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7. Iutroduction.

WrEN we published our report! on Jordan’s? neutrino theory of light in these
Proceedings, we assumed a standpoint differing in some respects from Jordan’s?
and Kronig’s* initial papers. Meanwhile they have published new representa-
tions® of the theory which are in complete agreement with our report. The
point is that the theory as presented on the basis of the Dirac theory of
holes in our report which is followed recently in Jordan’s® last paper, deals
with two kinds of neutrinos—neutrinos and anti-neutrinos—but neglects
the spin.

But there is no doubt that neutrinos have a spin. There is the general
theorem that particles with an integral angular momentum must obey the
Bose-Einstein statistics and that particles with a half-integral -angular
momentum must obey the Fermi-Dirac statistics.” Fmpirical evidence for
the existence of the spin is afforded by the theory of g-decay* ; if electron,
proton and neutron have each of them the spin §, then the process

neutron — proton -+ electron -+ neutrino

M. Born and N. S. Nagendra Nath, Proc. Ind. Acad. Sci., 1936, 3, 318. (Referred to as I)
P. Jordan, Zeits. f. Phy., 1935, 93, 464,

P. Jordan, Zcits. f. Phy., 1936, 98, 709 and 759; 1936, 99, 109.

R. de L. Kronig, Physica, 1935, 2, 491, 854, 965.

P. Jordan and R. de L. Kronig, Zeits. f. Phy., 1936, 100, 569.

P. Jordan, Zeits. f. Phy., 1936, 102, 243.

7 P. Jordan, Anschauliche Quantenmechanik (Julius Springer), 1936, p. 244.

* This argument implies the identity between Jordan’s neutrinc which is the fundamental
particle in his theory of light, and Pauli’s neutrino whose existence has been assumed to
account for S-decay. Experimental evidence on B-decay seems to show that Pauli’s
neutrino has practically no charge and no rest mass. Thus, the common characteristics
between Jordan’s neutrino and Pauli’s neutrino in that they have no rest mass and no electrical
charge, constitute strong arguments to believe that Jordan’s neutrino and Pauli’s neutrino
are identical. An experimental proof for this identification might result by studying a possible
influence of light field on J-decay.

S Ol o W R

611
Al ¥




612 Max Born and N. S. Nagendra Nath

shows that the neutrino must also have the spin 4. Another argument is
that the spin of the neutrino is necessary to account for the polarisation of
light. Indeed the theory which neglects the spin (as in I and in Jordan’s
papers) leads to half the value given by Planck’s formula which can easily be
understood by the consideration that the internal degree of freedom of the
neutrinos (spin) and of the photons (polarisation) is not incorporated in the
formalism.

One of us® has shown how the spin can be easily introduced by adding
a corresponding index to the operators representing neutrinos a,,; where
1 = R, I,, characterising the two spin states. A photon state is then repre-
sented by a pair of operators ; namely,

b -1 i i

kP = W o ZI" Qpei Cpelippi

by =~ Tapsanta;

£ vl 9% I Km oo 17 K,z % —kf
where the dash over the (7, j) summation indicates that 7+ 7 and p and A
characterise the two polarisation states of light. Though this method leads
to correct results, for instance Planck’s formula, it is not very satisfactory
from the formal standpoint. We shall present here a new form of this theory
in which each physical quantity belongs to only one operator. The funda-
mental matrices representing them have now of course four rows and
columns instead of those of two in the earlier representations. This procedure
Is in better agreement with the general definitions of quantum mechanics and
leads to very simple and elegant results.

2. The Operators of the Neutrino Field.

The neutrino field is described by two sets of infinite numbers of non-
commuting operators a, and y, which are enumerated by half-integral
positive numbers, 1, 2, £, ..... The half-integral numbers are chosen
primarily for the sake of convenience. The operators with negative indices
are defined by the relations

k>0, ax =y, yp=at; (2.1)
where t means the adjoint operator. Indeed, one may see by (2.1) that
there is no necessity for the introduction of two sets of operators but we retain
them, following Jordan, for the sake of symmetry between neutrinos and
anti-neutrinos whose relations with the above operators will be defined sub-
sequently. The meaning of these operators can be understood with the
help of the Correspondence Principle as the Fourier coefficients of the wave

