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§ 7. Introduction

IT is well known that the Raman spectrum of carbon dioxide consists of two
strong lines with frequency shifts 1285 cm.~! and 1388 cm.~!. The linear
symmetrical model of CO, has four normal vibrations, one of them being
the symmetrical motion of the oxygen atoms along the axis of the molecule
with the carbon atom at rest, two others being the doubly degenerate vibra-
tion of the carbon atom against the oxygen atoms in a plane perpendicular
to the axis of the molecule and the remaining other being the vibration of the
carbon atom against the oxygen atoms along the axis of the molecule. Fig. 1
illustrates the normal modes of vibration.
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Amongst the fundamental frequencies only v, is active in the Raman
effect, and only v, and v, are active in the infra-red. A simple consideration
of the polarisability tensor when the molecule is vibrating with frequency
vy Or vy shows that their even harmonics only could appear in the Raman
effect. Hence in addition to the fundamental frequency v,, we could
expect 2 vy, 2 vy, and 2 v, to appear in the Raman spectrum. It may be
remarked that the intensity of the former two overtones is mainly governed
by the second differential co-efficient of the polarisability of the C—O bond with
respect to the internuclear distance. As these overtones have not been
reported so far in the experimental literature, we could assume that the higher
derivatives of the polarisability of the C-O bond with respect to the inter-
nuclear distance are so small as not to give observable effects. But this
argument does not apply to 2 v,. The intensity of this line is governed by the
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optical anisotropy of the molecule in the equilibrium configuration and the
first derivative of the polarisability of the C—O bond with respect to the inter-
nuclear distance. To understand this clearly let us for a moment assume that
the polarisabilities of the C-O bonds do not change with respect to the inter-
nuclear distance. In such a case no Raman lines will appear except those
corresponding to the even harmonics of », because in the vibration v,, the
optical anisotropy changes while it does not in the vibrations v, and v,. Next,
we can also understand the dependence of the intensity of 2 v, on the first
differential co-efficient of the polarisability of the C-O bond with respect to
the internuclear distance even without the second order coefficients. In the
vibration v,, the change in the inter-nuclear distance of the C-O bonds is
proportional to the square of the distance of the carbon atom from the line
joining the oxygens, which distance corresponds to the normal co-ordinate
v,. Hence, even though the polarisability of the C-O bonds varies linearly
as a function of the bond length, it will contribute a second order polaris-
ability in the vibration wv,.

More generally, the polarisability tensor of a molecule as a function of
the normal co-ordinates can be written as

da 1 d3%a o
a’:ao—{—?(‘b«?{z)o qz-+—2§(aqzaq7)0qzqi+."' (1)

The intensity of the Raman line corresponding to v, will depend on (g—g—) qg;
i/ 0

2
and that corresponding to 2 vy; will depend on (5%%) g: neglecting the higher
/o

order derivatives, The polarisability tensor of the kth bond in the molecule
can be written as

%)
AR = A (&) A,&) %"((f%(? S 2)

where A r®) is the change in the internuclear distance a(®. Letusassume that
the general expansion (1) is made up of N expansions of the type (2) where
N is the number of bonds. This may be assumed to be nearly right because
our procedure would be a piece-wise representation of the general expansion
of the polarisability of the molecule. If such a procedure is to be adopted,

it must not be thought that (;—;j;)o will not depend on A;® and A, #

because in certain normal modes of vibration the variations in the inter-
nuclear distances could be quadratic functions of the normal co-ordinates
and the ordinary optical anisotropy of the molecule could change even
though all A’s other than A,’s, are zero.
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In the case of CO, the variations in the C-O bond lengths are linear
functions of the normal co-ordinates corresponding to »; and v, while they
depend on the square of the co-ordinate corresponding to v,. Because the
overtones of »; and v; are not reported so far, we could assume only A, and
A, for the bonds and still account for 2 v,. These arguments are really very
general. We could thus account for the appearance of overtones of certain
modes of vibration even though the overtones of the most symmetrical vibra-
tions are not observed (as in the case of methane and deuteromethanes).

