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7. Introduction.

IN Part I,! it has been pointed out that the vibration of the two cubic
face-centered lattices composing the diamond lattice relative to one another
is Raman-active but infra-red inactive and that it has the frequency
1332 cm.!  In this note, the expressions for the elastic constants of
diamond have been found in terms of the molecular force constants and
their values have been evaluated approximately.

M. Born? was the first to calculate the elastic constants of diamond
from theoretical considerations. He obtained the value 1-89X 1012 dyn./cm.2
for the bulk-modulus of diamond. This is of the same order of
magnitude as the experimental value 2Xx 10!2 dyn./cm.? obtained by
Richards® in 1907. The Iatter determination has not however been
confirmed by later work. As was pointed out by Landé* Richard’s value
for the bulk-modulus of diamond is less than the value 2-6x 102 dyn./cm.2
obtained for corundum by Madelung and Fuchs® and its correctumess is
therefore highly improbable. Adams® and Williamson? determined the
bulk-modulus of diamond experimentally as 6-25x1012 dyn./cm.? and
5.56% 1012 dyn./cm.? respectively. These later determinations are in close
agreement with the value 5-6 x10'2 dyn./cm.? calculated theoretically by
Sir J. J. Thomson.8 Frenkel® has also made a theoretical calculation of the
bulk-modulus of diamond and has found it to be 14X 1012 dyn./cm.? which
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is rather too far out from the experimental values. In the present note,
we investigate the values of all the three elastic constants of diamond on
the basis of the known crystal structure of diamond and the binding forces
operative between the atoms in it.

2. The Calculation of the Elastic Constants.
A general homogeneous distortionl® of a crystal lattice can be repre-
sented at the point ri where £ is the ‘ basis-index’ and / is the ‘cell-index’

by the distortion vector 612 whose cartesian components are given by

!
Gféx = Uy, + f“xyyb y=2x 4 2z - (1)
where {d,. corresponds to the inner distortion and X Uy yi corresponds to
y

the homogeneous distortion of the lattice from the continuum standpoint.

The change in the energy density of the homogeneously distorted
lattice from its original undistorted configuration can be represented by
second order terms in the distortion components. In the case of a regular
diatomic lattice it is given by

A B ’
Up = 5 Dt + 5 2 {hex thyy + & (Uhey + %2)7 )
. -t a -

sty Lo(2)
+ O Uy — W) (e + 1) + 5 2 (T, — Ual)?

where the suffixes 1 and 2 refer to the two types of atoms. The forces at
the atoms (¢ Einzelkrafte’) 1 and 2 and the stresses per unit area are given

by

klx = — D (alx '_ ﬂZx) - C ('%yz + sz)
Gox = D (@, — Uy, +C (“yz + %zy) 3
ny = —C (alz - H2z) - B(”xy + uyx) x=,r’=y ( )

Kex= — At — B (“yy + Mzz)
In the case of the pure elastic deformation of the lattice, the forces at
all the atoms are zera. Hence '

ny = (B - C2/D) (Mxy"l“uyx) o (3)
The various elastic constants of the crystal are given by -
Cip == Cxpp = C33 = A
Clp == C13 = Cp3 = B } (4)
Cye = €55 = Cgg = B — C2/D

The remaining elastic constants are all zero.

10 Max Born and M. Goppert-Mayer, Handbuch der Physik, 1933, Vol. 24 (2), p. 623.
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Now, let us first calculate the elastic constants ¢;; and ¢ in the case
of diamond. ILet the stresses K,,, K,, and K, act on the crystal and let
K.y = K,,= K,, = 0. From this it follows from (3) that

Uyy T Uy = Uy + Uyy == Uyy + Uy = 0
and Uy, = Ay, U, = Uy, and U, = Ws..
Without any loss of generality we can consider here all @’s to be zero.

Tet the origin of the axes of reference be at an atom 1. In the
follbwing table, the co-ordinates of the nearest atoms of the origin-atom,
the direction cosines of the lines joining them to the origin-atom and the
components of the distortion vectors at those atoms calculated according to
(1) are given.

TaBLE I
Co-ordinates Direction cosines Distortion components
(0) 0, 0, O 6, 0, 0
(1) L, 1, 1 a, a a A omy v
(2) l, —1, —1 Oy = Cly — O Ay —py —v
3) —1, —1, 1 —a, —a, a —A — My ¥
(¢ -1, 1, —I —a, O, —a —A,  py —v

where a =1/ ¥3 and u,, = 4\/d, u,, = 4u/d and w4, = 4v/d where d (d = 4])
is the length of the cubic cell.