8 N. S. Nagendra Nath, Proc. Ind. .Acad. Sci., 1936, 3, 448.
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functions which will be in the case of one dimension

b —xjc) = T axexp [2mink (t — /o)),
T , ) (2.2)
X (t —zxlc) = X ygexp [2mink (¢ — £/c)] = YT,

where v; corresponds to the fundamental frequency of the “ Hohlraum .
We postulate the following commutation rules for the operators :
Qe Op + ap a =0,
YeVp +7p Ve =0, (2.3)
Yie Op + Ap Ve = Ou, -k,
where 8, _, is the Dirac operator which is zero if p + —x and is the unit
matrix if g = — k. The operators describing the number of neutrinos and
anti-neutrinos of energy « (the unit of energy being hv,) are defined only
for k > 0 by

Nt = apef ape =1 — ax axl, (2.4
Nl =yl ye =1 — yx il 4

The relations
art o =1 — ap axl, (2.5)

')/KT vie =1 — yk ')/KT.-
are true in virtue of (2.3) and (2.1).

3. The Fundamental Operators and Their Properties.

In I, we started with the matrices

=( )@= D) w

which have the following properties :
a? =0, al? = 0, s2 =1,
ata +aat =1, as+ sa=0, afs 4+ sat =0. (3.2)
We may note that the above matrices are related to Pauli’s spin matrices by
the equations
or =at +a, 0, =1 (al —a)ando, =s. (3.3)
We build the fundamental matrices of the present theory by the above
matrices of the old one and with the notion of the direct product of the matrices
defined in I. The fundamental matrices are here defined as
5201 @4

Corresponding to the rule of the direct product of matrices A,y mime. =

Bpymry Vams and re-enumerating the combinations of the suffixes 11, 12, 21, 22,
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as 1, 2,3 4 we find
0 01 9 0 0 0O
0 0 0 1 . 00 0 0
A=6l><1== 0000 ,AT:dei-_" 10 0 0 I
0 00 01 00
10 0 0
01 0 o0
S=sx1= 00-1 o (3.5)
0 0 0 -1
We then have
0 0-1 o
00 0 -1
AS=as x1=—ax1= 00 o o |
00 0 o
(3.6)
0 01 0
M 0001
SA":-SGXl'-:thi:'- 0060 0 y
00 0 O
from which we conclude
AS + SA =0, (3.7
It is easy to see that
ATS 4+ SAT = o,
A= AA =, (3.8)
JA.T2 = ATL&T = O,
2 =88 =1,
The products AfA and AAT are given by
: { 0 000 3
; 0000 .
ATA = 0010
0 0 01
(3.9)
I 00 0
01 00
AAT = 0000
0 00 O

which show that the matrix AA has the eigen-values 0, 0, 1 and 1 while

AAT has the same eigen-values in the reverse order. It is also to be seen that

ATA + AAT = 1. (3.10)
The relations between the fundamental operators and Dirac’s matrices.—We
note that our matrices A and S can be expressed in terms of Dirac’s?

matrices.

2 P.A. M. Difaé, Quantum Mechanics, page 255.
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The Dirac matrices are

0010 00 — 0 10 0 0
0001 00 o ~f 61 0 0
PL=1\| 1000 ) P27 ;0 o > Ps=| oco0-1 o (3.11)
6100 0 i 0 0 00 0 -1
0100 ¢ -0 1 00 o0
1000 i 00 0 -10 0
Ox = ooo1 fr 9 =1 o o0~ |p 9=\ 9 01 0 |
0010 0 0 ¢ O 0 00 -1
Oy = P1 Ox, Gy = Py Oy, @y = P1 Oy
It is now easy to see that
A:%(Pl_{"ipﬁ:
Al =% (o — tpa), (3.12)
S =P3
or
pp = AT + A
ps =1 (AT — A) (3.13)
ps =S '

closely resembling the relations (3.3) which exist between Pauli’s matrices
and the two-dimensional matrices of the old theory. We also note that we
may choose for the development of the present theory % (a, -+ 10,),
% (0 — 7a,) and o, as the fundamental operators which may be expressed
in terms of a, a' and s.