§ 2. The Polarisability Tensor in Terms of Normal
Co-ordinates

TR

The axes of the molecule are chosen as shown in Fig. 1. The co-ordinates
of the oxygen, carbon and oxygen atoms in the equilibrium configuration are
(0,0, — a), (0,0,0) and (0, 0, + a) where a is the length of the C-O bond.
The oxygen atoms are denoted by the subscripts 1 and 2 and the carbon atom
by the subscript 3. Let (x,, »,, z,,) be the variations in the co-ordinates of
the rth atom. Let m and M be the masses of the oxygen and carbon atoms
respectively. Conditions of the constancy of linear and angular momenta
require the following constraints among the cartesian variations:

m (x1+ XZ) + ng =0, ]
m (y1+ y2)+ My3= O’
m (zy+ z5) + Mz; =0, r (3)
xl == X2,
Y1 =Dro. J
Following Dennison, the normal co-ordinates can be written as
q = 23— 2y, }
x =x3— % (X1 + Xa), !
' r
y=ys— %01 +32) | @
. z =zz— % (z; + zo). J

The normal co-ordinate g refers to the vibration with frequency »,, the
co-ordinates x and y refer to the doubly degenerate vibration with frequency
14 . . .
v, and the co-ordinate z refers to the vibration with frequency v,.

The variation in the (1-3) bond is given by
Arg ={(— X+ (1—y3)* Kk (21— a— )M —a

= 2‘15 (e = %2+ (1= ¥ + (25 —Zy), (5)
retaining terms of the first and second orders only. Similarly

A”23=‘2“15 {Cry— x3)+ (Ya— ya) 3 — (23— z,). ' (6)
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The direction cosines of the (1 — 3) and (2 — 3) bonds are respectively given
by

1 ]
(213, Bug> Y1a) = &“_T_*&;:l; (X3— X1, y3— Y1 Z3— z1+ a), L )

1
(@as; Bags Vos) = m (x3 Xa, Y3 — Vo, Z3— Zy— Q). J

Let A, B and B be the principal polarisabilities of a C-O bond. Here
A and B are functions of the internuclear distance, given by
A=A+ AL E
B=m+le, J
where Ar is the variation in the inter-nuclear distance and A, and B, the
polarisabilities of a C-O bond when Ar =0. Higher order terms in (8)

will of course be present but for our present discussion their presence is not
necessary.

®

In the presence of an external electric field with components E,, E, and
E,, the components of the induced moment in the (1—3) bond are

M, =E, (B+ a%305,)+ Eya131813813 + E;a137150;s, }
M, = E;B15013015+ B, (B + B%38:3) + E 13713813, l )

M, = E.v13013013+ E;y13813815 + Ex(B4 v%13813), J
where (aj3, P13, v1s) are the direction cosines of the (1-3) bond and
S1= (Ao — B+ (A, — By) £ (10)

Similar expressions hold good for the components of the induced moment
in the (2—3) bond.

Using (5), (6) and (7), we get

1
yi=1— 2 {(x1— x3)2 4+ (v, — ¥3) 3,

1
Yaal=1 — VT, {Gre— x3)2 4+ (Y2 — ¥5) 3,

: 1
Y13%13 = %l (xz— x7) 32 (x5 — %) (23 — z9),

1 1 - . - (1
Vaalog = — a (X3 — x3) VT (X3 — X3) (23— z3),

1 1
Y13P13 = p (Vs—yD— a2 (ya—y0) (23— z1),

1 1
V23Bas = ~Z (3= y2) — a2 (Va— y2) (23— z2),
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neglecting terms of the higher order. From (9) the z-component of the
total moment induced in both the bonds is
M, = E,; {013y13(8¢+ 81 Ar13) + asyyas (8y+ 81 A7)}

+E, {Br13713(8 0+ 81 A715) + Pagyes(8g + 81 Aras)}

B (Bot St Ar) + Byt S Ary)

+ 7“13(30+ 81 A1)+ v23% 8o+ 81 Ara)}, (12)
where '
80 _— AO_ Bo, ]
13
8,=(A;— B,)/a. J} (13)

Using (11), (5), (6) and the relation x; = x, and y, =y, given by (3) in (12),
we get

M, =E, (— 8,+ 5)) (x5 — xy) (iia“ Zy— Zy)