The above table shows that all the primary valence bonds are extended
by a (A+p+v). Let d,, denote the change in the internuclear distance
between the atoms 7 and s (r,s =0, 1, 2, 3, 4) and let 0,; denote the
change in the valence angle bound by the atoms 7 and s at the origin-atom
from the equilibrium configuration (r, s =1, 2, 3, 4). Then

. dop = doz = dog = dos = a (A+p+v)
Similarly one can find that

dip == dgg = 2B (u + v 1
dog = dg = 2B (v + A Bm“@"
A3 = dgg = 2B (A +-p
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Also,
b = b= £ 2BV3 (+9) —2aV3 (4 u+ )
923=9u-—%{2,8'\/3 (r +A) —2a¥2 (A +p + )
B =94Q=%{25v3(x+m —2a¥2 (A +p )

4p=434d
where p is the distance between the atom at the origin and any of its
nearest neighbours.

Referring to Part I (page 339), the change V; in the energy of a
unit cell due to the primary valence forces, the directed valence forces, the
repulsive forces and the intra-valence forces can be shown to be given by

2V, =8K-3: {4 (A+p+v)?

+ B8R b [FHRHR? + (w502 + 27}

+ 8—<—I—{——2:;2—K——) (26 2 (utv)? + 8 (A+p+)?
— 3 A+p+v) 2 (p+)}]
Now it is easy to see that the change U, in the energy density of the crystal
per unit volume is given by

L) 4 a e dis
20, = o [K +12 K + 1———‘K-f*5—)] T ur,, I
1 14 6 (K,+I ’,’> 4 " (5)
g [xr o SETED ] v, {
Xy

By comparing the coefficients of (2) and (5) with the help of (4), it follows

that
{) 14 rre
e = gld [K +12 K" + ——1“<Kpr—>J

_ 1 | . G(KI '%‘K’“)
s =g | K+ 0K ]

The bulk-modulus which is the reciprocal of the compressibility « is given
by

1 .
<= 3 T g (K+8KY

We shall now calculate the third elastic constant cyu. To do thislet
us consider all the stresses in the lattice to be zero except K,,. Then it
can be shown from (3) that

Upy = Uyy = Uy, = 0,
Uy + gy = Upx + Uy = 0,

ﬁllx = ﬁgx and ﬁly = Ggy.
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Without loss of generality we can have @’s in the above as zero. In the
case of the pure elastic deformation, the relation

C (%xy + %yx) + D (dllz - ﬁz:) = 0
bolds good. ‘The resulting energy expression is
2 U, = (B — C¥YD) (uy, + 1,,)?
The analogous table of Table I in this case can be easily constructed.

TasLE II.
Co-ordinates Direction Cosines Distortion Compounents
(O) 0’ O, O 0? 07 zl
(1) i, I, 1 a, a a A By %
(2) 1, —1, —1 Oy ~ay —a =N By R
3 =1, -1, 1 —Cy, —ay, — A — R
4y -1, 1, =1 —a, 4, —a A, —py 2

where #,, = 4 A/d and u,, = 4 uld. (d = 4).
It can be easily seen that
d01=d03= G(A+M+Zz—21)
dyp = doy = —a (A +u +2 — 2)

If the primary valence forces should cause no met resultant force at any
atom, it follows from the above that

A -+ 2 4+ 2 — 2] = 0
or dg =dos = doy = dos =0
Also it can be found that

dig = dzg=0
dog =  dyq =
dgg = — dgp =2 B (A+p)
and
f1p = O3 =0
O3 = 04 =0
03 = — Bas =243 B(A+p)/p

Tt can be seen that the repulsive forces, the directed valence forces and the
intravalence forces do not cause any inner forces for the distortions given
in Table II.

A6 F
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Now, the change U, in the energy density of the crystal is given by
l_ (fl/ -
2 U2 = g [K” + §..(_I{__Z)3_I:,_).J (uxy_{_uyx)g

d
Hence ¢4 = ?—1 [K” -+ 3_(_1_{______:[{__)]

9

_ e

¢4y 15 the rigidity modulus for any pair of the axes of reference.
Collecting our formulee for the elastic constants, we have

1

- oy 12 (KK
qﬁzﬁ_K+HKl+_¢w?wq
on = 5 | K + 6k — HELED]

i: MK-KWP - - (68
o = & _K + ”“—p***]
1 1 . "
= 5 (K + 8K

It will be noticed that a velation between the elastic constants
€11 = Cia T Cyq
exists when X'"|p? the intravalence constant is negligibly small.