Replacing the enumeration, 1, 2, 3, 4 by 0, 0, 1 and 1 the matrix
elements of the fundamental matrices which do not vanish are given by
A(0,1) =1, S(0,0) =1,
A0, 1) =1, $(0,0 =1,
(3.14)
At (1,0) =
At (1, 0)

1,  S(L1) =-1,
LS =1L

Il

4. The Jordan-Wigner Representations of the Operators.

As in I, we can write down the Jordan-Wigner representations of the
neutrino operators by the following scheme :

-} (k=1 k- (1)

0 =yl =8SXSX——x § X AXx1x 1 X——

aye =yl =S XS X——x S X S xATX 1 X ——
x>0 (4.1)

Yk =04 d =8 XSX——X § X S XAXx 1 X——

vk = =S XS X—— x S X Afx1x 1 X——
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Each matrix has only two types of non-vanishing elements which are given
by the following scheme in which £, is 0,0, 1, T. They are

0 1
g (ii‘) t—%: — T, 6: t—K; - - t%' t"%x — T i’ t—K’ - )
= (= )Pyt
1 0
-, t)t—s_'"'——:t;'-‘,—_; y b= T T, y =TT
a K( 4 % s 1 t% z 3 tK 5 )
= (= 123723777t
k> 0 *.2)
0 1
Yk (t%) t-—%: - tK: 6: - t%: t—%‘: - tK) -i': - —-)
= (= 1yt
1 0
Y-k (té: t——%; - T, i‘n t—K; - - t%; i*%: - 6; —tCy T _)

= (= 1) 23*24 "2 ()
where

P =1 iff, =1orT.
Using the definition of the direct product of the matrices and the equations

(3.7), (3.8) and (3.10), it can easily be verified that the representations of
the fundamental operators given in (4.1) satisfy the commutation rules (2.3).

5. A New System of Operators.

As in I, we introduce a new system of operators defined by

A = Qe -+ Y
V2 7
(5.1)
. Qe T Ve
€, =
® 32
so that
de + 1c
(5.2)
A — 1C
Y = KL __K 'V"; s
One sees from (5.1) and (2.1) that
a—K = aKT:
5.3
C—K = CKT. ) ( )
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The commutation rules satisfied by a’s and ¢’s are found by means of (2.3)
and (5.1). They are
dK aM + ayl (l,{ = S’L, - K>

Ck Cp + Cp Ok = 8y, _ ik, (5.4)
die Cp + Cp e = 0,

for e, p = %, £ 4, £ §, ---. Introducing the operators
Lk = a,t ax = a_y ax,

k> 0 (5.5)

Ny = ¢ ¢k = C Cks
onehasasinl
L + N = NK(+) + NKH;
k>0 (5.6)
L — N = & yie + v s

so that the expectation value

k>0 Ik — Nk =0, (5.7)
from which we can conclude that X2 I, and 2 N, are convergent if we
Kk >0 k>0

asstume that all states above a certain state K are unoccupied, z.e.,
N, ) = 0, Ny () = 0 for « > K. (5.8)
6. The Photon Operators and Therr Commutation Rules.
As in I, the photon operator is defined by

,l' (==}

— X Ay Cpx, (6.1)

b, =
ETVTR ki
for h=+1 +2, £3, .-
One may note that
bt = b_g. (6.2)
Tt can be demonstrated with the necessary assumptions pointed out in I that

b,{, b._,é ~= b_kb,@ =1 if £ > 0.

The various other forms of b; are

1 [
by = — V|k|l{=2— Qpe Yi-tcr

(o]

1
S S T
b/e '\/l le___E Qe e’ —jy

E— 3 oo
by = — : { Z%ak)’k—x‘f‘ 2%(0%’4-!( aKT — YE+K VKT)}' (6‘4)

K K=
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7. The Operator B and Its Properties.
If we define the operator B as ’
B =Z‘ 206{/{ C"‘K’ ‘ (7.1)
-CO .
it can be found as in I that

o0
B =2 (ot aj — viel Vi),
(7.2)
(Nt — N, ),

Lo L\18 1ok

and that it has whole number eigen-values. As in I, we note that B commutes
with all b, 1.e.,
B, —b,B =0. (7.3)

8. Photons and Their Statistical Equilibrium with M atter.

For a state with given numbers of neutrinos and anti-neutrinos the
operator representing the number of photons in the Ath energy state is not
a diagonal matrix. But we can calculate its average value or expectation
value—the diagonal element of P,

P (tuey oy I30, Ls:z: - = =) = (bzéT bs) (5112’ 75—1/2) - - _)
= {0 b)) (= —, £, — —) (8.1)
= 2 |bp(— =t — —;— — 4 — —) %
We find from (6.4) that e
108 (——, ', — —; — — ¢ — =) =
1 2ot
m{l 2%3 (e Vo) (— =, #, — —; — — 1 — -)
+ — - + — _l}’ »
1 £ 1
- 7 {1 R S T L SR
— b= =)+ — 4 _ ]}. (8.2)