+ Ey (— 8,+ 8) (ys —y1) (223(:_‘ 21— Z,)

a.’.
’ Zy — Z . p2
TE S 24 + A TR - (25, A £} (14)
where
p? = (X1— X3)*+ (y; — ya)?=x2+ y2 (15)

Expressing the cartesian co-ordinates (x,, y,, z,) in terms of normal co-ordi-
nates by means of (4), we get

M, =2 (— 8§, +81) YE, +2(=5, +81)ZyE
+ {2 A+ Ay g— (2 8,— Ay) g-}E (16)
Similarly, we get
Mx=(2B0+B1—Z+280§ —}—Blg—Z)Ex
+2 8,20 By 2(— 86+ 8) 31 E. amn
M, =25, Vx s+ 2B+ B, 23, y2+131 )EJ,

+2 (= 8+ 8) 3 E,
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Hence the components of the polarisability tensor are given by

3

axx:2B0+ Bl' "‘l“2 8 +B1a2:
——-2B0+B1 +28 +Bl

a=2 Ayt Ay L+ (A1 =23 %2
. (18)

pz___ x2+ yz.
§ 3. Matrix Elements of the Polarisability Tensor

The normal co-ordinates of the vibrations of the CO, molecule are
g, x, y and z as pointed outin § 1. The vibrational Hamiltonian is given by

H=T+V=1{7 ¢* +pG*+5+2)

+ 4772(2’?—1 12 g2+ p v x4+ Y24 V32 22)}

2mM
2m-+ M (19)

It is convenient to employ co-ordinates p and ¢ instead of x and y by means
of the tramsformation

where p =

X = pcos$ and y = p sin ¢ (20)
The wave function ¢ of the vibrating molecule can be written as?®
by, (@) Pvar (p) dv, (2) exp (£ i14) (21)

where the functions are properly normalised and are orthogonal where V;
and V, are the quantum numbers of the non-degenerate vibrations », and v,
and V, and / are the quantum numbers of the doubly degenerate vibration v,
with co-ordinates p and ¢. By means of (21), we can calculate the matrix
elements of the polarisability tensor (18) for the transitions

0,0,0,0) - (1,0,0,0), }

and (0, 0, 0, 0) — (0, 2, 0, 0), (22)
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where the four quantum numbers in brackets refer to V;, V,, V5 and / respec-
tively. We will be referring to the transitions (22) simply by

0,0) - (1,0)
(0, 0) = (0, 2) }

omitting V, and / on the understanding that V5 does not change and / is zero
and does not change.

(23)

For the transition (0, 0) —(1,0) the polarisability tensor (18) is
BLE o0 o0 ‘

: o B,% o s (24)
0 0o AZ J

where ¢? is the matrix element of ¢ for the transition 0 — 1in V;. From
the theory of the harmonic oscillator

g = (8 3 vfl (m/Z))ir (25)

Similarly for the transition (0, 0) — (0, 2), the tensor is

(Bi+89) &) 0 0 )
0 (B1+3) @;22‘2 0 ‘r (26)
0 0 (A, — 25, (f;?? |

- where (p?); is the matrix element of p? for the transition 0 — 2 in V,. From

the theory of the two dimensional oscillator

= (gmtori) @)

The spur and the anisotropy of the tensor (24) for the transition (0, 0) — (1, 0)
are respectively

- a1= 61 zl'—r
o2 (28)

2. §2 (49)

Y1 1 T g2

where
¢ =(A; +2B,)/3and §;,=A; — B;. (29)
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The spur and the anisotropy of the tensor (26) for the transition
(0, 0) — (0, 2) are respectively

2)0. '
e (0
vi= (- 33): L2

The average values of the squares of the tensor components in any fixed
- frame OXYZ can be calculated by standard methods.

e L 4
(@)% =+ 1% 7 ‘
- 1 .
{(azx)32}? = TERES

) { (31)
{(azz)ost?= ai+ 75 V2

2
2

T 1
{(azx)es}? = 57

Also

(azz)3o -(azz)8§
= average of the product

{B, cos? (x Z) + B;cos*(yZ) 4+ A;c0s2(zZ)} {(B,+ §,) cos? (xZ)