In calculating the lattice frequency of diamond, we assumed K= 4% 105 |
dyn./em. and (K'—K'"}[$% = 0-2 x 105 dyn./cm. On this assumption the
contribution of the primary valence forces towards the bulk-modulus of
diamond is 3-8 X 10 dyn./cm.? using the value 3.552 x 1078 for 4 given
by Bragg.ll

Assuming that the remaining portion of the bulk-modulus 6-25 x 102
dyn./cfnﬁ of diamond is contributed by the repulsive forces we find that
K" = 0-34 x 105 dyn.Jcm. With the above values for K, K’ and K’
(neglecting X'"'), we find that

e = 9-8 X 1012 dyn./cm.2

cpm 4.5 x 1o . NG

€44 = 5:3 X 1012
where, as remarked above, ¢} = ¢19 + ¢y

3

The Poisson constant o, for a stress acting along the cubic axis is given

by
C1s

Cy1 1 Cyp

Ty =

= O‘-Sl

The Debye value of the Poisson constant assuming the crystal to be a
homogeneous and isotropic continuum is 0- 26.

1 'W. H. Bragg and W. L. Bragg, Introduction to Crystal Analysis, 1928, page 58.
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The Young’s modulus E along a direction whose direction cosines are
(I, m, n) with respect to the axes of reference is given by!2

.;1__ o ( 1 1 (l‘i: + 7114 + n4)

E 011_012 2 044

) S— ~ A

, (11C12) (C11F2 €pp) 2e,,
o= [-094 (¢ + mt + n%) + -05] x 10712

The end point of the radius vector from the origin whose magnitude is

SR and whose direction cosines are (/, m, n) describes a surface. The

sections of the surface perpendicular to a cubic axis and bisecting a pair of
cubic axes are drawn in figures (1) and (2). If F,, ¥y and E, be the
VYoung’s moduli“along a cubic axis, a diagonal of the cubic cell and a
diagonal of the face of a cube respectively, then we have
Fo= 6.9 x 1012 dyn./cin.2

= 12.3 x 1012 o
E, = 10-5 x 1012 »

Sections of the Elastic Surface of the reciprocal of the
Young’s modulus,

w

w

Fiag. 1. Section perpendicular to the cubic axis.

12 A, E. H. Love, The Mathematical Theory of Elasticity; 1927, page 191; and F. Auerbach
and W, Hort, Handbuch der Physikalischen wnd Techwischen Mechanik, Bd. 3, pages 249 & 254,
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k.‘:‘:;—_———_——_——— m

Fia. 2. Seclion perpendicular to the dodecahedral axis.

The rigidity modulus G for a pair of orthogonal axes whose direction
cosines are (I, m, n) and (l;, my, n,) respectively is given by
1 1 1 1

= = —— — 4 — > (12 112 + m2 m? + n? ny2
G Cyy 2¢,, 011 —Cy2 )

If we take a rod of the crystal with a circular section with the axial
direction cosines (/, m, ), the torsion is given by

T = 2 44 (__.g..___ I (m? n2+n2 12+ 12 m2)
044 011“012 044

In the case of diamond
T=[-38+4+ .75 m2n? + n2 2 + 12 m?)] x 10712
= [-76 — -38 (I* + mt + n%)] X 10712
Hence
1/Ty = 27 X 1012 dyn./cm.2
1/To = 1-6 x 1012
1/Te = 1.8 x 1012

)

13

The sections of the torsion surface are drawn in figures (3) and (4).

The foregoing values of the moduli are all only approximations as they
have been calculated on an inexact knowledge of the values of the force
constants. In view of this, the experimental investigation of the elastic
constants of diamond would be of the greatest interest as it would enable

us to get a correct idea of the magnitudes of the chemical binding forces in
diamond.

The author is highly thankful to his professor Sir C. V. Raman for his
great interest in this work.
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Sections of the Torsion Surface,
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Tie. 3, Section perpendicular to the Fie. 4. Section perpendicular to the
cubic axis, dodecahedral axis.

Note :—The author takes this opportunity of rectifying a remark made in Part L. The
author made the remark that Sir Robert Robertson and his collaborators suggest that
the normal mode of vibration responsible for the principal Raman line is also responsi-
ble for the strong infra-red absorption with the frequency 1289 em,-*, The above
statement was based on their remark in their paper (p. 523)—" the strong peak at 1289
em.s! is near the Raman frequency 1332 cmi.~? and differs from it in the same manner
as has been observed between the Raman lines and the infra-red bands in other sub-
stances ’—. From a private communication the author learns that this interpretation
was not intended by them. He therefore wishes to withdraw the remark made by

him.