We know from (4.2) that the non-vanishing elements of a, are those for
which #,c— "¢ is 0—1or §—1 whereas other #s are unchanged. The
elements of YVirc which do not vanish are those for which V pse—>Ep e 1S
0—1 or 0—1, other #'s unchanged. Thus the elements of ay vz, do not
vanish if all #’s are equal to the corresponding £”’s and #'s except
Ve =te=1or1 :
‘ zf'z =0 or (17,; (8.3)
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and
Fpge = "4y = 0 0r 0,
bppe = 1 or 1.
Thus the elements of ay yz_x do not vanish only when (l, fz—,) assumes
the values (1, 1), (I, 1), (1, 1) and (1, 1) respectively. In the first two combina-
tions there is no change in the spin states between the absorbed and the emziied
neulvinos while 1n the remaining two combinations the spin states are opposite.®
If £, is 1 the probabilities that #;_, is 1 or T are equal. From this we

conclude that the contribution to P, by the matrix ax s, is

1 _
5% N N, ) (8.4)
As in I, P, can be written as
) A-%
P = glk 2 N Ny - K(——)+ Z{N/+K(+) (1 = Nt 4 N o) (T=Nih

One may note, however, that Lhe maximum value of Ny is two instead of one
in the old theory. In considering the statistical equilibrium between matter
and radiation, we assume that the average number of particles in the (1, 1)
state of axt ax given by (4.1) is equal to the number of particles in the (I, 1)
state of axl ax. ‘That is,
N (1’ 1) = NK(+) (I: i),
N, (1, 1) =N, (1, 1).
Replacing & in (8.5) by I so that there may not be any confusion between
it and the Boltzmann constant, we can show as in I that

(8.5)

TN (1, 1) =N (L, T) =
meAmE T (8.7)
_ T _Y]|a '
NGO (1, 1) =N I) = T
where y =exp (— Bl) and B= hv /KT, & being the Boltzmann constant.
Putting '
and wl = i,w' (8.8)
we have
exp (— Bx) = ye (8.9)
and
dk =1 dw. (8.10)

* These considerations are the same as put forward earlier by the help of two dimensional
matrix representations. Indeed, bk, p corresponded to the case of the same spin between the
emitted and absorbed particles while Dj A corresponded to the case of opposite spin between
them (reference 8).

i
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Replacing the sum by integrals
1

R ayw 1/{z yl-—»w 2 Cly1+ w i 1 d
P(") = 2f1 -+ ayw ) 1 + 1/:2 yl-—m dw + (1 -+ ayl'—i- w) (1 + ayw) @
0 0

Yoyt 1
+[1+17a yltw : 1+1/, yttw de.
0

If we substitute (1 — 2)/z for ay« in the first integral, for ayt* @ in the second
integral and */, y1* @ in the third integral, we get
2

PQ) = > (8.12)
As in I, we can also show that
~ ayw ayw-1
Pi) = 2f( (1 — __1) dw
1 + ayw) 1 + ayw
et (8.13)
=1 ?: Nie (1 — Ng;) where v = [y,.
Since y = exp (— Av/FT), we get
, 2
PO = S rn =1 (8.14)

The factor 2 in (8.14) distinguishes this formula from the corresponding
one in I. It expresses the fact that there are two independent states of
different polarisation for a photon with a given frequency. The presence of
this factor is necessary to get Planck’s formula with the correct factor.
Assuming that (8.14) holds also in the case of three dimensions which case
has been treated by Jordan and Kronig, one gets Planck’s formula by
multiplying (8.14) by the individual energy Av of the photons having a
frequency between v and v - dv and by their number 47v2dy /c3,

87vidy }2:1{ L .
& exp (w/FT)—1 (8.15)

10. The Relation between the Energy of Neutrinos and Photons.

Just as in I, the energy of the neutrino field

) E = .’33% k(i +N) = F 1 (N + N0 (9.1)
K= k=%
and the energy of the photon field
= 3 = 3 kot
W éfl kP, 551 k bt by (9.2)

have the following relation
E-—-W= B2/2. (9.8)
The proof of this relation due to Kronig, is contained in T which holds here also,

™
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