B, + 8,) cos? (yZ) -+ (A, — 2 8,) cos¥(zZ)} £ . (P7):
+ (B1+ 8p) cos? (yZ) + (A, 0) COS (ZZ)}a wr

4
= a;ay+ 45 Y1 Ve (32)
where '

0

20
Y1= 10y %’ ve=(8;— 3 §,) (22)2 (33)
Similarly

(a 00

1
2x )10 '(azx)g:? = 1‘5 Y1 Ye. (34)

§ 4. Calculation of the Intensities of the Fermi Split Lines v
The appearance of a doublet of comparable intensities instead of a strong

line corresponding to v, and a faint line corresponding to 2 v, in the Raman

spectrum of CO,, has been explained by Fermi® as due to the accidental
degeneracy v, = 2v,.
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Denoting v; — 2 v, by A, the matrix elements of the polarisability for the
observed split lines are, following Placzek,*

[ =z { VAFTAT @F = Vo=TAT @8} | (39
r
1 ——T AT ( s+ AT
[} = 3 \Va—TAT (% * va+TAT @8} |
where
x = +/(A?4 16 P?) (36)
where |
_ B h
P = 473 /\/(Vrl— 2 vp)% o7

B2 being the anharmonic constant coupling the vibrations with frquencies
v; and v,. For A? « < P? the matrix elements are :

1
(]88 = 5 (@)% + @)% ]
: (38)
(182 — 5 (@)% — (@32 |
the former corresponding to the higher energy split state and the latter to the
lower energy split state. The numbers following square brackets must not
be thought of as the quantum numbers because the split states are obtained

by linear combinations of the states (1,0) and (0,2) obtained when the
anharmonicity P is zero.

Using 31 in 38, we have
{lozz] 032 = % [{(az2)id}* + {(0z2)2} +2 {(az2)%) (0zz)53}]
., 4 5
=% [(a1+ a5)®+ 43 (v1+72)°l 39)

@B =1 15 Ont ) “0)

For unpolarized thcident light, the intensity of parallel component of
the transversely scattered light is

o, ! >
3 [(ar+ @)+ 45 (1t vl (41)
and that of the perpendicular component is
| 2
3- 15 (y1+ v2)2 (42)

These intensities are the total intensities of the P, Q and R branches of the
vibrational line. If we are interested in the purely vibrational state (i.e.,) the



348 N. S. Nagendra Nath and E. V. Chalam

Q branch, the anisotropic scattering in the Q-branch is approximately Z
that of the total anisotropic scattering at ordinary temperatures while the
spur scattering has no P and R branches. The intensities of the parallel and
perpendicular components of the Q-branch are

7

L1158 = % [+ 02)*+ g5 Gat 72)70, ]
1 t (43)
[L1%=1" 55 (n+)*
The aggregate intensity and the depolarisation are respectively given by
13 )
I, =% (o + ax)®+ 130 (yit+ v2)¥

— 6 (y1+ y2)?
PL 7 180 (a1 + 02)*F 7 (2t 70)?

Similarly the aggregate intensity and the depolarisation of the other split
line are ‘

(44)

N ey L —

L= 4 [(0, — ap)®+ —1—%% (r1— v2)’] }
4
_ 6 (yi—9)® [} +
P27 180 (0 — 09)?+ 7 (1 — v2)® J

From (44) and (45)
L, _ps . (14 p2)  (y1— v9)?

E_.D_z (1 -+ p1) . (y1+ v9)? (46)
, 180 .
(yl + .)/2)“ = 6:7%; (a‘l + az)"‘ (47)
180 py N
(y1—7v2)= ’6“_"_”‘78;‘“2 (23— ag)® (48)
Using (47) and (48) in (46), we get
Iz (1+Pz) (6‘”7 P1) aq— Qg 2 %
2 _ _ 4
I (I+p) (6—7 pg) \ag+ az) (49)
From (28) and 30)
0y = €01, 0= €02 (50)
where
o= gija. o= (p®3/a® (51)
Hence
Igw(l"}':oz) (6— 7 py) for,— T2\?
L (4+p) (6=7p2) \o1+ 0'2) (52)
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Defining

