026 0035026
3 0-000 000 00 13-790941 13790910 0-046 627 0046 627
4 . 000000000 - 21-331281 21-331 203 0-056 851 0-056851

*see, text, eq. (7) #see text, eq. (9) %see text, eqs (12,13).

oscillator by the FGH method using L= 13 a.u. and N =69. Since the analytical
energy (E) and (0E/07) values are not available in this case, we have computed (3E/d4),
“numerically. The close agreement between {0H/0A) obtained from (9) and JE/dA
(obtained numerically) as shown in table 2 again shows that the FGH wavefunctions
are quite accurate if L and N are carefully chosen.

¢) Morse oscillator: In the case of a Morse oscillator the Hamiltonian (H) is a function
of the real parameter f§ as defined below:

H=T+D,[[1—exp{—B®—x,4)}]% (10)

The problem at hand is analytically solvable and the analytical energy eigenvalues
are given by

E,=B/2D./u(v +0:5) — (B*/219)(v + 0-5)* ' (11)

where, D, is dissociation energy, u is the reduced mass of the ss}stem and f is the non-
linear parameter in the potential. Differentiating both sides of (10) with respect to f
followed by quantum mechanical averaging over the state (/) [equation (2)] gives

COH[0BY, = 2D { (x — Xeq) [1 — exp{— B(x = xeq)}] [exp{—B(x— xeq)}(:|1>2)

Differentiation of (11) with respect to ﬁ on the other hand gives

(3E/0p), = [(v+0:5)/2D/p— (B/w)(v + 0-5)*] (13)

The computed results displayed in table 2 are the quantities corresponding to (12)
and (13) for the first few vibrational states (v=0-—4) and are just as the exact
wavefunctions are supposed to give.

iii) Hypervirial theorems and FGH eigenfunctions

If 4 is a hermitian operator such that the set of trial function is invariant under the
continuous family of unitary transformations U(x) = ¢4 (o real parameter), then a
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Table 3. Results computed with the FGH
wavefunctions for the first few states of a Morse
oscillator [see eq. (14)] have been reported to
demonstrate the compatibility of the FGH
wavefunctions with the diagonal hypervirial

theorem.

v (e~ Py, (e™ 2y,
0 0978 2011 0-978 2011
1 0-934 6037 0934 6037
2 0-891 0072 0-891 0072
3 0-8474115 0-847 4115
4 0-8038113 0-8038113
5 07602138 07602138
6 07166163 0-716 6163
7 06730188 06730188

variationaly selected ¥ will satisfy the condition
YITA, ALjy> =0

for any state ¥. The condition has been known as the diagonal hypervirial theorem
[13-14]. The condition is obviously obeyed by an exact wavefunction. For a Morse

oscillator [V(x)], one can show [15] that the diagonal hypervirial theorem leads to
the following relation:

(eThu_g 20y =0
ie. :
(e™My, = e, (14

where the pdtential V(x) is represented as follows: .
V(x)=D[e™2M—2¢77], u=(x—x,).

We have reported in table 3 the expectation values on the left and right hand side
of (14) computed with FGH wavefunctions for the first few states of a Morse oscillator.

A reasonable choice of grid ensures compatibility of FGH wavefunctions with the
diagonal hypervirial theorem.

iv) FGH-wavefunctions and local error

As demonstrated in [3] and to be discussed further in §3, the FGH method with

adequate grid length (L) and number of grid points (N) can provide highly accurate
- value of global energy or energy eigenvalues (E)

E = YIHW /<Py ' (15)

But one may ask whether the FGH wavefunctions are equally good from a local
point of view. Needless to mention that an exact wavefunction is expected to satisfy -
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Figure 1. Energy values E (x;) (represented as x x %) at all the grid points {xi}‘
obtained by the FGH method are the same and equal to the corresponding energy
eigenvalue (denoted by solid line) [v=0,1 and 2].

certain local criteria as well [16]. The Schrodinger equation at a coordinate point (x;) is

Hy (x;) = E(x;)¥ (x;),
E(x;) = Hr (x;)/ (x:). \ - (16)

In general, the local energy E(x;) in (16) is coordinate dependent for an approximate
wavefunction while the exact wavefunction provides local energy values (E(x;))
independent of x; and equal to the global E of (15). As the eigenvectors obtained by
FGH method directly gives the amplitudes or values of the wavefunction at the grid
points, the question now turns out to be whether the E(x;) calculated (eq. 16) at each
grid point (x;) are the same and is equal to the value E in (15)?