* and g T (53)

and using (50), (51) and (33), we can write the expressions for the depolari-
sations
. 6 - 6
T IR0 T 180 &
81+ 306, 0)* (8614 364 $)2
From (52) and (54), we see that the intensity ratio of the split Raman
lines and their depolarisations are expressed in terms of ¢; and ¢, which are
the matrix elements of g and p? for the required transitions and in terms of
3y, €, and 9, where §, is the optical anisotropy of the undisturbed C-O bond,
e, and 3§, are respectively the changes in the spur and anisotropy of the bond
for doubling the internuclear distance. The expressions (52) and (54) have
been derived assuming A (= v; — 2 »,) to be very small. In case A is not
small and P and A are of the same sign

(54)

+7

_I"2=(1+P2) (6—Tpy) fcro1— ¢ 02)2 1
Il (1+p1) (6'_7[)2) 6'20'1+C10'2 ’ Il

_ 6 _ 6 55)

P1 =77180 €2 +7’ Pe= 180 ¢, 2 7 i (
(3.~ 35,0)° G+ 38,8)° " J
where

c1=vVe—|Al, 2 =2+ A, )

O = G0y , P = CoOy ) |> (56)
C201 T €103, Co0y — (102 )

Assuming A ? << P? we will now compute the intensity ratio given by (52).
We will first estimate o; and o,. They are

1 h 3 _
- a=4 (g325m) . G7)
= 0-03408,
1 h 2m+M -
S e (58)
= 0-004266

assuming a = 1-16A, v, = 1336 cm.~?

vy, = 667 cm.~! Hence

N —7.987 (59)

Oy
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Thus

_(1+p)(6—Tp) . .
LT Fr) 6 =Tp < 6045 (60)

If py, po <€ 1 O py = py, then

%gzz 06 : (61)
1

Bhagavantam’s® experimental determination gives both p; and p, to be
nearly equal to 0-2. In this case the intensity ratio would be nearly O -6.
On the other hand taking p, and p, to be respectively 0-14 and 0-18 given
by Langseth and Nielsen,® the intensity ratio would be 0 -66 still not far from
0 -6 though their depolarisation values are rather different from those deter-
mined by Bhagavantam. This is natural since our intensity expression (60)
1s not very sensitive to p, and p, solong as they are nearly equal or both small
compared to unity, the former alternative being more plausible. The
intensity ratio 0 -6 calculated by us is in very good accord with the observed
ratios 0-57 by I. Hansen? and 0-61 by Langseth and Nielsen and -5 by
Bhagavantam.

We can solve for 8, §, and ¢,/§, by means of equations in (54). The
solutions are

8, _3(8+k¢) \
5, 1 —k
2
S 43 |
where
_ P1(6”‘7P2 i -
k== [Pz (6 —7 Pl] 63)
—_ % _n. —_ 9 __n.
9——0_1_1_02——0 1]2,96_—01__0‘2—-0.1443

It may thus be expected that we could determine 3, and ¢; and conse-
quently the constants A, and B; by knowing the experimental values of p;, ps
and §,. But it may be seen from our expressions that the determination will
be very sensitive to the values of p; and p,. It has not been found possible to
arrive at any definite conclusion about these constants from the available
experimental data.

We are thankful to Prof. S. Bhagavantam for his interest in this work.
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Summary

The polarisability of a molecule is assumed to be made up of the bond
polarisabilities as functions of the inter-nuclear distances. It is pointed out
that certain normal co-oridnates could be quadratic functions of some of the
variations in the inter-nuclear distances which fact accounts for the appear-
ance of overtone Raman lines assuming only first order variations in the bond
polarisabilities. These ideas have been applied to the case of CO, and the
intensity ratio of the Fermi split lines has been calculated which is in good
accord wih experimental observations.
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ERRATA

Page 343, second line of equation (16)—
2
for +{2 A0+A1q—(280—A1)f—15} E..

153

2
read  + {2 Ao+ AL T— (28, — A) g—é} E,.

Page 350, second line of equation (62)—

61____ 6""7P1§ k¢
Jor 5, = =3\ T80, ) 1K
— 3 6
€ 6—7p k(¢+ )
read = =3Cmo) 1ok