To answer this question we have employed the FGH method for a harmonic
oscillator and obtained both the energy eigenvalues (E,) (eq. 15) and the wavefunctions
[¥,(x)]. The E,(x;) values at all the grid points {x;} have been calculated by invoking
a suitable numerical differentiation scheme to compute the H[y(x;)] part in (16).
The results, as is clear from figure 1 which displays the profiles of E,(x;) for v=0,1
and 2 at the grid points {x;}, answer the question in the affirmative. -

3. Convergence properties

As far as the success of any numerical method for solving Schrodinger equation is
concerned, the computational cost that the method involves is no less important than
the accuracy of the energy eigenvalues provided by the method. As the method
requires matrices of order (N x N) to be diagonalized, where N is the number of grid
points, the convergence property of the method with respect to N plays a key role
in its success. Another important parameter, the total length (L) of the grid also needs
to be optimized to provide results of desired accuracy. In [3] Marston and Balint-
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Kurti have used L= 1-5 times the outer classical turning point of the highest bound
state in the case of a Morse oscillator. We think that it would be worthwhile to have
a closer look into the convergence properties of the method with respect to both L
and N. In a way these two parameters together conform to what may be analogous
to a measure of completeness of the basis set in a finite basis set representation. For

the purpose at hand, we have done two sets of calculations for two types of exactly
solvable potential (harmonic and Morse):

i) Keeping N fixed and sufficiently high (N =99) the grid length (L) has been varied
from a small value (7-5 a.u) to an appreciably high value for solving the Schrodinger
equation by the FGH method.

ii) The same course of calculations have been done by varying the number of grid
points (N) keeping L fixed at an adequately high value (L= 13 a.u).

To demonstrate the convergence properties, one obvious choice is to check the
convergence of energy with respect to N or L or both. In addition to that one can
enquire about the convergencé of FGH-wavefunctions in the context of satisfaction
of the virial and Hellmann-Feynman theorems. For this purpose, let us define three
terms Jg, dyr and dy_p. O measures the deviation of computed energy obtained by

using particular values of N and L, from the exact or converged energy, whichever
is available, i.e.

0 = E(computed) — E(exact or converged)

Oyr stands for deviation from the virial theorem and dy4_p for deviation from the
Hellmann-Feynman theorem. For harmonic potential they are measured by

Svr={{T/V>—1} and byr={CH/Ok) —(1/2){x* . (17

Both dyr and dy_g are zero for exact wavefunctions [eqs (4) and (7)]. In figure 2 the
profiles of 6g, dyr and g values for v =9 have been displayed against L (grid length)
while figure 3 shows the convergence of 6, dyy and dyg for different N values for
v=9. In each case, the convergence is near exponential so that highly accurate
wavefunctions can be obtained at a low computational cost. ‘

Now the question arises whether the adequate values of N and L are system
(potential) and state dependent? If so, how sensitive are these values? To answer these
questions we have done a series of calculations to see the convergence of energy of
ground as well as of higher energy states of the quartic anharmonic oscillator (eq. 8) for
different values of the coupling strength (4 varies from 0-01 to 5-0). Figure 4 displays
the variation of adequate N i.e. the minimum N value required to get the converged
energies (E,,v=0,4,9) as a function of the coupling strength (4) for a fixed value of
L=13. The variation of adequate L (using fixed and high value of N =99) for three
different states (v=0,4 and 9) as a function of 1 is demonstrated in figure 5. Both
the figures show that the variation in N or L is sharp initially but saturates quickly
as 4 increases. The convergence profiles for three different states are different but the
trend of variation is the same in each case. It is to be noted that the difference in
adequate N or L values for different states is not much which suggests that the
method can be used for providing good wavefunctions even for higher states at
rfaasonably low computational cost. However, for certain long range potentials with
singularity at the origin (e.g. — 1/x, — 1/x2, — 1/|x], etc.), our experience so far indicates
that for an appropriately large length L, the energy eigenvalues do not show
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Figure 2. Profiles dy( line), Syp(———— line) and dg(—x—x—x~) for the 10th
vibrational state (v =9) of harmonic oscillator [see text, eq. 17] as a function of
the grid length (L).
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Figure 3. Convergence of dyy(—— line) and dyp(-——— line) and dp(—x—x—x-)
for the 10th vibrational state (v =9) of harmonic oscillator [see text, eq. 17] for
different number of grid points (N) used.
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Figure 4. The variation of adequate N for v=0,4,9 as a function of oscillator
strength (2) of a quartic anharmonic oscillator (see eq. 8), for L =13 a.u.
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Figure 5. The variation of adequate L (using N = 99) for three different states
(v=0,4 and 9) as a function of A for the same system as in figure 4.

o

monotonic convergence with respect to the number of grid points (N) or grid density
({,/N). For a given L, there appears to be an optimum grid density for which best
eigenvalues are obtained. The reason for this non-monotonicity of the convergence
is mtu.nately related with the problem of representing a state on the discretized
co-ordinate or momentum space. Further analysis is on the way at present.
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4, Conclusion

The FGH method has been shown to provide very accurate wavefunction as well as
energy eigenvalues. Both the local and global properties of FGH wavefunctions are
generally satisfactory if sufficient number of grid points and an appropriate grid
length are chosen. Convergence with respect to grid length (L) and number of points -
(N) is nearly exponential. In a many-dimensional application therefore, effective
dimensionality of the problem can be kept within limits with suitable truncation
along each axis. A detailed analysis of the accuracy of the wavefunctions for the
many-dimensional cases will be reported in due course.
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